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Numerical methods for eigenvalue problems

Basics

Background: Vector and matrix norms

Vector norms
Given v ∈ V , where V is C or R.

‖v‖2 =

(
n∑

k=1
|vk |2

)1/2

Euclidean norm

‖v‖1 =
n∑

k=1
|vk | the absolute sum norm

‖v‖∞ = max
k
|vk | the maximum norm

‖v‖p =

(
n∑

k=1
|vk |p

)1/p

, 1 ≤ p Hölder (p) norm

Vector norm equivalence

Theorem: For every pair of norms ‖v‖a and ‖v‖b in C, there exist
constants 0 < m > M such that

m‖v‖a ≤ ‖v‖b ≤ M‖v‖a

for any v ∈ C, where m and M do not depend on v .



Matrix norms I

I Induced norms
For any given vector norm ‖v‖,

‖A‖ = sup
v 6=0

‖Av‖
‖v‖

is said to be the matrix norm, induced by the vector norm ‖v‖
(or the natural norm).

I If ‖Av‖ ≤ ‖A‖‖v‖, then the matrix norm ‖A‖ is compatible
with the vector norm ‖v‖.

I The infinity norm (the max row sum of |A|)

‖A‖∞ = max
k

∑

`

|Ak`|

Matrix norms II
I The ’1’-norm (the max column sum of |A|)

‖A‖1 = max
`

∑

k

|Ak`|

I The Frobenius norm

‖A‖F =

(∑

k

∑

`

|Ak`|2
)1/2

Note
‖A‖F = trace(A∗A) =

∑

k

(λk(A∗A))

The Weighted Frobenius norm (W is an spd matrix)

‖A‖W = trace((AW )∗(AW )).

Norm relations I

I Let ρ(A) be the spectral radius of A. Then there holds

‖A‖2 = (ρ(A∗A))1/2 = (ρ(AA∗))1/2

Note: For Hermitian matrices, ‖A‖2 = ρ(A) but the spectral
radius is not a norm.

Example: A =

[
0 1
0 0

]
, A 6= 0 but ρ(a) = 0.

Norm relations II

I For an arbitrary square matrix we have ρ(A) ≤ ‖A‖ because
Av = λv implies

|λ|‖v‖ = ‖Av‖ ≤ ‖A‖ ‖v‖.

I For arbitrary square matrix, ‖A‖22 ≤ ‖A‖1‖A‖∞. The
inequality is sharp.

I

‖A‖2 ≤ ‖A‖F =
√

tr(A∗A) ≤
√
n‖A‖2, A(n, n).



Background: Matrix types

I Normal matrix: A∗A = AA∗

Theorem: A matrix is normal if and only if it is unitary similar
to a diagonal matrix.

Theorem: A normal matrix with real eigenvalues is Hermitian.
I Hermitian matrix: A = A∗

Theorem: The eigenvalues of a Hermitian matrix are real.

Theorem: Any Hermitian matrix is unitary similar to a real
diagonal matrix.

I Reducible/Irreducible matrices:
Theorem: A matrix A is reducible if and only if there exists a
permutation matrix P such that

PAPT =

[
A11 A12
0 A22

]
,

where A11,A22 are square blocks.

Q: Is the diagonal matrix irreducible?

I Rayleigh quotient:
Let (λ, v) be an eigenpair of a matrix A. Then there holds

λ =
(Av , v)

(v , v)
.

For any nonzero vector u ∈ C define the so-called Rayleigh
quotient

(Au,u)

(u,u)



Gershgorin type eigenvalue estimates

Theorem: The spectrum S(A) of a matrix A = [aij ] is enclosed in
the union of the disks

Ci =



z ∈ C : |z − aii | ≤

∑

j 6=i

|aij |, 1 ≤ i ≤ n





and in the union of the disks

C ′i =



z ∈ C : |z − aii | ≤

∑

j 6=i

|aji |, 1 ≤ i ≤ n





That is, S(A) ∈ (∪Ci ) ∩ (∪C ′i ). Recall that S(A) = S(AT ).

Min-Max theorem (Courant-Fisher, Poincaré-Weyl)

Theorem: Let A be Hermitian of order n with eigenvalues
λ1 ≤ λ2 ≤ · · · ≤ λn and v1, v2, · · · , vn their corresponding
eigenvectors. Let p1, · · · ,pn be orthonormal vectors, Then,
assuming that x∗x = 1, we have

(a) min
x⊥p1···ps−1

x∗Ax ≤ λs

(b) max
x⊥pn,pn−1···ps+1

x∗Ax ≥ λs

(c) max
pi , 1 ≤ i ≤ s − 1

p∗i pj = δij

min
x⊥p1···ps−1

x∗Ax = λs

(d) min
pi , s + 1 ≤ i ≤ n

p∗i pj = δij

max
x⊥pn,pn−1···ps+1

x∗Ax = λs

and the extreme values are attained for pi = v i , i = 1, 2, · · · , s − 1
and pi = v i , i = n, n − 1, · · · , s + 1, respectively.

Min-Max theorem (Courant-Fisher, Poincaré-Weyl)

λk ≤ min
U,dim(U)=n−k+1

max
u∈U,u 6=0

(Au,u)

(u,u)

or
λk ≤ max

U,dim(U)=k
min

u∈U,u 6=0

(Au,u)

(u,u)

Corollaries

Let A, B be symmetric matrices and consider the eigenvalues of
A,A + B,AB ordered increasingly. Then
1. λi (A) + λmin(B) ≤ λ(A + B) ≤ λi (A) + λmax(B)
2. If A positive definite and λmax(B) in nonnegative, then

λi (AB) ≤ λi (A)λmax(B)

3. If A positive definite and λmin(B) in nonnegative, then

λi (AB) ≥ λi (A)λmin(B)

Proof: Let v i be the eigenvectors of A, orthonormal; x , ‖x‖ = 1,
arbitrary. Then

λi (A + B) ≥ min
x⊥v1,··· ,v i−1

xT (A + B)x

≥ min
x⊥v1,··· ,v i−1

xTAx + min
xT x=1

xTBx

= λi (A) + λmin(B).



Cauchy interlace theorem

Theorem: Let B =

[
A w
w∗ α

]
, A(n− 1, n− 1),B(n, n), Hermitian.

The eigenvalues of A and B interlace,

λ1(B) ≤ λ1(A) ≤ λ2(B) ≤ λ2(A) ≤ · · · ≤ λn−1(B) ≤ λn−1(A) ≤ λn(B).

Reformulated: the characteristic polynomial of a Hermitian matrix
is interlaced by the characteristic polynomial of any principle
submatrix.

Background: Canonical forms of matrices

Definitions

1. Def.: An eigenvalue λ of A is said to have algebraic
multiplicity m if it is a root of multiplicity m of the
characteristic polynomial of A.

2. Def.: An eigenvalue λ of A of algebraic multiplicity 1 is said
to be simple.

3. Def.: An eigenvalue λ of A is said to have geometric
multiplicity µ if the maximum number of independent
eigenvectors, associated with it is µ. Thus, the geometric
multiplicity i s the dimension of the eigenspace Null(A− λI ).

4. Def.: Semi-simple eigenvalue, if m = µ.
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Definitions

1. Def.: An eigenvalue λ of A is said to have algebraic
multiplicity m if it is a root of multiplicity m of the
characteristic polynomial of A.

2. Def.: An eigenvalue λ of A of algebraic multiplicity 1 is said
to be simple.

3. Def.: An eigenvalue λ of A is said to have geometric
multiplicity µ if the maximum number of independent
eigenvectors, associated with it is µ. Thus, the geometric
multiplicity i s the dimension of the eigenspace Null(A− λI ).

4. Def.: Semi-simple eigenvalue, if m = µ.

Definitions

Def.: The matrices A and B are said to be similar if there is a
nonsingular matrix X , such that

A = XBX−1

(similarity transformation).

A and B have the same spectrum including the algebraic
multiplicity.

Jordan canonical form

Theorem: For any square matrix A there exists a nonsingular
matrix X that reduces A to a block-diagonal form
XAX−1 = diag(J1, J2, · · · , Jp), where Jk of order nk is either
Jk = λk or

Jk =




λk 1
λk 1

. . .
λk 1

0 λk



, if nk ≥ 2.

A is diagonalizable iff nk = 1, k = 1, 2, · · · , p.



Schur canonical form

Theorem: Any square matrix A is unitary similar to an
upper-triangular matrix, where the diagonal elements are the
eigenvalues of A:

U−1AU =




λ1 b12 · · · b1n
0 λ2 · · · b2n

. . .
0 · · · 0 λn




Eigenvalue-revealing !

Schur canonical form I

A = URU∗ equivalently AU = UR

Note 1: The first column of U u1 = Ue1 is an eigenvector of A
with eigenvalue λ1 = eT

1 Re1.
Note 2: The last column of U un = Uen is an eigenvector of A
with eigenvalue λn = eT

n Ren.
Note 3: The second column u2 of U is an eigenvalue of
A′ = (I − u1u∗1)A(I − u1u∗1) with eigenvalue λ2 = eT

2 Re2.
Proof: R is upper-triangular. Re2 = R12e1 + λ2e2. Proof is
completed by expanding A′ue ,
In A′ the eigenvalue λ1 is deflated.

Corollaries

1. Every selfadjoint matrix is unitary equivalent to a real diagonal
matrix.

2. Every real symmetric matrix is orthogonally equivalent to a
real diagonal matrix.

3. A matrix of order n is similar to a diagonal matrix if and only
if its eigenvalues form a basis for Cn, i.e., the eigenvector
space of A is complete.
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Corollaries

1. Every selfadjoint matrix is unitary equivalent to a real diagonal
matrix.

2. Every real symmetric matrix is orthogonally equivalent to a
real diagonal matrix.

3. A matrix of order n is similar to a diagonal matrix if and only
if its eigenvalues form a basis for Cn, i.e., the eigenvector
space of A is complete.

Singular Value decomposition

Let A ∈ Cn×k . Then A can be factorized as

A = UΣV T or AV = UΣ,

where U,V are unitary and Σ is diagonal with nonnegative entries.
Rank-revealing factorization!

(Considered separately.)

To summarize:

A is diagonalizable if there exists a diagonal matrix D and a
nonsingular matrix X , such that A = XDX−1.
In other words, if and only if there exists a basis of the whole space
consisting of eigenvectors of A only. Matrices that cannot be
diagonalized are called defective.

1. A is real symmetric =⇒ A is Hermitian =⇒ A is normal =⇒ A
is diagonalizable,

2. A is defective =⇒ A is non-normal =⇒ A is non-Hermitian.

None of the above implications are an equivalence.

Proposition: Let A be normal. Then for each ε > 0 there exists a
non-normal matrix Aε such that

‖A− Aε‖ ≤ ε.
The set of non-normal matrices is dense in the set of all matrices.
Proof: (Note, that since all norms on finite dimensional spaces are
equivalent, we need not specify the topology implied by the word
’dense’.) Let A be normal and AU = UD with U∗U = I and D is
diagonal. Define matrices Aε as follows

Aε = U∗εΛUε, where Uε = U



cos(ε) 0 0
sin(ε) 1 0
0 0 I


 .

Then U0 = U and A0 = A, and for all ε ∈ (0, π), we have that Uε
is non-unitary. But the above is a diagonalization of Aε. Therefore,
{Aε} with ε→ 0 is a sequence of non-normal matrices converging
to A.



Proposition: Let A be defective. Then for each ε > 0 there exists
a diagonalizable matrix Aε such that

‖A− Aε‖ ≤ ε.

The set of diagonalizable matrices is dense in the set of all matrices.

Gram-Schmidt orthogonalization

1: Compute r11 = ‖v1‖2. If r11 = 0, stop, else q1 = v1/r11
2: for j = 2, · · · n do
3: for i = 1, 2, · · · , j − 1 do
4: rij = (v j ,q i )
5: end for

6: q̂ = v j −
j−1∑
i=1

rijq i

7: rjj = ‖q̂‖2
8: If rjj = 0 then stop, else qj = q̂/rjj
9: end for

Modified Gram-Schmidt orthogonalization

1: Compute r11 = ‖v1‖2. If r11 = 0, stop, else q1 = v1/r11
2: for j = 2, · · · n do
3: Set q̂ = v j
4: for i = 1, 2, · · · , j − 1 do
5: rij = (q̂,q i )
6: q̂ = q̂ − rijq i
7: end for
8: rjj = ‖q̂‖2
9: If rjj = 0 then stop, else qj = q̂/rjj

10: end for

Numerical Linear Algebra
Perturbation theory and error analysis



Formulations of the eigenvalue problem: I

Given a square matrix A of size n.
I Find all complex numbers λ for which there exists a nonzero

solution v ∈ C such that Av = vλ.
(λ is seen as a matrix of size 1.)

I Find λ, such that A− λI vanishes on a nontrivial subset
Vλ ⊂ Cn. Note that dim(Vλ) ≥ 1.

Formulations of the eigenvalue problem: II

I The eigenvalue problem can be seen as an eigenvector problem:

Av = vλ⇒ v∗Av = v∗vλ⇒ vv∗Av = vv∗vλ
vv∗Av = vv∗vλ⇒ vv∗Av = v∗vAv ⇒ Avv∗v = vv∗Av .

Thus, the eigenvectors are the nonzero roots of the nonlinear
functional f : Cn → Cn : Avv∗v − vv∗Av ≡ (I − vv∗)Av (if
‖v‖ = 1).

Despite of the fact that the eigenproblems are classified as Linear
Algebra problems, they are highly nonlinear - f is a quadratic
functional and the problem could be solved using the Newton
method, for instance.

Perturbation theory

Motivation to analyse the effect of perturbations I

Av = vλ
As we compute the eigensolutions inexactly, up to a machine
precision, we are interested to see what happens with the
eigenvalues and the eigenvectors when we slightly perturb the
matrix.
Def.: Let A be of size n, µ - scalar and v - a vector in Cn. The
eigenvalue residual for the pair (µ, v) is defined as

r = Av − vµ.

Theorem: Under the above setting, (µ, v) is an eigenpair of a
matrix Â = A + E , where E = −vr∗.
Proof:
Âv = (A + E )v = (A− vr∗)v = Av − r = Av − Av + vµ = vµ.



Motivation to analyse the effect of perturbations II

Note: ‖E‖ = ‖r‖.
Theorem: There exists no matrix F with ‖F‖ < ‖r‖ such that
(A + F )v = vµ. Proof: From (A + F )v = vµ we have

‖Fv‖ = ‖Av−µv‖ = ‖r‖, hence, ‖F‖ = sup
w 6=0

‖Fw‖
‖w‖ ≥

‖Fv‖
‖v‖ = ‖r‖.

In other words, E = −rv∗ is the smallest perturbation of A having
(µ, v) as eigenpair.

Regarding computational algorithms: they should produce small
residuals.
If ‖r‖ is small, then it depends on the properties of A whether or
not this will result in accurate eigenvalues.

Classical perturbation bounds I

Theorem [Bauer-Fike]: Suppose that AV = VΛ with V
nonsingular and Λ diagonal. Let µ be an eigenvalue of A + E .
Then, there exists an eigenvalue λ of A such that

|λ− µ| ≤ κ[V ]‖E‖, where κ(V ) = ‖V ‖ ‖V−1‖.

Corollary: Let A be a normal matrix, µ be an eigenvalue of A + E
with ‖E‖ < ε. Then there exists an eigenvalue of A, λ such that

|λ− µ| ≤ ε.

(In this case ‖V ‖ = 1.)

Classical perturbation bounds II

Theorem [Henrici]: Let AQ = QR be a Schur decomposition of
A. Let R = D + N, where D is diagonal and N is strictly
upper-triangular (nilpotent). Let p be the smallest integer such
that Np = 0. Then for each eigenvalue µ of A + E there exists an
eigenvalue λ of A such that

|λ− µ| ≤ max(θ, θ1/p),where θ = ‖E‖
p−1∑

k=0

‖N‖k .

The quantity ν(A) = ‖N‖ is referred to as departure from
normality of A.

Classical perturbation bounds III

Moral: When A is not normal or close to defective, the eigenvalues
of A + E may differ significantly from those of A even if ‖E‖ is
small.



Pseudoeigenvalues I

Given A ,z ∈ C, the eigenvalues of A are those z for which A− zI
is singular.
Consider subsets of the complex plane that are close to these
eigenvalues.
Def.: The ε-pseudospectrum Λε(A) of A is the set of points z
such that z is an eigenvalue of A + E with ‖E‖ ≤ ε.
In this way the pseudospectra define the exact bounds for how far
and eigenvalue of A can move under a perturbation E .
Def.: Resolvent For any z ∈ C

R(A, z) = (A−zI )−1 (Y .Saad) R(A, z) = (zI−A)−1 (N.Trefethen)

Pseudoeigenvalues II

Equivalent definitions for the ε-pseudospectrum of A, Λε(A):
Def.: Λε(A) = {z ∈ C : z ∈ Λ(A + E ) for some E : ‖E‖ ≤ ε}.
Def.:

Λε(A) =
{
z ∈ C : ‖(zI − A)−1‖ ≥ ε−1} .

Λε(A) is the subset of the complex plane, bounded by the ε−1 level
curve of the resolvent norm.
Def.: Λε(A) = {z ∈ C : z ∈ Λ(A + E ) for some E : ‖E‖ ≤ ε}
Def.: Λε(A) = {z ∈ C : σmin(zI − A) ≤ ε} , where σmin(A)
denotes the minimum singular value of a generic matrix A.
Λε(A) are the sets in the complex plane bounded by the level curves
of σmin(zI − A).

The resolvent I

The spectrum of A is defined as the set in C where the inverse of
A− zI does not exist.
R(A, z) admits singularities at the eigenvalues of A. Away, the
resolvent is analytic w.r.t z :

R(A, z) ≡ (A− zI )−1 = ((A− z0I )− (z − z0)I )−1

= R(z0)(I − (z − z0)R(z0))−1

... many properties of R(A, z) ...

The resolvent I

Proposition: Λε(A) is the set of points z ∈ C, for which
I σmin ≤ ε, with σmin the minimal singular value of A− zI ,
I ‖(A− zI )−1‖ ≥ ε−1

Theorem: Let (µ, v) be an approximate eigenpair of A and assume
‖v‖ = 1. Then µ ∈ Λε(A) with ε = ‖r‖, r = Av − vµ.



The resolvent II

Theorem: Let (µ, v) be an approximate eigenpair of A and assume
‖v‖ = 1. Let θ be the positive acute angle between r and v . Let µ̂
be such that Av − v µ̂ ⊥ v . Then

µ̂ = v∗Av = Λsin(θ)‖r‖(A).

The above result shows a possibility to improve the eigenvalue once
an approximate eigenvector has been computed.

Example (Trefethen)

Consider the time-reduced 1D Schrödinger operator with a
potential function that is complex:

Au(x) = u′′ + (cx2 − dx4), c = 3 + 3i , d = 1/16.

The operator is highly non-normal, invariant with respect to x or
−x , thus if u(x) is an eigenfinction, then u(−x) is also an
eigenfunction.
Shown: all eigenvalues of A are single and each eigenfunction is
either even or odd (B. Davies, 1998).
Discretize: Chebyshev collocation spectral method on a finite
interval [−L, L].

Example (Trefethen)

Numerical Linear Algebra
Numerical methods for small/medium eigenvalue problems



Task

Given A,B,C , square of order n. Find pairs λ, v) such that
Av = λv standard eigenvalue problem
Av = λBv generalized eigenvalue problem
Av + λBv + λ2Cv = 0 quadratic eigenvalue problem

Usually n is large (105 − 108).
For smaller n (n ≤ 5000) all eigenpairs are computed using the QR
iteration (Matlab eig).

The Power iteration

The Power method (Single vector iteration technique) - constructs
a sequence of vectors that converges to the dominant eigenvector,
the eigenvector, corresponding to the eigenvalue with largest
modulus.
1: Choose v0 6= 0
2: for k = 1, · · · until convergence do
3: Find αk = max1≤k≤n(|vk(i)|)
4: vk = 1

αk
Avk−1

5: end for
Theorem: Let λi be the eigenvalues of A ordered as
|λ1| ≥ λ2| ≥ · · · ≥ |λn| The convergence factor is proportional to
the relative gap between |λ1| and |λ2|, |λ2|

|λ1| .

The Power iteration, another form

1: Choose v0 6= 0
2: for k = 1, · · · until convergence do
3: ṽk = 1

αk
Avk−1

4: αk = ‖ṽk‖
5: vk = 1

αk
ṽk

6: end for

The Power iteration, yet another form (Rayleigh quotient)

Previous form:
1: Choose v0 6= 0
2: for k = 1, · · · until conver-

gence do
3: ṽk = 1

αk
Avk−1

4: αk = ‖ṽk‖
5: vk = 1

αk
ṽk

6: end for

Alternative form:
1: Choose v0 6= 0
2: for k = 1, · · · until conver-

gence do
3: ṽk = 1

αk
Avk−1

4: vk = ṽk
‖ṽk‖2

5: αk = v∗Avk
6: end for



The Power iteration, stopping test

I fixed number of iterations
I ‖vk+1 − v‖ ≤ τ
I Check on the change in the eigenvalue

The Inverse Power iteration

1: Choose v0 6= 0
2: for k = 1, · · · until convergence do
3: Aṽk = vk−1
4: αk = 1

‖ṽk‖
5: vk = αk ṽk
6: end for

Converges to the first (smallest) eigenvalue and its eigenvector.

The Shifted Inverse Power iteration

1: Choose v0 6= 0
2: for k = 1, · · · until convergence do
3: (A− σI )ṽk = vk−1
4: αk = 1

‖ṽk‖
5: vk = νk ṽk
6: αk = σ + νk
7: end for

To increase the convergence one can use variable shifts:
(A− σk−1I )ṽk = vk−1.

The Shifted Power iteration I

1: Choose v0 6= 0
2: for k = 1, · · · until convergence do
3: ṽk = (A− σI )vk−1
4: vk = νk ṽk

5: αk =
v∗kAvk
v∗kvk

6: end for
Note: The same eigenvectors, better eigenvalue distribution.
Based of the fact that f (A)vk = f (λk)vk we can do shifts in
various ways:
- f (A) = I − σA; f (A) = A− σ(A)
-
f (A) = I +γ1A+γ2A2+· · ·+γ`A` = (I−β1A)(I−β2A) · · · (I−β`A)



The Shifted Power iteration II

- f (A) = (A− σI )−1

- f (A) = (A− I )−1(I − A) (Cayley transform) or
f (A) = (A− σI )−1(I − σA) combined with a shift.
We aim to achieve:
- faster convergence to an eigenvalue close to the shift,
- diminish unwanted components,
- improve eigenvalue distribution,
- amplify wanted components

Demo: /home/maya/matlab/Eigenvalues/Power_
method/Main_Eig_small.m

The QR iteration

QR factorization , A(n, n)

A = QR,

Q - orthogonal, R - upper-triangular.

Method Complexity
Gram-Schmidt n3

Modified GS n3

Householder reflections n3

Givens rotations n3



QR decomposition of an upper-Hessenberg matrix

H =




∗ ∗ ∗ · · · ∗
∗ ∗ ∗ · · · ∗
∗ ∗ · · · ∗

. . . . . . ∗
∗ ∗




The QR factorization of H can be done efficiently (in O(n2) flops).

H ≡ H1 =




a1 ∗ ∗ ∗ ∗ ∗
b1 ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ ∗
0 0 0 0 ∗ ∗




Construct the Givens rotations (r1 =
√

a2
1 + b2

1)

Q1 =




a1/r1 b1/r1 0 0 0
−b1/r1 a1/r1 0 0 0 0

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




Q1H1 =




∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ ∗
0 0 0 0 ∗ ∗




Repeat I

H2 ≡ Q1H1 =




∗ ∗ ∗ ∗ ∗ ∗
0 a2 ∗ ∗ ∗ ∗
0 b2 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ ∗
0 0 0 0 ∗ ∗




Construct the Givens rotations (r2 =
√

a2
2 + b2

2)



Repeat II

Q2 =




1 0 0 0 0 0
0 a2/r2 b2/r2 0 0
0 −b2/r2 a2/r2 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




H3 ≡ Q2H2 = Q2Q1H1 =




∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ ∗
0 0 0 0 ∗ ∗




QR factorization of H

1: for j = 1, · · · n − 1 do
2: Let QR be the QR factorization of the 2× n matrix

H(j : j + 1, :)
3: Store the 2× 2 matrix Qj = Q and overwrite

H(j : j + 1, :) = R(j : j + 1, :)
4: end for

Each Qj is a plane rotation with sin(θj) = aj/rj and cos(θj) = bj/rj .

QR factorization of H

If H is Hessenberg and H = QR , then
- Q is Hessenberg and
- RQ is also Hessenberg.

The basic QR iteration

Recall that Schur decomposition is eigenvalue-revealing.
Idea: Compute approximations of eigenvalues by fixed point
iteration on the Schur factorization AQ = QR .

Q0 = I , iterate AQn = Qn+1Rn+1,

where Qn+1Rn+1 is a QR factorization of AQn.
Note: Even if A is Hessenberg and Q is Hessenberg, AQ is not!



The basic QR iteration

Basic QR iteration:
Start: A = Q1R1, iterate Qk+1Rk+1 = RkQk

Note: RQ is Hessenberg!

Less clear! However,

A = Q1R1, R1 = Q∗1 A, R1Q1 = Q∗1 AQ1

Q2R2 = Q∗1 AQ1, R2 = Q∗2 Q∗1 AQ1, R2Q2 = Q∗2 Q∗1 AQ1Q2

...

AQ1Q2 · · ·Qn = Q1Q2 · · ·Qn+1Rn+1

Basic QR iteration

1: Input A ∈ Cn×n

2: Output R = An, U = Un such that A = URU∗

3: Set A0 = A, U0 = I
4: for k = 1, · · · · · · do
5: Compute the QR factorization Ak−1 = QkRk
6: Set Ak = RkQk
7: Set Uk = Uk−1Qk
8: end for

Demo: /home/maya/matlab/Eigenvalues/QR_
iteration/Basic_QR_iter.m

Basic QR iteration - convergence

Theorem: Let A be real invertible n × n matrix, such that the
moduli of the eigenvalues λ1, · · · , λn are distinkt,

|λ1| > |λ2| > · · · |λn| >> 0.

Let A = Q−1DQ, where D = diag(λ1, λ2, · · · , λn). Suppose
Q = LU, where L is unit lower-triangular. and U is
upper-triangular.

I The strictly lower triangular part of Ak converges to zero in
O(tk).

I The diagonal part of A converges to D in O(tk), where

t = max

{∣∣∣∣
λ2

λ1

∣∣∣∣ , · · · ,
∣∣∣∣
λn

λn−1

∣∣∣∣
}
< 1.

Note: The upper triangular entries may fail to converge (to the
Schur form).

Basic QR iteration with shifts (to accelerate convergence)

1: Input A ∈ Cn×n

2: Output R = An, U = Un such that AU = UR
3: Set A0 = A, U0 = I
4: for k = 1, · · · · · · do
5: Select a shift σk
6: Compute the QR factorization Ak−1 − σk I = QkRk
7: Set Ak = RkQk + σk I
8: Set Uk = Uk−1Qk
9: end for



Computational aspects

If A is upper-Hessenberg, so is Qn. But AQn is NOT
upper-Hessenberg. Thus, computationally it is always advisable to
convert AQn to upper-Hessenberg or tridiagonal in the symmetric
case.

Recall, that the Arnoldi factorization leads to AV = VH, where H
is upper-Hessenberg.

Convergence of the QR iteration

The convergence depends on the shift.
Example of a reference: Tai-Lin Wang, William B. Gragg Convergence of the
shifted QR algorithm for unitary Hessenberg matrices Mathematics of
Computation, 71, 1473-1496
Shifts:

I The Rayleigh shift: σ = ann, ann - the last diagonal element of
Ak .

I the Wilkinson shift: σ is taken as the absolute smallest
eigenvalue of the trailing 2× 2 submatrix of Ak , closer to ann;[
an−1,n−1 an−1,n
βn − 1 ann

]
;

I Mixed shift: R-shift if θβn−2 ≥ βn−1 and W-shift otherwise.
W-shift - the convergence is quadratic for A 6= A∗ and cubic for
Hermitian A.

Single vector iterations
Power method - relation to QR iteration

Partial QR iteration I

Theorem: Consider the basic QR iteration. The first j columns of
Qk+1 can be computed from partial iteration
Start with Q(j)

0 = I (:, 1 : j), iterate AQ(j)
k = Q(j)

k+1R
(j)
k+1.

Then R(j)
k+1 is the top-left part of Rk+1.

Question: If the partial QR iteration converges, to what it
converges? We will have

AQ(j) = Q(j)R(j)

with Q(j)(n × j) orthogonal and R(j)(j × j) - upper-triangular. The
subspace V spanned by the columns of Q(j) is invariant subspace
for A and the eigenvalues of R(j) must e eigenvalues of A, but
which?



Partial QR iteration II

Take now j = 1:
Start with v0, iterate Avk = vk+1rk+1.
We know that it converges to the maximum eigenvalue of A.

Real Schur decomposition

If A is real, non-Hermitian with complex eigenvalues, it is clear that
the QR iteration cannot converge to a Schur decomposition.
As long as real shifts are used, all matrices involved will be real!
In that case convergence takes place to the so-called Real Schur
Decomposition.
Theorem: Any real matrix A of size n can be factorized as
A = QRQ∗, where Q is real orthogonal and R is real quasi
upper-triangular. The latter denotes that R = R0 + D, where R0 is
upper-triangular and D is block-diagonal with blocks of size at
most 2.
Remark: The eigenvalues of the 2× 2 quasi upper-triangular
matrix are exactly the complex eigenpairs of A.

A(y |z) = (y |z)

[
µ ν
−ν µ

]
, λ = µ± iν.

Numerical Linear Algebra
Numerical methods for eigenvalue problems

Subspace methods

General framework – projection methods

Want to solve b − Ax = 0 , b, x ∈ Rn,A ∈ Rn×n.

Instead, choose two subspaces L ⊂ Rn and K ⊂ Rn and
∗ find x̃ ∈ x (0) + δ, δ ∈ K , such that b − Ax̃ ⊥ L

K - search space
L - subspace of constraints

∗ - basic projection step

The framework is known as Petrov-Galerkin conditions.

There are two major classes of projection methods:
I orthogonal - if K ≡ L,
I oblique - if K 6= L.



Notations:
x̃ = x0 + δ - (δ - correction)
r0 = b − Ax0 (r0 - residual)

∗ find δ ∈ K , such that r0 − Aδ ⊥ L

Repetition from projection methods

Choose a basis in K and L: V = {v1, v2, · · · , vm} and
W = {w1,w2, · · · ,wm}.
Then, x̃ = x0 + δ = x0 + V y for some y ∈ Rm.

The orthogonality condition can be written as
(∗∗) W T (r0 − AV y)

which is exactly the Petrov-Galerkin condition.
From (∗∗) we get

W T r0 = W TAV y
y = (W TAV )−1W T r0

x̃ = x0 + V (W TAV )−1W T r0

In practice, m < n, even m� n, for instance, m = 1.

Matrix formulation, cont.

x̃ = x0 + V (W TAV )−1W T r0

The matrix W TAV will be small and, hopefully, with a nice
structure.

!!! W TAV should be invertible.

A prototype projection-based iterative method:

Given x (0); x = x (0)

Until convergence do:
Choose K and L
Choose basis V in K and W in L
Compute r = b − Ax

y = (W TAV )−1W T r
x = x + V y

Degrees of freedom: m,K , L,V ,W .
Clearly, if K ≡ L, then V = W .



(1) Consider two important cases: L = K and L = AK
(2) Make a special choice of
K = Kk−1 = {v ,Av ,A2v , · · · ,Ak−1v}.

Back to ’Eig’ problems: subspace methods

Let A - square non-singular of order n.
Let V ∈ Cn be a subspace with dim(V) = k < n, V - full rank, V -
basis of V.
Let W = AV, W = AV .
Task: Find approximate eigenpairs of the eigenvalue problem
Az = zλ based on information from V and W .

V-orthogonal residuals, Ritz values and Ritz vectors I

Strategy 1 (V − orth): Find approximate pair v ∈ V and µ ∈ C,
s.t. the eigenvalue residual r = Av − vµ is orthogonal to V.
v ∈ V ⇒ v = V y =

∑
1≤i≤k

yiv i , y ∈ Cn.

If r ⊥ V then V ∗r = 0, thus

V ∗(AV y − yµ) = 0 ≡ V ∗W y = V ∗V yµ.

The pair (µ,V y) can be considered as an approximate eigenpair of
A.
Def. (Ritz data): The approximate eigenpairs (µ,V y) are called
Ritz pairs, Ritz values and Ritz vectors.

V-orthogonal residuals, Ritz values and Ritz vectors II

Strategy 2 (W − orth): Provided that A is invertible, Az = zλ
can be reformulated as A−1z = zλ−1. Since V = A−1W we look
for w ∈ W, ν ∈ C, s.t. the eigenvalue residual r = Av − vν is
orthogonal to V.

W ∗V y = W ∗W yν.

The pairs (ν,W y) are Ritz pairs of A−1 in W .
The following interpretations are equivalent:

1. replaceA, λ,W = AV from the previous section by
A−1, λ−11,V = A−1W

2. instead of finding v ∈ V with r ⊥ V, we look for v ∈ V with
r ⊥ W.



V-orthogonal residuals, Ritz values and Ritz vectors III

Def. (Harmonic Ritz data): The approximate eigenpairs
(ν−1,V y) are called Harmonic Ritz pairs, Harmonic Ritz values
and Harmonic Ritz vectors.
The above does not depend on the basis, as long as W = AV.
However, due to W = AV we cannot have simultaneously V ∗V = I
and W ∗W = I , i.e. V and W simultaneously orthogonal.

Expansion of the subspaces V+ = (V |v), W+ = (W |w) I

Say, we want to add an arbitrary vector v to V , V+ = (V |v). Then
we need to compute w = Av and expand W+ = (W |w).
The matrices we need to extract eigenvalue approximations are:

V ∗+V+ = (V |v)∗(V |v) =

(
V ∗V V ∗v
v∗V v∗v

)

respectively

V ∗+W+ = (V |v)∗(W |w) =

(
V ∗W V ∗w
v∗W v∗w

)

Expansion of the subspaces V+ = (V |v), W+ = (W |w) II

Theorem
Let A = A∗ be positive definite with eigenvalues λn ≤ · · · ≤ λ1,
µk ≤ · · · ≤ µ1 be the V-orthogonal residual approximations of
eigenvalues of A and µ+k+1 ≤ · · · ≤ µ+2 ≤ µ+1 be the ones in V+.
Then

µ+k+1 ≤ µk ≤ µ+k · · · ≤ µ2 ≤ µ+2 ≤ µ1 ≤ µ+1

Expansion of the subspaces V+ = (V |v), W+ = (W |w) III

Theorem
Let A = A∗ be pos.def. and V1 ⊂ V2 ⊂ · · · ⊂ Vn be a nested sequence of
subspaces of dimension dim(Vj ) = j . Related to Vk we denote the
corresponding eigenvalues µk ≤ µk−1 ≤ · · · ≤ µ1. Then we have

µ
(j)
j ≤ µ

(j+1)
j ≤ · · · ≤ µ(n)

j = λj for any j

The sequence of jth largest approximate eigenvalues converges monotonically
to the jth largest eigenvalue of A
Conversely,

λj = µ
(n)
j ≤ µ

(n−1)
j−1 ≤ · · · ≤ µ(n−j+1)

1 for any j ,

the sequence of the jth smallest approximate eigenvalue converges
monotonically to the jth smallest exact eigenvalue.



Expansion of the subspaces V+ = (V |v), W+ = (W |w) IV

µ
(1)
1

µ
(2)
2 µ

(2)
1

µ
(3)
3 µ

(3)
2 µ

(3)
1

µ
(4)
4 µ

(4)
3 µ

(4)
2 µ

(4)
1

µ
(5)
5 µ

(5)
4 µ

(5)
3 µ

(5)
2 µ

(5)
1

The jth left diagonal with positive slope decreases monotonically to
λn+1−j
The jth right diagonal with negative slope increases monotonically
to λj

Algorithm (V − orth)

Recall that if r ⊥ V then V ∗r = 0, we have the relation

V ∗(AV y − yµ) = 0 ≡ V ∗W y = V ∗V yµ.

and we need to compute the eigenvalues of M = V ∗AV = V ∗W to
find approximated eigenvalues of A. The pair (µ,V y) can be
considered as an approximate eigenpair of A.
We have also seen that when adding a new vector to V, the matrix
M+ can be easily constructed.
Note: By the definition of V-orthogonal methods, each residual is
orthogonal to V. This, if we expand in the direction of r , we need
not to orthogonalize.
The resulting algorithm is referred to as the Arnoldi method for
general matrices and its version for Hermitian matrices, the Lanczos
method.

Recall: how to construct a basis for a Krylov subspace

Arnoldi’s method for general matrices
Consider Km(A, v) = {v ,Av ,A2v , · · · ,Am−1v}, generated by
some matrix A and vector v .
1: Choose a vector v1 such that ‖v1‖ = 1
2: for j = 1, 2, · · · ,m do
3: for i = 1, 2, · · · , j do
4: hij = (Av j , v i )
5: end for

6: w j = Av j −
j∑

i=1
hijv i

7: hj+1,j = ‖w j‖
8: If hj+1,j = 0, stop
9: v j+1 = w j/hj+1,j

10: end for

The result of Arnoldi’s process

I Vm = {v1, v2, · · · , vm} is an orthonormal basis in Km(A, v)

I AVm = VmHm + wm+1eT
m

V
m

V
m

H
m

em( )
T

w
m+1

(n,m)(n,m)(n,n)

A

(n,1) 

(1,m)*

*

(m,m)

+

=*



The result of Arnoldi’s process

I Vm = {v1, v2, · · · , vm} is an orthonormal basis in Km(A, v)

I AVm = VmHm + wm+1eT
m

V
m

(n,m)(n,n)

A =*

(n,m+1)

V
m+1

*

(m+1,m)

H
m−

Arnoldi in detail I

Step 1: Choose v1, compute w1 = Av1
Compute µ such that r1 = Av1 − v1µ1 ⊥ v1

This gives µ(1)1 = v∗1w1.
(µ

(1)
1 , v1) - first approximate eigenpair

Arnoldi in detail II

Step 2: Expand V1 in direction of r1 (r1 ⊥ V1). Note: ‖r1‖v2 =

r1 = Av1 − v1µ
(1)
1

v2 = r1/‖r1‖,V 2 = (V1|v2)
Compute w2 = Av2
Solve V ∗2 W2y = yµ; V ∗2 W2 is 2x2, two eigenvalues,
µ
(2)
1 , µ

(2)
2 .

Corresponding residuals:

R2 = W2(y1|y2)− V2(y1|y2)

[
µ
(2)
1 0
0 µ

(2)
2

]

Both residuals are linear combinations of the columns of
V2 and W2, so it suffices to take one of them, r .

Arnoldi in detail III

Step 3: Again, ‖r‖v3 = r = Av2 − V2V ∗1 Av2, thus w2 = Av2
is a linear combination of v1, v2, v3 and

W2 = AV2 = V3



∗ ∗
∗ ∗
0 ∗




.
Thus, the relation is

Wk = AVk = Vk+1Hk+1,k

with Hk+1,k - upper Hessenberg.
Remark: The Arnoldi factorization is uniquely defined by the initial
vector v1.



1: V = v , ‖v‖ = 1, H = []
2: while γ > ε do
3: v = Av
4: h = V ∗v
5: v = Vh
6: γ =

√
v∗v

7: H =

[
H h
0 γ

]

8: v j+1 = w j/hj+1,j
9: V = (V |v/γ)

10: end while
We start expand with Av1, orthogonalization is needed; no need to
compute the residual!

Arnoldi: the residual is available

Question: for which k the matrix Hk,k has eigenvalues with small
residual?
We have r = AVkyk − Vkykµ = hk+1,kvk+1e∗kyk . Using
‖vk+1‖ = ‖ek‖ = 1 we obtain ‖rk‖ = |hk+1,kbe∗kyk | ≤ |hk+1,k |.

Implicitly restarted Arnoldi (IRA) method I

Observations:
I When increasing the dimension of Vk the computational work

becomes prohibitive.
I Roundoff errors creep in.
I The computed spectrum of Hk,k contains approximations of

uninteresting eigenvalues.
I Perhaps we wish to have started with a different initial vector.

Question: Can we ’reverse’ the Arnoldi factorization without heavy
recomputations?
Answer: Yes!

Implicitly restarted Arnoldi (IRA) method II

Assume that we have performed m = `+ p Arnoldi steps. We split
the approximate eigenvalues into two groups: µ1, · · · , µ` wanted
and θ1, · · · , θp unwanted, roots of the polynomial
Pp(t) = (t − θ1)(t − θ2) · · · , (t − θp), We have

AVm = VmHm + βmvm+1eT
m.

Apply the first factor A− θ1I to all basis vectors V :

(A− θ1I )Vm = Vm(Hm − θ1I ) + βmvm+1eT
m

QR-factorize Hm − θ1I = Q1R1
(1) (A− θ1I )Vm = VmQ1R1 + βmvm+1eT

m
(2) (A− θ1I )(VmQ1) = (VmQ1)R1Q1 + βmvm+1eT

mQ1
(3) A(VmQ1) = (VmQ1)(R1Q1 + θ1I ) + βmvm+1eT

mQ1



Implicitly restarted Arnoldi (IRA) method III

Denote:
H(1)

m = R1R1 + θ1I
(b(1)

m+1)T = emQ1

V (1)
m = VmQ1

Then (3) becomes

AV (1)
m = V (1)

m H(1)
m + vm+1(b(1)

m+1)T .

• Resembles ordinary Arnoldi
• The first vector in V (1)

m is a multiple of (A− θ1I )v1.
(Multiply (1) by e1) and use the fact the R1 is upper-triangular

• The columns of V (1)
m are orthonormal.

Implicitly restarted Arnoldi (IRA) method IV

In the same way we can apply A− θ2 to V (1)
m :

(A− θ2I )V (1)
m = V (1)

m (H(1)
m − θ2I ) + vm+1(b(1)

m+1)T

QR-factorize H(1)
m − θ2I = Q2R2

(4) (A− θ2I )V (1)
m = V (1)

m Q2R2 + vm+1(b(1)
m+1)T

(5) (A− θ2I )(V (1)
m Q2) = (V (1)

m Q2)R2Q2 + vm+1(b(1)
m+1)TQ2

(6) A(VmQ2) = (VmQ2)(R2Q2 + θ2I ) + vm+1(b(1)
m+1)TQ2

Denote:
H(2)

m = R2R2 + θ2I
(b(2)

m+1)T = (b(1)
m+1)TQ2

V (2)
m = V (1)

m Q2

Implicitly restarted Arnoldi (IRA) method V

Then (6) becomes

AV (2)
m = V (2)

m H(2)
m + vm+1(b(2)

m+1)T .

Algorithm IRA

1: Perform m-step Arnoldi to obtain the factorization
AVm = VmHm + v̂m+1eT

m
2: Choose p of the eigenvalues of Hm to be eliminated, θ1, · · · , θp
3: Perform a p-step QR with these shifts
4: [Hm,Q] = qr(Hm, θ1, · · · , θp)
5: Set k = m − p, Hk = Hm(1 : k , 1 : k),Vk = VkQ
6: Set v̂k+1 = v̂k+1 + v̂m+1Qm,k
7: Continue the Arnoldi factorization from AVk = VkHk + v̂k+1eT

k

(v̂k+1 = hk+1,kvk is the unscaled Arnoldi vector of the kth step.)



p-step QR with shifts θ1, · · · , θp

1: for j = 1, · · · , p do
2: (H − θj I ) = QR
3: H = RQ + θj I
4: end for

Eliminating a pair of complex eigenvalues

The double shift strategy is recommended to be used if we want to
eliminate two complex conjugate eigenvalues θ1 and θ2. Then,
these two eigenvalues are used as shifts in consecutive iterations to
achieve quadratic convergence in the complex case. That is, we
compute
1: (H − θ1I ) = Q1R1
2: H1 = R1Q1 + θ1I
3: (H1 − θ2I ) = Q2R2
4: H2 = R2Q2 + θ2I

Here we have to use complex arithmetic.

Avoiding complex arithmetic

Let θ1 = a + ib, θ2 = a − ib. Then θ1 + θ2 = 2a and
θ1θ2 = a2 + b2 are real.

Q1Q2R2R1 = Q1(H1 − θ2I )R1
= Q1H1R1 − θ2Q1R1
= Q1(R1Q1 + θ1I )R1 − θ2(H − θ1I )
= Q1R1Q1R1 + θ1Q1R1 − θ2(H − θ1I )
= (H − θ1I )2 + θ1(H − θ1I )− θ2(H − θ1I )
= H2 − 2θ1H + θ2

1I + θ1H − θ2
1I − θ2H + θ1θ2I

= H2 − (θ1 + θ2)H + θ1θ2I .

... Requires H2 and is not of practical interest.... Francis QR step
to circumvent it.

Assignment

Implement the Arnoldi factorization with implicit restart. Eliminate
both real and complex conjugate eigenvalues.


