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General framework – projection methods (short
repetition)

Want to solve Ax = b,b,x ∈ Rn,A ∈ Rn,n

Use the projection framework, i.e., we seek an approximate
solution x̃ = x0 + δ, where δ ∈ K , dim(K ) = m� n, such that

b− Ax̃ ⊥ L,dim(L) = m

x0 is arbitrary.
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General framework – projection methods

Major results:
(A) The matrix B = W T AV is nonsingular for any W and V

either if A is positive definite and L = K , or if A−1 exists
and L = AK .

(B) Properties
(I) K = L, A-spd⇒ ‖x∗ − x̃‖A ≤ ‖x∗ − x‖A for any

x = x0 + y,y ∈ K
(II) L = AK ,⇒ ‖b− Ax̃‖2 ≤ ‖b− Ax‖2 for any

x = x0 + y,y ∈ K
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General framework – projection methods

The important question is now how to choose K . We let

K ≡ Km(A,v) = span{v,Av, · · · ,Am−1v}

for some vector v.
Usual choices: v = b or v = r0 ≡ b− Ax0.



5/32

Relevant questions:
- Why is K(A,b) often a good space from which to construct

an approximate solution?
- Why are eigenvalues important for Krylov methods?
- Why do Krylov methods often do so well for Hermitian

matrices?

One can show that the solution of Ax = b has a natural
representation in Kk (A,b) for some k .
If k happens to be small, we have a fast convergence.
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The GMRES method

L = AK + basic projection step

‖b− Ax̃‖2 = min
x∈x0+K

‖b− Ax‖2
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Basic GMRES

Choose v(1) to be the normalized residual r(0) = b− Ax(0).
Any vector x ∈ x(0) + K is of the form x = x(0) + Vmy. Then

b− Ax = b− A(x(0) + Vmy)

= r(0) − AVmy
= βv(1) − Vm+1Hmy
= Vm+1(βe1 − Hmy).

Since the columns of Vm+1 are orthonormal, then

‖b− Ax‖2 = ‖βe1 − Hmy‖2.
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Basic GMRES

1. Compute r(0) = b− Ax(0), β = ‖r(0)‖2 and v(1) = r(0)/β
2. For k = 1, 2, · · · ,m
3. Compute w(k) = Av(k)

4. For i = 1, 2, · · · , k
5. hik = (w(k), v(i))

6. w(k) = w(k) − hik v(i)

7. End
8. hk+1,k = ‖w(k)‖2; if hk+1,k = 0, set m = k , goto 11
9. v(k+1) = w(k)/hk+1,k

10. End
11. Define the (m + 1)×m Hessenberg matrix Hm = {hik},

1 ≤ i ≤ m + 1, 1 ≤ k ≤ m
12. Compute y(m) as the minimizer of ‖βe1 − Hmy‖2 and x(m) = x(0) + Vmy(m)
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GMRES:

I No breakdown of GMRES
I As m increases, storage and work per iteration increase

fast. Remedies:
I Restart (keep m constant)
I Truncate the orthogonalization process

I The norm of the residual in the GMRES method is
monotonically decreasing. However, the convergence may
stagnate. The rate of convergence of GMRES cannot be
determined so easy as that of CG.

I The convergence history depends on the initial guess.
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GMRES: convergence

Theorem: Let A be diagonalizable, A = X−1ΛX where
Λ = diag{λ1, · · · , λn} contains the eigenvalues of A. Define

εm = min
p∈Π1

m

max
i=1,···n

|p(λi)|.

Then, the residual norm at the mth step of GMRES satisfies

‖r(m)‖ ≤ κ(X )εm‖r(0)‖,

where κ(X ) = ‖X‖ ‖X−1‖.
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GMRES: convergence

The rate of convergence of the GMRES method depends on
the distribution of the eigenvalues of A in the complex plane.
For fast convergence the eigenvalues need to be clustered
away from the origin. Note that the eigenvalue distribution is
much more important than the condition number of A, which is
the main criterion for rapid convergence of the conjugate
gradient method
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GMRES history

I Full GMRES, Saad and Schultz, 1986, costly
I Restarted GMRES - GMRES(m), Saad and Schultz, 1986

Use x (m) as the starting guess for a fresh run of GMRES.
Moral: Restarting compromises global optimality.
GMRES with no restarts converges exactly in no more
than n steps; restarted GMRES may fail to converge.
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GMRES convergence history

The matrix fs_760_1.mtx (Matrix Market)
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GMRES convergence history

0 100 200 300 400 500 600 700 800
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Matrix fs_760_1.mtx

 

 

no restart

20

10

5

1

15/32

Other methods
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Result:

A. Greenbaum, Estimating the attainable accuracy of recursively computed
residual methods, SIAM Journal on Matrix Analysis and Applications, 18 (3),
1997, 535-551.
Estimate:

b− Axk − rk

‖A‖‖x = εO(k)(1 +max
j≤k
‖xj‖/‖x‖

where ε is machine accuracy.
Earlier, it has been noted that an increase in the 2-norm of the residual at
intermediate steps leads to a corresponding increase in the size of the final
residual.
The above inequality shows that it is not really the size of intermediate
residuals that is of importance but the size of the iterates.
In the paper, there is an example in which the residual remains small but
intermediate iterates grow, causing a loss of accuracy in the final solution.
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A. Greenbaum, Estimating the attainable accuracy of recursively
computed residual methods, SIAM Journal on Matrix Analysis and
Applications, 18 (3), 1997, 535-551.

Y. Saad, Iterative methods for sparse linear systems, PWS Publishing
Company, 1996.

L.N. Trefethen and D. Bau, Numerical Linear Algebra, SIAM.
Philadelphia, 1997.

E.E. Tyrtyshnikov, A brief introduction to Numerical Analysis, Birkhäuser,
1997.

18/32

Why Krylov subspaces are so much used?
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Alexei Nikolaevich Krylov

1863-1945, Maritime Engineer
I 300 papers and books on: shipbuilding, magnetism, artillery, math,

astronomy, geodesy
I 1890: theory of oscillating motions of the ship
I 1904: he built the first machine in Russia for integrating ODEs
I 1931: Krylov subspace methods
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Properties of the Krylov subspaces

Km(A,v) = span{v,Av, · · · ,Am−1v}
The dimension of Km increases with each iteration.

I Theorem [Cayley-Hamilton]: d ≤ n
I Kd is invariant under A, thus, Km = Kd for m > d , thus,

dim(Km) = min(m,d)
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Presentation, based on the paper

The Idea Behind Krylov Methods

Ilse C. F. Ipsen and Carl D. Meyer
The American Mathematical Monthly, Vol. 105, No. 10, Dec.,

1998
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Summary:

Why Krylov methods make sense, and why it is natural to
represent a solution to a linear system as a member of a Krylov
space?

The authors show that the solution to a nonsingular linear
system Ax = b lies in a Krylov space whose dimension is the
degree of the minimal polynomial of A.

Therefore, if the minimal polynomial of A has low degree then
the space in which a Krylov method searches for the solution
can be small. In this case a Krylov method has the opportunity
to converge fast.
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When the matrix is singular, however, Krylov methods can fail.

Even if the linear system does have a solution, it may not lie in
a Krylov space. In this case one describes a class of right-hand
sides for which a solution lies in a Krylov space. As it happens,
there is only a single solution that lies in a Krylov space, and it
can be obtained from the so-called Drazin inverse.
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Assume that A is nonsingular.
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Idea: express A−1 in terms of powers of A.
The minimal polynomial of A, qd (t) of degree d , is the unique
monic polynomial of minimal degree, for which

q(A) = 0.

It has the form

qd (t) =
d∏

j=1

(t − λj)
mj ,

where
- λ1, · · · , λd are distinct eigenvalues of A,
- m1, · · · ,md are the corresponding indeces of λj (the sizes of
the largest Jordan block, associated with λj ).
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Idea: express A−1 in terms of powers of A.

qd (t) =
d∏

j=1

(t − λj)
mj =

m∑

s=0

αsts, (1)

where m =
∑d

j=1 mj .

Example: A =




3 1
3

4
4


.

Then we have
λ1 = 3, m1 = 2,
λ2 = 4, m2 = 1.

Note that, since we have assumed that A is nonsingular, in (1),
the coefficient α0 =

∏d
j=1(−λj)

mj 6= 0.

27/32

Idea: express A−1 in terms of powers of A.

q(A) = α0In + α1A + α2A2 + · · ·+ αmAm = 0, α0 6= 0
Then A−1q(A) = 0, thus,

A−1 =
1
α0

m−1∑

j=0

αj+1Aj

However, x = A−1b !

If the minimal polynomial of A (A−1∃) has degree m,
then x = A−1b ∈ Km(A,b).
(b = r(0) for x(0) = 0)
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Idea: express A−1 in terms of powers of A.

Remarks:
I If d is small, then the convergence is fast.
I We also see that the eigenvalues of A, not its singular

values, are important, because the dimension of the
solution space is determined by the degree of the minimal
polynomial.
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What happens if A−1 does not exist?

Suppose that A is singular. One can show that even if a solution exists, it may
not lie in the Krylov space Km(A,b).
Example: Consider a consistent linear system Nx = c, where N is a nilpotent
matrix, i.e., there exists some integer `, such that N` = 0 but N`−1 6= 0.
Suppose that the solution x is a linear combination of Krylov vectors, i.e.,

x = β0c + β1Nc + β2N2c + · · ·+ β`−1N`−1c

Then, c = Nx = β0Nc + β1N2c + · · ·+ β`−2N`−1c and
(I − β0N − β1N2 − · · · − β`−2N`−1)c = 0.
The matrix Q = I − β0N − β1N2 − · · · − β`−2N`−1 is nonsingular, because of
the following reasons. The eigenvalues of any nilpotent matrix are all equal to
zero, thus, the eigenvalues of Q are all equal to 1. Therefore, c must be zero.

Moral: the solution of a system with a nilpotent matrix and a nonzero right
hand side cannot lie in the Krylov subspace, generated by the matrix and the
rhs.
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What happens if A−1 does not exist?

Apply the following trick: Decompose the space Cn = R(A`)⊕N (A`), where
` is the index of the zero eigenvalue of A ∈ Cn×n and R(·) and N (·) denote
range and nullspace. Then

A =

[
R 0
0 N

]
,

where R is nonsingular and N is nilpotent of index `.
Suppose now that Ax = b has a Krylov solution

x =

[
x1

x2

]
=

d∑

j=1

αjAb =
d∑

j=0

αj

[
R j 0
0 N j

] [
b1

b2

]

thus

x1 =
d∑

j=0

αjR jb1 and x2 =
d∑

j=0

αjN jb2.
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What happens if A−1 does not exist?

From Ax = b we have that Nx2 = b2, so
d−1∑
j=0

αjN j+1b2 = b2 and

(I −
d−1∑

j=0

αjN j+1)b2 = 0

The matrix in parentheses is nonsingular, thus b2 = 0.
In other words, the existence of a Krylov solution requires that b ∈ R(A`).
The converse statement is also true.

Theorem
A square linear system Ax = b has a Krylov solution if and only if b ∈ R(A`),
where ` is the index of the zero eigenvalue of A.
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The index of an eigenvalue λ for J is defined as the dimension
of the largest Jordan block associated to that eigenvalue.


