Numerical Linear Algebra
Numerical methods for eigenvalue problems

Maya Neytcheva，TDB，Feb－March 2021

Background：Vector and matrix norms

Vector norms

Given $\boldsymbol{v} \in V$ ，where V is \mathbb{C} or \mathbb{R} ．

$$
\begin{array}{ll}
\|\boldsymbol{v}\|_{2}=\left(\sum_{k=1}^{n}\left|v_{k}\right|^{2}\right)^{1 / 2} & \text { Euclidean norm } \\
\|\boldsymbol{v}\|_{1}=\sum_{k=1}^{n}\left|v_{k}\right| & \text { the absolute sum norm } \\
\|\boldsymbol{v}\|_{\infty}=\max _{k}\left|v_{k}\right| & \text { the maximum norm } \\
\|\boldsymbol{v}\|_{p}=\left(\sum_{k=1}^{n}\left|v_{k}\right|^{p}\right)^{1 / p}, 1 \leq p & \text { Hölder (p) norm }
\end{array}
$$

Numerical Linear Algebra
 Numerical methods for eigenvalue problems Basics

Numerical Linear Algebra
erical methods for eigenvalue problems

Theorem：For every pair of norms $\|\boldsymbol{v}\|_{a}$ and $\|\boldsymbol{v}\|_{b}$ in \mathbb{C} ，there exist constants $0<m>M$ such that

$$
m\|\boldsymbol{v}\|_{a} \leq\|\boldsymbol{v}\|_{b} \leq M\|\boldsymbol{v}\|_{a}
$$

for any $\boldsymbol{v} \in \mathbb{C}$ ，where m and M do not depend on \boldsymbol{v} ．

Matrix norms I

－Induced norms
For any given vector norm $\|\boldsymbol{v}\|$ ，

$$
\|A\|=\sup _{v \neq 0} \frac{\|A v\|}{\|v\|}
$$

is said to be the matrix norm，induced by the vector norm $\|\boldsymbol{v}\|$ （or the natural norm）．
－If $\|A v\| \leq\|A\|\|v\|$ ，then the matrix norm $\|A\|$ is compatible with the vector norm $\|v\|$ ．
－The infinity norm（the max row sum of $|A|$ ）

$$
\|A\|_{\infty}=\max _{k} \sum_{\ell}\left|A_{k \ell}\right|
$$

Norm relations I

Let $\rho(A)$ be the spectral radius of A ．Then there holds

$$
\|A\|_{2}=\left(\rho\left(A^{*} A\right)\right)^{1 / 2}=\left(\rho\left(A A^{*}\right)\right)^{1 / 2}
$$

Note：For Hermitian matrices，$\|A\|_{2}=\rho(A)$ but the spectral radius is not a norm．
Example：$A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right], A \neq 0$ but $\rho(a)=0$ ．

Matrix norms II

－The＇1＇－norm（the max column sum of $|A|$ ）

$$
\|A\|_{1}=\max _{\ell} \sum_{k}\left|A_{k \ell}\right|
$$

－The Frobenius norm

$$
\|A\|_{F}=\left(\sum_{k} \sum_{\ell}\left|A_{k \ell}\right|^{2}\right)^{1 / 2}
$$

Note

$$
\|A\|_{F}=\operatorname{trace}\left(A^{*} A\right)=\sum_{k}\left(\lambda_{k}\left(A^{*} A\right)\right)
$$

The Weighted Frobenius norm（ W is an spd matrix）

$$
\|A\|_{W}=\operatorname{trace}\left((A W)^{*}(A W)\right)
$$

Norm relations II

－For an arbitrary square matrix we have $\rho(A) \leq\|A\|$ because $A \boldsymbol{v}=\lambda \boldsymbol{v}$ implies

$$
\mid \lambda\|\boldsymbol{v}\|=\|A v\| \leq\|A\|\|v\| .
$$

－For arbitrary square matrix，$\|A\|_{2}^{2} \leq\|A\|_{1}\|A\|_{\infty}$ ．The inequality is sharp．
－

$$
\|A\|_{2} \leq\|A\|_{F}=\sqrt{\operatorname{tr}\left(A^{*} A\right)} \leq \sqrt{n}\|A\|_{2}, A(n, n) .
$$

Background：Matrix types

－Reducible／Irreducible matrices：
Theorem：A matrix A is reducible if and only if there exists a permutation matrix P such that

$$
P A P^{T}=\left[\begin{array}{cc}
A_{11} & A_{12} \\
0 & A_{22}
\end{array}\right]
$$

where A_{11}, A_{22} are square blocks．
Q：Is the diagonal matrix irreducible？
－Normal matrix：$A^{*} A=A A^{*}$
Theorem：A matrix is normal if and only if it is unitary similar to a diagonal matrix．

Theorem：A normal matrix with real eigenvalues is Hermitian．
－Hermitian matrix：$A=A^{*}$
Theorem：The eigenvalues of a Hermitian matrix are real．
Theorem：Any Hermitian matrix is unitary similar to a real diagonal matrix．
－Rayleigh quotient：
Let (λ, v) be an eigenpair of a matrix A ．Then there holds

$$
\lambda=\frac{(A \boldsymbol{v}, \boldsymbol{v})}{(\boldsymbol{v}, \boldsymbol{v})}
$$

For any nonzero vector $\boldsymbol{u} \in \mathbb{C}$ define the so－called Rayleigh quotient

$$
\frac{(A \boldsymbol{u}, \boldsymbol{u})}{(\boldsymbol{u}, \boldsymbol{u})}
$$

Gershgorin type eigenvalue estimates

Theorem: The spectrum $S(A)$ of a matrix $A=\left[a_{i j}\right]$ is enclosed in the union of the disks

$$
C_{i}=\left\{z \in \mathbb{C}:\left|z-a_{i i}\right| \leq \sum_{j \neq i}\left|a_{i j}\right|, 1 \leq i \leq n\right\}
$$

and in the union of the disks

$$
C_{i}^{\prime}=\left\{z \in \mathbb{C}:\left|z-a_{i i}\right| \leq \sum_{j \neq i}\left|a_{j i}\right|, 1 \leq i \leq n\right\}
$$

That is, $S(A) \in\left(\cup C_{i}\right) \cap\left(\cup C_{i}^{\prime}\right)$. Recall that $S(A)=S\left(A^{T}\right)$.

Min-Max theorem (Courant-Fisher, Poincaré-Weyl)

Theorem: Let A be Hermitian of order n with eigenvalues $\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}$ and $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \cdots, \boldsymbol{v}_{n}$ their corresponding eigenvectors. Let $p_{1}, \cdots, \boldsymbol{p}_{\eta}$ be orthonormal vectors, Then, assuming that $\boldsymbol{x}^{*} \boldsymbol{x}=1$, we have
(a)

$$
\begin{equation*}
\min _{x \perp p_{1} \cdots p_{s-1}} x^{*} A x \leq \lambda_{s} \tag{b}
\end{equation*}
$$

$x \perp p_{n}, p_{n-1} \cdots p_{s+1} x^{*} A x \geq \lambda_{s}$
(c) $\boldsymbol{p}_{i}, 1 \leq i \leq s-1 \quad \min _{x \perp \boldsymbol{p}_{\mathbf{1}} \cdots \boldsymbol{p}_{\boldsymbol{s}-\mathbf{1}}} x^{*} A x=\lambda_{s}$ $\boldsymbol{p}_{i}^{*} \boldsymbol{p}_{j}=\delta_{i j}$
(d) $\boldsymbol{p}_{\boldsymbol{i}}, \mathrm{s}+1 \leq i \leq n^{\min } \max _{x \perp \boldsymbol{p}_{\boldsymbol{n}}, \boldsymbol{p}_{\boldsymbol{n}-\mathbf{1}} \cdots \boldsymbol{p}_{\boldsymbol{s}+\mathbf{1}}} \boldsymbol{x}^{*} A \boldsymbol{x}=\lambda_{\boldsymbol{s}}$

$$
\boldsymbol{p}_{i}^{*} \boldsymbol{p}_{j}=\delta_{i j}
$$

and the extreme values are attained for $\boldsymbol{p}_{i}=\boldsymbol{v}_{i}, i=1,2, \cdots, s-1$ and $\boldsymbol{p}_{i}=\boldsymbol{v}_{i}, i=n, n-1, \cdots, s+1$, respectively.

Corollaries

Let A, B be symmetric matrices and consider the eigenvalues of $A, A+B, A B$ ordered increasingly. Then

1. $\lambda_{i}(A)+\lambda_{\min }(B) \leq \lambda(A+B) \leq \lambda_{i}(A)+\lambda_{\max }(B)$
2. If A positive definite and $\lambda_{\max }(B)$ in nonnegative, then

$$
\lambda_{i}(A B) \leq \lambda_{i}(A) \lambda_{\max }(B)
$$

3. If A positive definite and $\lambda_{\min }(B)$ in nonnegative, then

$$
\lambda_{i}(A B) \geq \lambda_{i}(A) \lambda_{\min }(B)
$$

Proof: Let $\boldsymbol{v}_{\boldsymbol{i}}$ be the eigenvectors of A, orthonormal; $\boldsymbol{x},\|\boldsymbol{x}\|=1$, arbitrary. Then

$$
\begin{aligned}
\lambda_{i}(A+B) & \geq \min _{x \perp \mathbf{v}_{\mathbf{1}}, \cdots, v_{i-1}} x^{T}(A+B) x \\
& \geq \min _{x \perp v_{1}, \cdots, v_{i-1}} x^{T} A x+\min _{x^{T} x=1} x^{T} B x \\
& =\lambda_{i}(A)+\lambda_{\min }(B) .
\end{aligned}
$$

Cauchy interlace theorem

Theorem: Let $B=\left[\begin{array}{cc}A & \boldsymbol{w} \\ \boldsymbol{w}^{*} & \alpha\end{array}\right], A(n-1, n-1), B(n, n)$, Hermitian.
The eigenvalues of A and B interlace,
$\lambda_{1}(B) \leq \lambda_{1}(A) \leq \lambda_{2}(B) \leq \lambda_{2}(A) \leq \cdots \leq \lambda_{n-1}(B) \leq \lambda_{n-1}(A) \leq \lambda_{n}(B)$.
Background: Canonical forms of matrices

Reformulated: the characteristic polynomial of a Hermitian matrix
is interlaced by the characteristic polynomial of any principle submatrix.

Definitions

1. Def.: An eigenvalue λ of A is said to have algebraic multiplicity m if it is a root of multiplicity m of the characteristic polynomial of A.
2. Def.: An eigenvalue λ of A is said to have algebraic multiplicity m if it is a root of multiplicity m of the characteristic polynomial of A.
3. Def.: An eigenvalue λ of A of algebraic multiplicity 1 is said to be simple.

Definitions

1. Def.: An eigenvalue λ of A is said to have algebraic multiplicity m if it is a root of multiplicity m of the characteristic polynomial of A.
2. Def.: An eigenvalue λ of A of algebraic multiplicity 1 is said to be simple.
3. Def.: An eigenvalue λ of A is said to have geometric multiplicity μ if the maximum number of independent eigenvectors, associated with it is μ. Thus, the geometric multiplicity is the dimension of the eigenspace $\operatorname{Null}(A-\lambda /)$.
(similarity transformation).
A and B have the same spectrum including the algebraic multiplicity.

Definitions

Def.: The matrices A and B are said to be similar if there is a nonsingular matrix X, such that

$$
A=X B X^{-1}
$$

Definitions

1. Def.: An eigenvalue λ of A is said to have algebraic multiplicity m if it is a root of multiplicity m of the characteristic polynomial of A.
2. Def.: An eigenvalue λ of A of algebraic multiplicity 1 is said to be simple.
3. Def.: An eigenvalue λ of A is said to have geometric multiplicity μ if the maximum number of independent eigenvectors, associated with it is μ. Thus, the geometric multiplicity is the dimension of the eigenspace $\operatorname{Null}(A-\lambda /)$.
4. Def.: Semi-simple eigenvalue, if $m=\mu$.

Jordan canonical form

Theorem: For any square matrix A there exists a nonsingular matrix X that reduces A to a block-diagonal form $X A X^{-1}=\operatorname{diag}\left(J_{1}, J_{2}, \cdots, J_{p}\right)$, where J_{k} of order n_{k} is either $J_{k}=\lambda_{k}$ or

$$
J_{k}=\left[\begin{array}{ccccc}
\lambda_{k} & 1 & & & \\
& \lambda_{k} & 1 & & \\
& & \ddots & & \\
& & & \lambda_{k} & 1 \\
0 & & & & \lambda_{k}
\end{array}\right], \text { if } n_{k} \geq 2
$$

A is diagonalizable iff $n_{k}=1, k=1,2, \cdots, p$.

Schur canonical form

Theorem: Any square matrix A is unitary similar to an upper-triangular matrix, where the diagonal elements are the eigenvalues of A :

$$
U^{-1} A U=\left[\begin{array}{cccc}
\lambda_{1} & b_{12} & \cdots & b_{1 n} \\
0 & \lambda_{2} & \cdots & b_{2 n} \\
& & \ddots & \\
0 & \cdots & 0 & \lambda_{n}
\end{array}\right]
$$

Eigenvalue-revealing!

Corollaries

1. Every selfadjoint matrix is unitary equivalent to a real diagonal matrix.

Schur canonical form I

$$
A=U R U^{*} \quad \text { equivalently } \quad A U=U R
$$

Note 1: The first column of $U \boldsymbol{u}_{1}=U e_{1}$ is an eigenvector of A with eigenvalue $\lambda_{1}=\boldsymbol{e}_{1}^{T} R \boldsymbol{e}_{1}$.
Note 2: The last column of $U \boldsymbol{u}_{n}=U \boldsymbol{e}_{n}$ is an eigenvector of A with eigenvalue $\lambda_{n}=\boldsymbol{e}_{n}^{T} R \boldsymbol{e}_{n}$.
Note 3: The second column \boldsymbol{u}_{2} of U is an eigenvalue of $A^{\prime}=\left(I-\boldsymbol{u}_{1} \boldsymbol{u}_{1}^{*}\right) A\left(I-\boldsymbol{u}_{1} \boldsymbol{u}_{1}^{*}\right)$ with eigenvalue $\lambda_{2}=\boldsymbol{e}_{2}^{T} R \boldsymbol{e}_{2}$. Proof: R is upper-triangular. $R \boldsymbol{e}_{2}=R_{12} \boldsymbol{e}_{1}+\lambda_{2} \boldsymbol{e}_{2}$. Proof is completed by expanding $A^{\prime} \boldsymbol{u}_{e}$, $\ln A^{\prime}$ the eigenvalue λ_{1} is deflated.

Corollaries

1. Every selfadjoint matrix is unitary equivalent to a real diagonal matrix.
2. Every real symmetric matrix is orthogonally equivalent to a real diagonal matrix.

Corollaries

Singular Value decomposition

1．Every selfadjoint matrix is unitary equivalent to a real diagonal matrix．
2．Every real symmetric matrix is orthogonally equivalent to a real diagonal matrix．
3．A matrix of order n is similar to a diagonal matrix if and only if its eigenvalues form a basis for \mathbb{C}^{n} ，i．e．，the eigenvector space of A is complete．

To summarize：

A is diagonalizable if there exists a diagonal matrix D and a nonsingular matrix X ，such that $A=X D X^{-1}$ ．
In other words，if and only if there exists a basis of the whole space consisting of eigenvectors of A only．Matrices that cannot be diagonalized are called defective．

1．A is real symmetric $\Longrightarrow A$ is Hermitian $\Longrightarrow A$ is normal $\Longrightarrow A$ is diagonalizable，
2．A is defective $\Longrightarrow A$ is non－normal $\Longrightarrow A$ is non－Hermitian．
None of the above implications are an equivalence．

Let $A \in \mathbb{C}^{n \times k}$ ．Then A can be factorized as

$$
A=U \Sigma V^{T} \quad \text { or } \quad A V=U \Sigma
$$

where U, V are unitary and Σ is diagonal with nonnegative entries． Rank－revealing factorization！
（Considered separately．）

Proposition：Let A be normal．Then for each $\varepsilon>0$ there exists a non－normal matrix A_{ε} such that

$$
\left\|A-A_{\varepsilon}\right\| \leq \varepsilon
$$

The set of non－normal matrices is dense in the set of all matrices．
Proof：（Note，that since all norms on finite dimensional spaces are equivalent，we need not specify the topology implied by the word ＇dense＇．）Let A be normal and $A U=U D$ with $U^{*} U=I$ and D is diagonal．Define matrices A_{ε} as follows

$$
A_{\varepsilon}=U_{\varepsilon}^{*} \Lambda U_{\varepsilon} \text {, where } U_{\varepsilon}=U\left[\begin{array}{ccc}
\cos (\varepsilon) & 0 & 0 \\
\sin (\varepsilon) & 1 & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

Then $U_{0}=U$ and $A_{0}=A$ ，and for all $\varepsilon \in(0, \pi)$ ，we have that U_{ε} is non－unitary．But the above is a diagonalization of A_{ε} ．Therefore， $\left\{A_{\varepsilon}\right\}$ with $\varepsilon \rightarrow 0$ is a sequence of non－normal matrices converging to A ．

Proposition: Let A be defective. Then for each $\varepsilon>0$ there exists a diagonalizable matrix A_{ε} such that

$$
\left\|A-A_{\varepsilon}\right\| \leq \varepsilon
$$

The set of diagonalizable matrices is dense in the set of all matrices.

Modified Gram-Schmidt orthogonalization

```
Compute }\mp@subsup{r}{11}{}=|\mp@subsup{\boldsymbol{v}}{1}{}\mp@subsup{|}{2}{}\mathrm{ . If }\mp@subsup{r}{11}{}=0,\mathrm{ stop, else }\mp@subsup{\boldsymbol{q}}{1}{}=\mp@subsup{\boldsymbol{v}}{1}{}/\mp@subsup{r}{11}{
for }j=2,\cdotsn\mathrm{ do
    Set }\widehat{\boldsymbol{q}}=\mp@subsup{\boldsymbol{v}}{\boldsymbol{j}}{
    for i=1,2,\cdots,j-1 do
            rij =(\widehat{\boldsymbol{q}},\mp@subsup{\boldsymbol{q}}{i}{})
            \widehat{\boldsymbol{q}}=\widehat{\boldsymbol{q}}-\mp@subsup{r}{ij}{\prime}\mp@subsup{\boldsymbol{q}}{i}{}
    end for
    rij =|\widehat{\boldsymbol{q}}\mp@subsup{|}{2}{}
    If }\mp@subsup{r}{jj}{}=0\mathrm{ then stop, else }\mp@subsup{\boldsymbol{q}}{j}{}=\widehat{\boldsymbol{q}}/\mp@subsup{r}{jj}{
end for
: Compute \(r_{11}=\left\|\boldsymbol{v}_{1}\right\|_{2}\). If \(r_{11}=0\), stop, else \(\boldsymbol{q}_{1}=\boldsymbol{v}_{1} / r_{11}\)
for \(j=2, \cdots n\) do
Set \(\widehat{\boldsymbol{q}}=\boldsymbol{v}_{\boldsymbol{j}}\)
for \(i=1,2, \cdots, j-1\) do
\(\left.\hat{\mathbf{a}}=\hat{a}, q_{i}\right)\)
\(=\boldsymbol{q}-r_{i j} \boldsymbol{q}_{i}\)
\(r_{j j}=\|\widehat{\boldsymbol{q}}\|_{2}\)
end for
```



```
Compute \(r_{11}=\left\|\boldsymbol{v}_{1}\right\|_{2}\). If \(r_{11}=0\), stop, else \(\boldsymbol{q}_{1}=\boldsymbol{v}_{1} / r_{11}\)
for \(j=2, \cdots n\) do
    for \(i=1,2, \cdots, j-1\) do
        \(r_{i j}=\left(\boldsymbol{v}_{j}, \boldsymbol{q}_{i}\right)\)
    end for
    \(\widehat{\boldsymbol{q}}=\boldsymbol{v}_{j}-\sum_{i=1}^{j-1} r_{i j} \boldsymbol{q}_{i}\)
    \(r_{j j}=\|\widehat{\boldsymbol{q}}\|_{2}\)
    If \(r_{j j}=0\) then stop, else \(\boldsymbol{q}_{j}=\widehat{\boldsymbol{q}} / r_{j j}\)
end for
```


Formulations of the eigenvalue problem: I

Formulations of the eigenvalue problem: II

- The eigenvalue problem can be seen as an eigenvector problem:

$$
\begin{aligned}
& A v=v \lambda \Rightarrow v^{*} A v=v^{*} v \lambda \Rightarrow v v^{*} A v=v v^{*} v \lambda \\
& v v^{*} A v=v v^{*} v \lambda \Rightarrow v v^{*} A v=v^{*} v A v \Rightarrow A v v^{*} v=v v^{*} A v .
\end{aligned}
$$

Thus, the eigenvectors are the nonzero roots of the nonlinear functional $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}: A \boldsymbol{v} \boldsymbol{v}^{*} \boldsymbol{v}-\boldsymbol{v} \boldsymbol{v}^{*} A \boldsymbol{v} \equiv\left(I-\boldsymbol{v} \boldsymbol{v}^{*}\right) A \boldsymbol{v}$ (if $\|v\|=1$).
Despite of the fact that the eigenproblems are classified as Linear Algebra problems, they are highly nonlinear - f is a quadratic functional and the problem could be solved using the Newton method, for instance.

Motivation to analyse the effect of perturbations I

$$
A v=v \lambda
$$

As we compute the eigensolutions inexactly, up to a machine precision, we are interested to see what happens with the eigenvalues and the eigenvectors when we slightly perturb the matrix.
Def.: Let A be of size n, μ-scalar and v - a vector in \mathbb{C}^{n}. The eigenvalue residual for the pair (μ, \boldsymbol{v}) is defined as

$$
\boldsymbol{r}=A \boldsymbol{v}-\boldsymbol{v} \mu .
$$

Theorem: Under the above setting, (μ, \boldsymbol{v}) is an eigenpair of a matrix $\widehat{A}=A+E$, where $E=-v r^{*}$.
Proof:
$\widehat{\boldsymbol{A}} \boldsymbol{v}=(A+E) \boldsymbol{v}=\left(A-\boldsymbol{v} \boldsymbol{r}^{*}\right) \boldsymbol{v}=A \boldsymbol{v}-\boldsymbol{r}=A \boldsymbol{v}-A \boldsymbol{v}+\boldsymbol{v} \mu=\boldsymbol{v} \mu$.

Motivation to analyse the effect of perturbations II

Note：$\|E\|=\|\boldsymbol{r}\|$ ．
Theorem：There exists no matrix F with $\|F\|<\|r\|$ such that $(A+F) \boldsymbol{v}=\boldsymbol{v} \mu$ ．Proof：From $(A+F) \boldsymbol{v}=\boldsymbol{v} \mu$ we have
$\|F \boldsymbol{v}\|=\|A \boldsymbol{v}-\mu \boldsymbol{v}\|=\|\boldsymbol{r}\|$ ，hence，$\|F\|=\sup _{\boldsymbol{w} \neq \mathbf{0}} \frac{\|F \boldsymbol{w}\|}{\|\boldsymbol{w}\|} \geq \frac{\|F \boldsymbol{v}\|}{\|\boldsymbol{v}\|}=\|\boldsymbol{r}\|$ ．
In other words，$E=-r v^{*}$ is the smallest perturbation of A having （ μ, \boldsymbol{v} ）as eigenpair．

Regarding computational algorithms：they should produce small residuals．
If $\|\boldsymbol{r}\|$ is small，then it depends on the properties of A whether or not this will result in accurate eigenvalues．

Classical perturbation bounds 1

Theorem［Bauer－Fike］：Suppose that $A V=V \wedge$ with V nonsingular and Λ diagonal．Let μ be an eigenvalue of $A+E$ ． Then，there exists an eigenvalue λ of A such that

$$
|\lambda-\mu| \leq \varkappa[V]\|E\| \text {, where } \varkappa(V)=\|V\|\left\|V^{-1}\right\| \text {. }
$$

Corollary：Let A be a normal matrix，μ be an eigenvalue of $A+E$ with $\|E\|<\varepsilon$ ．Then there exists an eigenvalue of A, λ such that

$$
|\lambda-\mu| \leq \varepsilon .
$$

（In this case $\|V\|=1$ ．）

Classical perturbation bounds II

Theorem［Henrici］：Let $A Q=Q R$ be a Schur decomposition of A ．Let $R=D+N$ ，where D is diagonal and N is strictly upper－triangular（nilpotent）．Let p be the smallest integer such that $N^{p}=0$ ．Then for each eigenvalue μ of $A+E$ there exists an eigenvalue λ of A such that

$$
|\lambda-\mu| \leq \max \left(\theta, \theta^{1 / p}\right), \text { where } \theta=\|E\| \sum_{k=0}^{p-1}\|N\|^{k}
$$

The quantity $\nu(A)=\|N\|$ is referred to as departure from normality of A ．

Moral：When A is not normal or close to defective，the eigenvalues of $A+E$ may differ significantly from those of A even if $\|E\|$ is small．

Pseudoeigenvalues I

Given $A, z \in \mathbb{C}$, the eigenvalues of A are those z for which $A-z l$ is singular.
Consider subsets of the complex plane that are close to these eigenvalues.
Def.: The ε-pseudospectrum $\Lambda_{\varepsilon}(A)$ of A is the set of points z such that z is an eigenvalue of $A+E$ with $\|E\| \leq \varepsilon$.
In this way the pseudospectra define the exact bounds for how far and eigenvalue of A can move under a perturbation E.
Def.: Resolvent For any $z \in \mathbb{C}$
$R(A, z)=(A-z l)^{-1}(Y$. Saad $) \quad R(A, z)=(z l-A)^{-1}(N$. Trefethen $)$

The resolvent I

Pseudoeigenvalues II

Equivalent definitions for the ε-pseudospectrum of $A, \Lambda_{\varepsilon}(A)$:
Def.: $\Lambda_{\varepsilon}(A)=\{z \in \mathbb{C}: z \in \Lambda(A+E)$ for some $E:\|E\| \leq \varepsilon\}$.
Def.:

$$
\Lambda_{\varepsilon}(A)=\left\{z \in \mathbb{C}:\left\|(z \|-A)^{-1}\right\| \geq \varepsilon^{-1}\right\} .
$$

$\Lambda_{\varepsilon}(A)$ is the subset of the complex plane, bounded by the ε^{-1} level curve of the resolvent norm.
Def.: $\Lambda_{\varepsilon}(A)=\{z \in \mathbb{C}: z \in \Lambda(A+E)$ for some $E:\|E\| \leq \varepsilon\}$
Def.: $\Lambda_{\varepsilon}(A)=\left\{z \in \mathbb{C}: \sigma_{\min }(z \mid-A) \leq \varepsilon\right\}$, where $\sigma_{\min }(A)$ denotes the minimum singular value of a generic matrix A. $\Lambda_{\varepsilon}(A)$ are the sets in the complex plane bounded by the level curves of $\sigma_{\text {min }}(z I-A)$.

The resolvent I

The spectrum of A is defined as the set in \mathbb{C} where the inverse of $A-z l$ does not exist.
$R(A, z)$ admits singularities at the eigenvalues of A. Away, the resolvent is analytic w.r.t z :

$$
\begin{aligned}
R(A, z) \equiv(A-z I)^{-1} & =\left(\left(A-z_{0} I\right)-\left(z-z_{0}\right) I\right)^{-1} \\
& =R\left(z_{0}\right)\left(I-\left(z-z_{0}\right) R\left(z_{0}\right)\right)^{-1}
\end{aligned}
$$

Proposition: $\Lambda_{\varepsilon}(A)$ is the set of points $z \in \mathbb{C}$, for which

- $\sigma_{\text {min }} \leq \varepsilon$, with $\sigma_{\text {min }}$ the minimal singular value of $A-z l$,
- $\left\|(A-z l)^{-1}\right\| \geq \varepsilon^{-1}$

Theorem: Let (μ, v) be an approximate eigenpair of A and assume $\|\boldsymbol{v}\|=1$. Then $\mu \in \Lambda_{\varepsilon}(A)$ with $\varepsilon=\|\boldsymbol{r}\|, \boldsymbol{r}=A \boldsymbol{v}-\boldsymbol{v} \mu$.
... many properties of $R(A, z)$...

The resolvent II

Theorem：Let (μ, \boldsymbol{v}) be an approximate eigenpair of A and assume $\|\boldsymbol{v}\|=1$ ．Let θ be the positive acute angle between r and \boldsymbol{v} ．Let $\widehat{\mu}$ be such that $A \boldsymbol{v}-\boldsymbol{v} \widehat{\mu} \perp \boldsymbol{v}$ ．Then

$$
\widehat{\mu}=\boldsymbol{v}^{*} A \boldsymbol{v}=\Lambda_{\sin (\theta)\|r\|}(A)
$$

The above result shows a possibility to improve the eigenvalue once an approximate eigenvector has been computed．

Example（Trefethen）

Computation of Pseudospectra
19

[^0]
Example（Trefethen）

Consider the time－reduced 1D Schrödinger operator with a potential function that is complex：

$$
A u(x)=u^{\prime \prime}+\left(c x^{2}-d x^{4}\right), c=3+3 i, d=1 / 16
$$

The operator is highly non－normal，invariant with respect to x or $-x$ ，thus if $u(x)$ is an eigenfinction，then $u(-x)$ is also an eigenfunction．
Shown：all eigenvalues of A are single and each eigenfunction is either even or odd（B．Davies，1998）．
Discretize：Chebyshev collocation spectral method on a finite interval $[-L, L]$ ．

Numerical Linear Algebra

Numerical methods for small／medium eigenvalue problems

The Power iteration

Given A, B, C, square of order n. Find pairs $\lambda, \boldsymbol{v})$ such that

$$
\begin{array}{ll}
A \boldsymbol{v}=\lambda \boldsymbol{v} & \text { standard eigenvalue problem } \\
A \boldsymbol{v}=\lambda B \boldsymbol{v} & \text { generalized eigenvalue problem } \\
\boldsymbol{A v}+\lambda B \boldsymbol{v}+\lambda^{2} C \boldsymbol{v}=\mathbf{0} & \text { quadratic eigenvalue problem }
\end{array}
$$

Usually n is large $\left(10^{5}-10^{8}\right)$.
For smaller $n(n \leq 5000)$ all eigenpairs are computed using the QR iteration (Matlab eig).

The Power method (Single vector iteration technique) - constructs a sequence of vectors that converges to the dominant eigenvector, the eigenvector, corresponding to the eigenvalue with largest modulus.
1: Choose $\boldsymbol{v}_{0} \neq \mathbf{0}$
2: for $k=1, \cdots$ until convergence do
Find $\alpha_{k}=\max _{1 \leq k \leq n}\left(\left|\boldsymbol{v}_{k}(i)\right|\right)$
$\boldsymbol{v}_{k}=\frac{1}{\alpha_{k}} A \boldsymbol{v}_{k-1}$
5: end for
Theorem: Let λ_{i} be the eigenvalues of A ordered as $\left|\lambda_{1}\right| \geq \lambda_{2}\left|\geq \cdots \geq\left|\lambda_{n}\right|\right.$ The convergence factor is proportional to the relative gap between $\left|\lambda_{1}\right|$ and $\left|\lambda_{2}\right|, \frac{\left|\lambda_{2}\right|}{\left|\lambda_{1}\right|}$.

The Power iteration, yet another form (Rayleigh quotient)

```
Choose \(v_{0} \neq 0\)
for \(k=1, \cdots\) until convergence do
    \(\widetilde{\boldsymbol{v}}_{k}=\frac{1}{\alpha_{k}} A \boldsymbol{v}_{k-1}\)
    \(\alpha_{k}=\| \|^{\alpha_{k}} \boldsymbol{v}_{k} \|\)
    \(\boldsymbol{v}_{k}=\frac{1}{\alpha_{k}} \widetilde{\boldsymbol{v}}_{k}\)
end for
```


Previous form:

1: Choose $\boldsymbol{v}_{0} \neq \mathbf{0}$
for $k=1, \cdots$ until convergence do

$$
\begin{aligned}
& \widetilde{v}_{k}=\frac{1}{\alpha_{k}} A \boldsymbol{v}_{k-1} \\
& \alpha_{k}=\| \|_{k} \| \\
& \boldsymbol{v}_{k}=\frac{1}{\alpha_{k}} \widetilde{\boldsymbol{v}}_{k} \\
& \text { end for }
\end{aligned}
$$

Alternative form:
1: Choose $v_{0} \neq \mathbf{0}$
for $k=1, \cdots$ until convergence do
3: $\quad \widetilde{\boldsymbol{v}}_{k}=\frac{1}{\alpha_{k}} A \boldsymbol{v}_{k-1}$
4: $\quad \boldsymbol{v}_{k}=\frac{\widetilde{\boldsymbol{v}}_{k}}{\left\|\tilde{v}_{k}\right\|_{2}}$
5: $\quad \alpha_{k}=\boldsymbol{v}^{*} \boldsymbol{A} \boldsymbol{v}_{k}$
6: end for

The Power iteration, stopping test

- fixed number of iterations
- $\left\|\boldsymbol{v}_{k+1}-\boldsymbol{v}\right\| \leq \tau$
- Check on the change in the eigenvalue

The Inverse Power iteration

Choose $\boldsymbol{v}_{0} \neq \mathbf{0}$

for $k=1, \cdots$ until convergence do
$A \widetilde{\boldsymbol{v}}_{k}=\boldsymbol{v}_{k-1}$
$\alpha_{k}=\frac{1}{\left\|\tilde{\boldsymbol{v}}_{k}\right\|}$
$\boldsymbol{v}_{k}=\alpha_{k} \widetilde{\boldsymbol{v}}_{k}$
end for
Converges to the first (smallest) eigenvalue and its eigenvector.

The Shifted Inverse Power iteration

1: Choose $\boldsymbol{v}_{0} \neq 0$
2: for $k=1, \cdots$ until convergence do
$(A-\sigma l) \widetilde{\boldsymbol{v}}_{k}=\boldsymbol{v}_{k-1}$
$\alpha_{k}=\frac{1}{\left\|\tilde{\boldsymbol{v}}_{k}\right\|}$
$\boldsymbol{v}_{k}=\nu_{k} \widetilde{\boldsymbol{v}}_{k}$
$\alpha_{k}=\sigma+\nu_{k}$
7: end for
To increase the convergence one can use variable shifts: $\left(A-\sigma_{k-1} I\right) \widetilde{\boldsymbol{v}}_{k}=\boldsymbol{v}_{k-1}$.

Choose $v_{0} \neq 0$
for $k=1, \cdots$ until convergence do $\widetilde{\boldsymbol{v}}_{k}=(A-\sigma I) \boldsymbol{v}_{k-1}$
$\boldsymbol{v}_{k}=\nu_{k} \widetilde{\boldsymbol{v}}_{k}$
$\alpha_{k}=\frac{\boldsymbol{v}_{k}^{*} A \boldsymbol{v}_{k}}{\boldsymbol{v}_{k}^{*} \boldsymbol{v}_{k}}$
6: end for
Note: The same eigenvectors, better eigenvalue distribution.
Based of the fact that $f(A) \boldsymbol{v}_{k}=f\left(\lambda_{k}\right) \boldsymbol{v}_{k}$ we can do shifts in various ways:

$$
\begin{aligned}
& -f(A)=I-\sigma A ; \quad f(A)=A-\sigma(A) \\
& - \\
& f(A)=I+\gamma_{1} A+\gamma_{2} A^{2}+\cdots+\gamma_{\ell} A^{\ell}=\left(I-\beta_{1} A\right)\left(I-\beta_{2} A\right) \cdots\left(I-\beta_{\ell} A\right)
\end{aligned}
$$

The Shifted Power iteration II

- $f(A)=(A-\sigma /)^{-1}$
- $f(A)=(A-I)^{-1}(I-A)$ (Cayley transform) or
$f(A)=(A-\sigma I)^{-1}(I-\sigma A)$ combined with a shift.
We aim to achieve:
- faster convergence to an eigenvalue close to the shift,
- diminish unwanted components,
- improve eigenvalue distribution,
- amplify wanted components

Demo: /home/maya/matlab/Eigenvalues/Power_ method/Main_Eig_small.m

QR factorization, $A(n, n)$

$$
A=Q R,
$$

Q - orthogonal, R - upper-triangular.

Method	Complexity
Gram-Schmidt	n^{3}
Modified GS	n^{3}
Householder reflections	n^{3}
Givens rotations	n^{3}

$$
H=\left[\begin{array}{ccccc}
* & * & * & \cdots & * \\
* & * & * & \cdots & * \\
& * & * & \cdots & * \\
& \ddots & \ddots & * \\
& & & * & *
\end{array}\right]
$$

The QR factorization of H can be done efficiently (in $O\left(n^{2}\right)$ flops).

Construct the Givens rotations $\left(r_{1}=\sqrt{a_{1}^{2}+b_{1}^{2}}\right)$

$$
\begin{gathered}
Q_{1}=\left[\begin{array}{cccccc}
a_{1} / r_{1} & b_{1} / r_{1} & 0 & 0 & 0 & \\
-b_{1} / r_{1} & a_{1} / r_{1} & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \\
Q_{1} H_{1}=\left[\begin{array}{llllll}
* & * & * & * & * & * \\
0 & * & * & * & * & * \\
0 & * & * & * & * & * \\
0 & 0 & * & * & * & * \\
0 & 0 & 0 & * & * & * \\
0 & 0 & 0 & 0 & * & *
\end{array}\right]
\end{gathered}
$$

$$
H_{2} \equiv Q_{1} H_{1}=\left[\begin{array}{cccccc}
* & * & * & * & * & * \\
0 & a_{2} & * & * & * & * \\
0 & b_{2} & * & * & * & * \\
0 & 0 & * & * & * & * \\
0 & 0 & 0 & * & * & * \\
0 & 0 & 0 & 0 & * & *
\end{array}\right]
$$

Construct the Givens rotations $\left(r_{2}=\sqrt{a_{2}^{2}+b_{2}^{2}}\right)$

Repeat II

$$
\begin{gathered}
Q_{2}=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & a_{2} / r_{2} & b_{2} / r_{2} & 0 & 0 & \\
0 & -b_{2} / r_{2} & a_{2} / r_{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \\
H_{3} \equiv Q_{2} H_{2}=Q_{2} Q_{1} H_{1}=\left[\begin{array}{cccccc}
* & * & * & * & * & * \\
0 & * & * & * & * & * \\
0 & 0 & * & * & * & * \\
0 & 0 & * & * & * & * \\
0 & 0 & 0 & * & * & * \\
0 & 0 & 0 & 0 & * & *
\end{array}\right]
\end{gathered}
$$

QR factorization of H

$$
\text { for } j=1, \cdots n-1 \text { do }
$$

$$
\text { Let } Q R \text { be the } Q R \text { factorization of the } 2 \times n \text { matrix }
$$

$$
H(j: j+1,:)
$$

3：\quad Store the 2×2 matrix $Q_{j}=Q$ and overwrite $H(j: j+1,:)=R(j: j+1,:)$
4：end for
Each Q_{j} is a plane rotation with $\sin \left(\theta_{j}\right)=a_{j} / r_{j}$ and $\cos \left(\theta_{j}\right)=b_{j} / r_{j}$ ．

QR factorization of H

If H is Hessenberg and $H=Q R$ ，then
－Q is Hessenberg and
－$R Q$ is also Hessenberg．

Recall that Schur decomposition is eigenvalue－revealing．
Idea：Compute approximations of eigenvalues by fixed point iteration on the Schur factorization $A Q=Q R$ ．

$$
Q_{0}=I, \text { iterate } A Q_{n}=Q_{n+1} R_{n+1},
$$

where $Q_{n+1} R_{n+1}$ is a $Q R$ factorization of $A Q_{n}$ ．
Note：Even if A is Hessenberg and Q is Hessenberg，$A Q$ is not！

The basic $Q R$ iteration

Basic QR iteration:

Start: $A=Q_{1} R_{1}$, iterate $Q_{k+1} R_{k+1}=R_{k} Q_{k}$
Note: $R Q$ is Hessenberg!
Less clear! However

$$
\begin{aligned}
& \begin{array}{ll}
A=Q_{1} R_{1}, & R_{1}=Q_{1}^{*} A,
\end{array} \\
& Q_{2} R_{2}=Q_{1}^{*} A Q_{1}, \\
& \cdots \\
& \cdots \\
& \quad R_{2}=Q_{2}^{*} Q_{1}^{*} A Q_{1},
\end{aligned} R_{2} Q_{2}=Q_{1}^{*} A Q_{1}^{*} Q_{1}^{*} A Q_{1} Q_{2} .
$$

Basic QR iteration

```
Input \(A \in \mathbb{C}^{n \times n}\)
Output \(R=A_{n}, U=U_{n}\) such that \(A=U R U^{*}\)
Set \(A_{0}=A, U_{0}=1\)
for \(k=1, \cdots \cdots\) do
    Compute the QR factorization \(A_{k-1}=Q_{k} R_{k}\)
    Set \(A_{k}=R_{k} Q_{k}\)
    Set \(U_{k}=U_{k-1} Q_{k}\)
end for
```

Demo: /home/maya/matlab/Eigenvalues/QR_
iteration/Basic_QR_iter.m

Basic QR iteration - convergence

Theorem: Let A be real invertible $n \times n$ matrix, such that the moduli of the eigenvalues $\lambda_{1}, \cdots, \lambda_{n}$ are distinkt,

$$
\left|\lambda_{1}\right|>\left|\lambda_{2}\right|>\cdots\left|\lambda_{n}\right| \gg 0
$$

Let $A=Q^{-1} D Q$, where $D=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\right)$. Suppose $Q=L U$, where L is unit lower-triangular. and U is upper-triangular.

- The strictly lower triangular part of A_{k} converges to zero in $O\left(t^{k}\right)$.
- The diagonal part of A converges to D in $O\left(t^{k}\right)$, where

$$
t=\max \left\{\left|\frac{\lambda_{2}}{\lambda_{1}}\right|, \cdots,\left|\frac{\lambda_{n}}{\lambda_{n-1}}\right|\right\}<1
$$

Note: The upper triangular entries may fail to converge (to the Schur form)

```
Input \(A \in \mathbb{C}^{n \times n}\)
Output \(R=A_{n}, U=U_{n}\) such that \(A U=U R\)
Set \(A_{0}=A, U_{0}=I\)
for \(k=1, \cdots \cdots\) do
        Select a shift \(\sigma_{k}\)
        Compute the QR factorization \(A_{k-1}-\sigma_{k} I=Q_{k} R_{k}\)
        Set \(A_{k}=R_{k} Q_{k}+\sigma_{k} l\)
        Set \(U_{k}=U_{k-1} Q_{k}\)
    end for
```


Convergence of the QR iteration

The convergence depends on the shift．
Example of a reference：Tai－Lin Wang，William B．Gragg Convergence of the shifted QR algorithm for unitary Hessenberg matrices Mathematics of
Computation，71，1473－1496
Shifts：
－The Rayleigh shift：$\sigma=a_{n n}, a_{n n}$－the last diagonal element of A_{k} ．
－the Wilkinson shift：σ is taken as the absolute smallest eigenvalue of the trailing 2×2 submatrix of A_{k} ，closer to $a_{n n}$ ； $\left[\begin{array}{cc}a_{n-1, n-1} & a_{n-1, n} \\ \beta n-1 & a_{n n}\end{array}\right] ;$
－Mixed shift：R－shift if $\theta \beta_{n-2} \geq \beta_{n-1}$ and W－shift otherwise．
W－shift－the convergence is quadratic for $A \neq A^{*}$ and cubic for Hermitian A ．

Partial QR iteration I

Theorem：Consider the basic QR iteration．The first j columns of Q_{k+1} can be computed from partial iteration
Start with $Q_{0}^{(j)}=I(:, 1: j)$ ，iterate $A Q_{k}^{(j)}=Q_{k+1}^{(j)} R_{k+1}^{(j)}$ ．
Then $R_{k+1}^{(j)}$ is the top－left part of R_{k+1} ．
Question：If the partial $Q R$ iteration converges，to what it converges？We will have

$$
A Q^{(j)}=Q^{(j)} R^{(j)}
$$

with $Q^{(j)}(n \times j)$ orthogonal and $R^{(j)}(j \times j)$－upper－triangular．The subspace V spanned by the columns of $Q^{(j)}$ is invariant subspace for A and the eigenvalues of $R^{(j)}$ must e eigenvalues of A ，but which？

Partial QR iteration II

Take now $j=1$:
Start with v_{0}, iterate $A v_{k}=v_{k+1} r_{k+1}$.
We know that it converges to the maximum eigenvalue of A.

Real Schur decomposition

If A is real, non-Hermitian with complex eigenvalues, it is clear that the QR iteration cannot converge to a Schur decomposition.
As long as real shifts are used, all matrices involved will be real! In that case convergence takes place to the so-called Real Schur Decomposition.
Theorem: Any real matrix A of size n can be factorized as $A=Q R Q^{*}$, where Q is real orthogonal and R is real quasi upper-triangular. The latter denotes that $R=R_{0}+D$, where R_{0} is upper-triangular and D is block-diagonal with blocks of size at most 2.
Remark: The eigenvalues of the 2×2 quasi upper-triangular matrix are exactly the complex eigenpairs of A.
$A(y \mid z)=(y \mid z)\left[\begin{array}{cc}\mu & \nu \\ -\nu & \mu\end{array}\right], \lambda=\mu \pm i \nu$.

General framework - projection methods

Want to solve $\boldsymbol{b}-A \boldsymbol{x}=\mathbf{0}, \boldsymbol{b}, \boldsymbol{x} \in \mathbb{R}^{n}, A \in \mathbb{R}^{n \times n}$.
Instead, choose two subspaces $L \subset \mathbb{R}^{n}$ and $K \subset \mathbb{R}^{n}$ and

$$
\begin{aligned}
& \text { * find } \widetilde{\boldsymbol{x}} \in \boldsymbol{x}^{(0)}+\delta, \delta \in K \text {, such that } \boldsymbol{b}-A \widetilde{\boldsymbol{x}} \perp L \\
& \text { ch space }
\end{aligned}
$$

K - search space
L - subspace of constraints

* - basic projection step

The framework is known as Petrov-Galerkin conditions.
There are two major classes of projection methods:

- orthogonal - if $K \equiv L$,
- oblique - if $K \neq L$.

Repetition from projection methods

Notations:
$\widetilde{x}=x^{0}+\delta-(\delta-$ correction $)$
$\begin{aligned} \boldsymbol{r}^{0}=\boldsymbol{b}-A \boldsymbol{x}^{0} & \left(\boldsymbol{r}^{0}-\text { residual }\right) \\ & * \text { find } \delta \in K \text {, such that } \boldsymbol{r}^{0}-A \delta \perp L\end{aligned}$

Matrix formulation, cont.

$$
\widetilde{x}=x^{0}+V\left(W^{\top} A V\right)^{-1} W^{\top} r^{0}
$$

The matrix $W^{\top} A V$ will be small and, hopefully, with a nice structure.
!!! $W^{\top} A V$ should be invertible.

A prototype projection-based iterative method:
Choose a basis in K and $L: V=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \cdots, \boldsymbol{v}_{m}\right\}$ and $W=\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \cdots, \boldsymbol{w}_{\boldsymbol{m}}\right\}$.
Then, $\widetilde{\boldsymbol{x}}=\boldsymbol{x}^{0}+\delta=\boldsymbol{x}^{0}+V \boldsymbol{y}$ for some $\boldsymbol{y} \in R^{m}$.
The orthogonality condition can be written as
$(* *) \quad W^{T}\left(r^{0}-A V y\right)$
which is exactly the Petrov-Galerkin condition.
From ($* *$) we get

$$
\begin{gathered}
W^{T} \boldsymbol{r}^{0}=W^{T} A V y \\
\boldsymbol{y}=\left(W^{T} A V\right)^{-1} W^{T} r^{0} \\
\widetilde{x}=\boldsymbol{x}^{0}+V\left(W^{T} A V\right)^{-1} W^{T} \boldsymbol{r}^{0}
\end{gathered}
$$

In practice, $m<n$, even $m \ll n$, for instance, $m=1$.

Until convergence do:
Choose K and L
Choose basis V in K and W in L
Compute $\boldsymbol{r}=\boldsymbol{b}-A \boldsymbol{x}$

$$
\begin{aligned}
& y=\left(W^{\top} A V\right)^{-1} W^{\top} r \\
& x=x+V y
\end{aligned}
$$

Degrees of freedom: m, K, L, V, W.
Clearly, if $K \equiv L$, then $V=W$.
（1）Consider two important cases：$L=K$ and $L=A K$
（2）Make a special choice of
$K=\mathcal{K}_{k-1}=\left\{\boldsymbol{v}, A \boldsymbol{v}, A^{2} \boldsymbol{v}, \cdots, A^{k-1} \boldsymbol{v}\right\}$ ．

Let A－square non－singular of order n ．
Let $\mathcal{V} \in \mathbb{C}^{n}$ be a subspace with $\operatorname{dim}(\mathcal{V})=k<n, \mathcal{V}$－full rank，$V$－ basis of \mathcal{V} ．
Let $\mathcal{W}=A \mathcal{V}, W=A V$ ．
Task：Find approximate eigenpairs of the eigenvalue problem $A z=z \lambda$ based on information from V and W ．

\mathcal{V}－orthogonal residuals，Ritz values and Ritz vectors I

Strategy $1(V$－orth）：Find approximate pair $\boldsymbol{v} \in \mathcal{V}$ and $\mu \in \mathbb{C}$ ， s．t．the eigenvalue residual $r=A v-v \mu$ is orthogonal to \mathcal{V} ．
$\boldsymbol{v} \in \mathcal{V} \Rightarrow \boldsymbol{v}=V \boldsymbol{y}=\sum_{1 \leq i \leq k} y_{i} \boldsymbol{v}_{i}, \boldsymbol{y} \in \mathbb{C}^{n}$ ．
If $\boldsymbol{r} \perp \mathcal{V}$ then $V^{*} \boldsymbol{r}=\mathbf{0}$ ，thus

$$
V^{*}(A V \boldsymbol{y}-\boldsymbol{y} \mu)=\mathbf{0} \equiv V^{*} W \boldsymbol{y}=V^{*} V y \mu
$$

The pair $(\mu, V \boldsymbol{y})$ can be considered as an approximate eigenpair of A．
Def．（Ritz data）：The approximate eigenpairs（ $\mu, V \boldsymbol{y}$ ）are called Ritz pairs，Ritz values and Ritz vectors．

Strategy 2 （ W－orth）：Provided that A is invertible，$A z=z \lambda$ can be reformulated as $A^{-1} z=z \lambda^{-1}$ ．Since $V=A^{-1} W$ we look for $\boldsymbol{w} \in \mathcal{W}, \nu \in \mathbb{C}$ ，s．t．the eigenvalue residual $r=A v-v \nu$ is orthogonal to \mathcal{V} ．

$$
W^{*} V \boldsymbol{y}=W^{*} W \boldsymbol{y} \nu
$$

The pairs $(\nu, W y)$ are Ritz pairs of A^{-1} in W ．
The following interpretations are equivalent：
1．replace $A, \lambda, W=A V$ from the previous section by $A^{-1}, \lambda^{-1} 1, V=A^{-1} W$
2．instead of finding $v \in \mathcal{V}$ with $r \perp \mathcal{V}$ ，we look for $v \in \mathcal{V}$ with $r \perp \mathcal{W}$ ．

Def．（Harmonic Ritz data）：The approximate eigenpairs （ $\nu^{-1}, V \boldsymbol{y}$ ）are called Harmonic Ritz pairs，Harmonic Ritz values and Harmonic Ritz vectors．
The above does not depend on the basis，as long as $\mathcal{W}=A \mathcal{V}$ ．
However，due to $\mathcal{W}=A \mathcal{V}$ we cannot have simultaneously $V^{*} V=I$ and $W^{*} W=I$ ，i．e．V and W simultaneously orthogonal．

Expansion of the subspaces $V_{+}=(V \mid \boldsymbol{v}), W_{+}=(W \mid \boldsymbol{w})$ II Expansion of the subspaces $V_{+}=(V \mid \boldsymbol{v}), W_{+}=(W \mid \boldsymbol{w}) \mathrm{III}$

Expansion of the subspaces $V_{+}=(V \mid \boldsymbol{v}), W_{+}=(W \mid \boldsymbol{w})$ ।

Say，we want to add an arbitrary vector v to $V, V_{+}=(V \mid v)$ ．Then we need to compute $\boldsymbol{w}=A \boldsymbol{v}$ and expand $W_{+}=(W \mid \boldsymbol{w})$ ．
The matrices we need to extract eigenvalue approximations are：

$$
V_{+}^{*} V_{+}=(V \mid \boldsymbol{v})^{*}(V \mid \boldsymbol{v})=\left(\begin{array}{c|c}
V^{*} V & V^{*} \boldsymbol{v} \\
\hline \boldsymbol{v}^{*} V & \boldsymbol{v}^{*} \boldsymbol{v}
\end{array}\right)
$$

respectively

$$
V_{+}^{*} W_{+}=(V \mid v)^{*}(W \mid \boldsymbol{w})=\left(\begin{array}{l|l}
V^{*} W & V^{*} w \\
\hline \boldsymbol{v}^{*} W & v^{*} w
\end{array}\right)
$$

Theorem

Let $A=A^{*}$ be positive definite with eigenvalues $\lambda_{n} \leq \cdots \leq \lambda_{1}$ ， $\mu_{k} \leq \cdots \leq \mu_{1}$ be the \mathcal{V}－orthogonal residual approximations of eigenvalues of A and $\mu_{k+1}^{+} \leq \cdots \leq \mu_{2}^{+} \leq \mu_{1}^{+}$be the ones in \mathcal{V}^{+}． Then

$$
\mu_{k+1}^{+} \leq \mu_{k} \leq \mu_{k}^{+} \cdots \leq \mu_{2} \leq \mu_{2}^{+} \leq \mu_{1} \leq \mu_{1}^{+}
$$

Theorem

Let $A=A^{*}$ be pos．def．and $\mathcal{V}_{1} \subset \mathcal{V}_{2} \subset \cdots \subset \mathcal{V}_{n}$ be a nested sequence of subspaces of dimension $\operatorname{dim}\left(\mathcal{V}_{j}\right)=j$ ．Related to \mathcal{V}_{k} we denote the corresponding eigenvalues $\mu_{k} \leq \mu_{k-1} \leq \cdots \leq \mu_{1}$ ．Then we have

$$
\mu_{j}^{(j)} \leq \mu_{j}^{(j+1)} \leq \cdots \leq \mu_{j}^{(n)}=\lambda_{j} \text { for any } j
$$

The sequence of j th largest approximate eigenvalues converges monotonically to the jth largest eigenvalue of A
Conversely，

$$
\lambda_{j}=\mu_{j}^{(n)} \leq \mu_{j-1}^{(n-1)} \leq \cdots \leq \mu_{1}^{(n-j+1)} \text { for any } j
$$

the sequence of the j th smallest approximate eigenvalue converges monotonically to the jth smallest exact eigenvalue．

Expansion of the subspaces $V_{+}=(V \mid \boldsymbol{v}), W_{+}=(W \mid \boldsymbol{w})$ IV Algorithm (V - orth)

The j th left diagonal with positive slope decreases monotonically to λ_{n+1-j}
The j th right diagonal with negative slope increases monotonically to λ_{j}

Recall that if $\boldsymbol{r} \perp \mathcal{V}$ then $V^{*} \boldsymbol{r}=\mathbf{0}$, we have the relation

$$
V^{*}(A V \boldsymbol{y}-\boldsymbol{y} \mu)=\mathbf{0} \equiv V^{*} W \boldsymbol{y}=V^{*} V y \mu
$$

and we need to compute the eigenvalues of $M=V^{*} A V=V^{*} W$ to find approximated eigenvalues of A. The pair $(\mu, V \boldsymbol{y})$ can be considered as an approximate eigenpair of A.
We have also seen that when adding a new vector to \mathcal{V}, the matrix M_{+}can be easily constructed.
Note: By the definition of \mathcal{V}-orthogonal methods, each residual is orthogonal to \mathcal{V}. This, if we expand in the direction of \boldsymbol{r}, we need not to orthogonalize.
The resulting algorithm is referred to as the Arnoldi method for general matrices and its version for Hermitian matrices, the Lanczos method.

The result of Arnoldi's process

Arnoldi's method for general matrices
Consider $\mathcal{K}^{m}(A, \boldsymbol{v})=\left\{\boldsymbol{v}, A \boldsymbol{v}, A^{2} \boldsymbol{v}, \cdots, A^{m-1} \boldsymbol{v}\right\}$, generated by some matrix A and vector v.

$$
\begin{aligned}
& \text { Choose a vector } \boldsymbol{v}_{1} \text { such that }\left\|\boldsymbol{v}_{1}\right\|=1 \\
& \text { for } j=1,2, \cdots, m \text { do } \\
& \text { for } i=1,2, \cdots, j \text { do } \\
& \quad h_{i j}=\left(A \boldsymbol{v}_{j}, \boldsymbol{v}_{i}\right) \\
& \text { end for } \\
& \boldsymbol{w}_{j}=A \boldsymbol{v}_{j}-\sum_{i=1}^{j} h_{i j} \boldsymbol{v}_{i} \\
& h_{j+1, j}=\left\|\boldsymbol{w}_{j}\right\| \\
& \text { If } h_{j+1, j}=0, \text { stop } \\
& \boldsymbol{v}_{j+1}=\boldsymbol{w}_{j} / h_{j+1, j} \\
& \text { end for }
\end{aligned}
$$

- $\boldsymbol{V}^{m}=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \cdots, \boldsymbol{v}_{m}\right\}$ is an orthonormal basis in $\mathcal{K}^{m}(A, \boldsymbol{v})$
- $A V^{m}=V^{m} H^{m}+w_{m+1} e_{m}^{T}$

$(\mathrm{n}, 1)$
- $V^{m}=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \cdots, \boldsymbol{v}_{\boldsymbol{m}}\right\}$ is an orthonormal basis in $\mathcal{K}^{m}(A, \boldsymbol{v})$
- $A V^{m}=V^{m} H^{m}+w_{m+1} e_{m}^{T}$

The result of Arnoldi＇s process
－$V^{m}=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \cdots, \boldsymbol{v}_{m}\right\}$ is an orthonormal basis in $\mathcal{K}^{m}(A, \boldsymbol{v})$
－$A V^{m}=V^{m} H^{m}+w_{m+1} e_{m}^{T}$

Arnoldi in detail I

Step 1：Choose \boldsymbol{v}_{1} ，compute $\boldsymbol{w}_{1}=A \boldsymbol{v}_{1}$
Compute μ such that $\boldsymbol{r}_{1}=A \boldsymbol{v}_{1}-\boldsymbol{v}_{1} \mu_{1} \perp \boldsymbol{v}_{1}$
This gives $\mu_{1}^{(1)}=\boldsymbol{v}_{1}^{*} \boldsymbol{w}_{1}$ ．
（ $\mu_{1}^{(1)}, \boldsymbol{v}_{1}$ ）－first approximate eigenpair

Arnoldi in detail III

Step 3：Again，$\|\boldsymbol{r}\| \boldsymbol{v}_{3}=\boldsymbol{r}=A \boldsymbol{v}_{2}-V_{2} V_{1}^{*} A \boldsymbol{v}_{2}$ ，thus $\boldsymbol{w}_{2}=A \boldsymbol{v}_{2}$ is a linear combination of $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}$ and

$$
W_{2}=A V_{2}=V_{3}\left[\begin{array}{ll}
* & * \\
* & * \\
0 & *
\end{array}\right]
$$

Thus，the relation is

$$
W_{k}=A V_{k}=V_{k+1} H_{k+1, k}
$$

with $H_{k+1, k}$－upper Hessenberg．
Remark：The Arnoldi factorization is uniquely defined by the initial vector v_{1} ．

$$
\begin{aligned}
& \begin{array}{l}
V=\boldsymbol{v},\|\boldsymbol{v}\|=1, H=[] \\
\text { while } \gamma>\varepsilon \text { do } \\
\boldsymbol{v}=A \boldsymbol{v} \\
\boldsymbol{h}=V^{*} \boldsymbol{v} \\
v=V \boldsymbol{h} \\
\gamma=\sqrt{\boldsymbol{v}^{*} \boldsymbol{v}} \\
H=\left[\begin{array}{cc}
H & \boldsymbol{h} \\
0 & \gamma
\end{array}\right] \\
\quad \begin{array}{l}
\boldsymbol{v} \\
\boldsymbol{j}+1
\end{array}=\boldsymbol{w}_{j} / h_{j+1, j} \\
V=(V \mid \boldsymbol{v} / \gamma) \\
\text { end while }
\end{array}
\end{aligned}
$$

We start expand with $A \boldsymbol{v}_{1}$, orthogonalization is needed; no need to compute the residual!

Arnoldi: the residual is available

Question: for which k the matrix $H_{k, k}$ has eigenvalues with small residual?
We have $\boldsymbol{r}=A V_{k} \boldsymbol{y}_{k}-V_{k} \boldsymbol{y}_{k} \mu=h_{k+1, k} \boldsymbol{v}_{k+1} \boldsymbol{e}_{k}^{*} \boldsymbol{y}_{k}$. Using
$\left\|\boldsymbol{v}_{k+1}\right\|=\left\|\boldsymbol{e}_{k}\right\|=1$ we obtain $\left\|\boldsymbol{r}_{k}\right\|=\left|h_{k+1, k} b e_{k}^{*} \boldsymbol{y}_{k}\right| \leq\left|h_{k+1, k}\right|$.

Implicitly restarted Arnoldi (IRA) method I

Observations:

- When increasing the dimension of \mathcal{V}_{k} the computational work becomes prohibitive.
- Roundoff errors creep in.
- The computed spectrum of $H_{k, k}$ contains approximations of uninteresting eigenvalues.
- Perhaps we wish to have started with a different initial vector.

Question: Can we 'reverse' the Arnoldi factorization without heavy recomputations?
Answer: Yes!

Implicitly restarted Arnoldi (IRA) method II

Assume that we have performed $m=\ell+p$ Arnoldi steps. We split the approximate eigenvalues into two groups: $\mu_{1}, \cdots, \mu_{\ell}$ wanted and $\theta_{1}, \cdots, \theta_{p}$ unwanted, roots of the polynomial $P_{p}(t)=\left(t-\theta_{1}\right)\left(t-\theta_{2}\right) \cdots,\left(t-\theta_{p}\right)$, We have
$A V_{m}=V_{m} H_{m}+\beta_{m} \boldsymbol{v}_{m+1} \boldsymbol{e}_{m}^{T}$.
Apply the first factor $A-\theta_{1} /$ to all basis vectors V :

$$
\begin{aligned}
\left(A-\theta_{1} I\right) V_{m} & =V_{m}\left(H_{m}-\theta_{1} I\right)+\beta_{m} \boldsymbol{v}_{m+1} \boldsymbol{e}_{m}^{T} \\
\text { QR-factorize } & H_{m}-\theta_{1} I=Q_{1} R_{1} \\
(1) & \left(A-\theta_{1} I\right) V_{m}
\end{aligned}=V_{m} Q_{1} R_{1}+\beta_{m} v_{m+1} \boldsymbol{e}_{m}^{T} .
$$

Implicitly restarted Arnoldi (IRA) method III

$$
\begin{aligned}
\text { Denote: } & \\
H_{m}^{(1)} & =R_{1} R_{1}+\theta_{1} / \\
\left(\boldsymbol{b}_{m+1}^{(1)}\right)^{T} & =\boldsymbol{e}_{m} Q_{1} \\
V_{m}^{(1)} & =V_{m} Q_{1}
\end{aligned}
$$

Then (3) becomes

$$
A V_{m}^{(1)}=V_{m}^{(1)} H_{m}^{(1)}+v_{m+1}\left(\boldsymbol{b}_{m+1}^{(1)}\right)^{T}
$$

- Resembles ordinary Arnoldi
- The first vector in $V_{m}^{(1)}$ is a multiple of $\left(A-\theta_{1} I\right) \boldsymbol{v}_{1}$.
(Multiply (1) by \boldsymbol{e}_{1}) and use the fact the R_{1} is upper-triangular
- The columns of $V_{m}^{(1)}$ are orthonormal.

Implicitly restarted Arnoldi (IRA) method V

Then (6) becomes

$$
A V_{m}^{(2)}=V_{m}^{(2)} H_{m}^{(2)}+v_{m+1}\left(b_{m+1}^{(2)}\right)^{T}
$$

Implicitly restarted Arnoldi (IRA) method IV

In the same way we can apply $A-\theta_{2}$ to $V_{m}^{(1)}$:

$$
\left.\begin{array}{rl}
& \left(A-\theta_{2} I\right) V_{m}^{(1)}
\end{array}=V_{m}^{(1)}\left(H_{m}^{(1)}-\theta_{2} I\right)+\boldsymbol{v}_{m+1}\left(\boldsymbol{b}_{m+1}^{(1)}\right)^{T}, H_{m}\right)
$$

$$
\begin{aligned}
\text { Denote: } & \\
H_{m}^{(2)} & =R_{2} R_{2}+\theta_{2} l \\
\left(\boldsymbol{b}_{m+1}^{(2)}\right)^{T} & =\left(\boldsymbol{b}_{m+1}^{(1)}\right)^{T} Q_{2} \\
V_{m}^{(2)} & =V_{m}^{(1)} Q_{2}
\end{aligned}
$$

Algorithm IRA

1: Perform m-step Arnoldi to obtain the factorization

$$
A V_{m}=V_{m} H_{m}+\widehat{\boldsymbol{v}}_{m+1} \boldsymbol{e}_{m}^{T}
$$

2: Choose p of the eigenvalues of H_{m} to be eliminated, $\theta_{1}, \cdots, \theta_{p}$
3: Perform a p-step $Q R$ with these shifts
4: $\left[H_{m}, Q\right]=\operatorname{qr}\left(H_{m}, \theta_{1}, \cdots, \theta_{p}\right)$
5: Set $k=m-p, H_{k}=H_{m}(1: k, 1: k), V_{k}=V_{k} Q$
6: Set $\widehat{v}_{k+1}=\widehat{v}_{k+1}+\widehat{v}_{m+1} Q_{m, k}$
7: Continue the Arnoldi factorization from $A V_{k}=V_{k} H_{k}+\widehat{v}_{k+1} \boldsymbol{e}_{k}^{T}$

p-step $Q R$ with shifts $\theta_{1}, \cdots, \theta_{p}$

$$
\begin{aligned}
& \text { 1: for } j=1, \cdots, p \text { do } \\
& \text { 2: } \quad\left(H-\theta_{j} I\right)=Q R \\
& \text { 3: } \quad H=R Q+\theta_{j} I \\
& \text { 4: end for }
\end{aligned}
$$

Eliminating a pair of complex eigenvalues

The double shift strategy is recommended to be used if we want to eliminate two complex conjugate eigenvalues θ_{1} and θ_{2}. Then, these two eigenvalues are used as shifts in consecutive iterations to achieve quadratic convergence in the complex case. That is, we compute
1: $\left(H-\theta_{1} /\right)=Q_{1} R_{1}$
2: $H_{1}=R_{1} Q_{1}+\theta_{1} l$
3: $\left(H_{1}-\theta_{2} I\right)=Q_{2} R_{2}$
4: $H_{2}=R_{2} Q_{2}+\theta_{2}$ I
Here we have to use complex arithmetic.

Avoiding complex arithmetic

Let $\theta_{1}=a+i b, \theta_{2}=a-i b$. Then $\theta_{1}+\theta_{2}=2 a$ and $\theta_{1} \theta_{2}=a^{2}+b^{2}$ are real.

$$
\begin{aligned}
Q_{1} Q_{2} R_{2} R_{1} & =Q_{1}\left(H_{1}-\theta_{2} I\right) R_{1} \\
& =Q_{1} H_{1} R_{1}-\theta_{2} Q_{1} R_{1} \\
& =Q_{1}\left(R_{1} Q_{1}+\theta_{1} I\right) R_{1}-\theta_{2}\left(H-\theta_{1} I\right) \\
& =Q_{1} R_{1} Q_{1} R_{1}+\theta_{1} Q_{1} R_{1}-\theta_{2}\left(H-\theta_{1} I\right) \\
& =\left(H-\theta_{1} /\right)^{2}+\theta_{1}\left(H-\theta_{1} l\right)-\theta_{2}\left(H-\theta_{1} I\right) \\
& =H^{2}-2 \theta_{1} H+\theta_{1}^{2} I+\theta_{1} H-\theta_{1}^{2} I-\theta_{2} H+\theta_{1} \theta_{2} l \\
& =H^{2}-\left(\theta_{1}+\theta_{2}\right) H+\theta_{1} \theta_{2} I .
\end{aligned}
$$

... Requires H^{2} and is not of practical interest.... Francis QR step
to circumvent it.

Implement the Arnoldi factorization with implicit restart. Eliminate both real and complex conjugate eigenvalues.

[^0]: Fig．5．Boundaries of ϵ－peendospectra of the matrix $A=A_{200}$ for
 $e=10^{-1}, 10^{-2}, \ldots, 10^{-10}$ ，from outside in．This is a fine picture，but producing it
 by the obvious SVD－based oldgorithm involving a 100×100 gerid requires 4 hours

