
1/27

Numerical Linear Algebra

Maya Neytcheva, TDB, February-March 2021

2/27

Generalized Conjugate Gradient Methods

GCG

3/27

GCG-type of methods:

Reasons to be widely used:
I parameter-free iterative methods
I finite termination property
I optimality approximation property
I favourable memory requirements and computational

complexity per iteration
I the use of a good preconditioner can significantly improve

the performance
I the influence of roundoff error is usually acceptable

4/27

Derivation of the GCG method

GCG can be derived within the framework of the (generalized)
Least Squares methods, where at each step the square of the
residual norm is minimized.

We want to solve
Ax = a

The matrix A can be even rectangular of size n ×m. One way
to go is to consider some auxiliary matrix Q and solve either

QAx = Qa
or

AQy = a with x = Qy.



5/27

Derivation of the GCG method (cont)

For the special choice Q = AT we obtain the normal equation
to solve:

AT Ax = AT a – Least Squares residuals
or

AAT y = a – Least Squares error.

If A is square, Q can be seen as a preconditioner to A (left or
right, correspondingly).
Further we will work only with a square matrix B, where

B = QA
B = AQ
B = C−1A

and we are going to solve the system
Bx = b.

6/27

Derivation of the GCG method (cont)

Consider now the following quadratic form:

f (x) =
1
2

(r, r)0 =
1
2

(Bx− b,Bx− b) (1)

where (·, ·)0 is defined as (u,v)0 = (uT M0v) for some given
positive definite matrix M0.

I If b ∈ R(B), then (1) has a minimizer, x̃, for which f (x) = 0
I If b /∈ R(B), then (1) is solved so that at each step ‖r(k)‖20

is minimized, which gives the name of the method.

7/27

Derivation of the GCG method (cont)

The minimization takes place on a subspace, V , spanned by a
number (s) of search directions {v(j)}, such that Bv(j) are
linearly independent, i.e.,

(Bv(j),Bv(j)) = 0

The parameter s is the max number of search directions to be
used when updating the current solution x(k)

x(k) = x(k−1) +
k−1∑

k−sk

α
(k)
j v(j) (2)

sk = min(sk−1 + 1, s),1 ≤ sk ≤ k

8/27

Derivation of the GCG method (cont)

Repeat: x(k) = x(k−1) +
k−1∑
k−sk

α
(k)
j v(j)

Then, the corresponding residual can be expressed as

r(k) = Bx(k) − b = Bx(k−1) − b +
k−1∑
k−sk

α
(k)
j Bv(j)

r(k) = r(k−1) +
k−1∑

j=k−sk

α
(k)
j Bv(j).

Now we are in a position to choose the coefficients α(k)
j (sk + 1 of them) such

that f (x) is minimized.
The necessary condition for that is to impose

∂f

∂α
(k)
j

= 0.



9/27

Derivation of the GCG method (cont)

Recall, f (x) = ‖r(k)‖2
0 = ‖r(k−1) +

k−1∑
k−sk

α
(k)
j Bv(j)‖2

0

∂f

∂α
(k)
j

=
∂

∂α
(k)
j


r(k−1) +

k−1∑

k−sk

α
(k)
j Bv(j), r(k−1) +

k−1∑

k−sk

α
(k)
j Bv(j)


 = 0

which latter is equivalent to the following orthogonality condition

(r(k),Bv(j)) = 0, ∀j = k − sk , · · · , k − 1

In other words,

k−1∑

k−sk

α
(k)
j (Bv(j),Bvi )0 = −(r(k−1),Bvi )0, i = 1, · · · , sk (3)

10/27

Derivation of the GCG method (cont)

Repeat:
k−1∑
k−s

α
(k)
j (Bv(j),Bvi)0 = −(r(k−1),Bvi)0, i = 1, · · · , sk

Thus, α(k)
j are solutions of the system of equations

Λ(k)α(k) = γ(k) (4)

11/27

Derivation of the GCG method (cont)

Observations regarding the above system
Λ(k) = [(Bvk+1−j ,Bvk+1−i )], 1 ≤ i, j ≤ sk + 1 and (α(k))j = α

(k)
k+1−j :

I Λ(j) is symmetric and positive definite
I If the vectors Bv(j) are linearly independent, then Λ is nonsingular.
I The vector γ(k) is of the form: [0, · · · , 0,−(r(k−1),Bvk−1)0]T

I The transition from Λk−1 to Λ(k) means to augment Λk−1 with one row
and one column.

At stage k we have k − sk search directions and after solving (4) we can
update x(k+1) and eventually enlarge the search space with a new vector
vk+1.

12/27

Derivation of the GCG method (cont)

The search directions
I can be chosen quite freely;

I special choice no.1: vk = −r(k) +
k−1∑
k−sk

β
(k)
j v(j)

I special choice no.2: vk = Bvk−1 +
k−1∑
k−sk

β
(k)
j v(j)

The coefficients β are frequently determined by a conjugate orthogonality
condition

(Bvi ,Bvj )1 = 0, k − sk ≤ i, j ≤ k − 1

OBS! (·, ·)1 can be another inner product (u, v)1 = (u,M1v) for some other
symmetric positive definite matrix M1.
The relation to determine β(k)

j becomes <back>

β
(k)
j =

(Br(k),Bvi )1

(Bvj ,Bvi )1



13/27

Possible breakdown of GCG:

ONLY if Λ(k) becomes singular!

For a nonsingular matrix B, Λ(k) becomes singular only if the
vectors vi become linearly dependent.

Since vk = −r(k) +
k−1∑
k−sk

β
(k)
j v(j), for the vectors to be linearly

dependent means r(k−1) = 0, i.e., the solution has already
been found.
No breakdowns!

14/27

Stagnation:

If after solving the system Λ(k)α(k) = γ(k) the computed
coefficients α(k) = 0, which latter is possible if
(r(k−1),Bvk−1)0 = 0, then x(k) = x(k−1), i.e., no update occurs,
the situation is referred to as stagnation.

If this happens, a a new search direction vk−1 has to be found.

15/27

Derivation of the GCG method (cont)

Theorem: If Λ(j), j = 0,1, · · · , k is nonsingular, then there holds

(1) (r(k+1),Bvi)0 = 0 for k − sk ≤ i ≤ k
(2) (r(k+1),Bri)0 = 0 for si−1 + k − sk + 1 ≤ i ≤ k
(3) (r(k+1),Bri)0 = 0 for 0 ≤ i ≤ k − 1, (for the full recursion,

sj = j , j = 0,2, · · · )
(4) If vk is computed from special recursions 1 or 2, then

(r(k),Bvk )0 = −(r(k),Br(k))0

(5) If M0B + BT M0 is positive definite, then Λ(k) is nonsingular,
and thus r(k) 6= 0.

16/27

The GCG method (cont)

The method defined by

x(k) = x(k−1) +
k−1∑
k−sk

α
(k)
j v(j)

α
(k)
j from

k−1∑
k−sk

α
(k)
j (Bv(j),Bvi)0 = −(r(k−1),Bvi)0

is referred to as GCG-MR(s) (minimal residuals)



17/27

Convergence of the GCG method:

Theorem: Consider GCG-MR(s).
- Denote Wk,t = {Bvk−t , · · · ,Bvk−sk }, 1 ≤ t ≤ sk

- Let B, b and Wk,t be real.
It there is no breakdown, i.e., Λ(k) is nonsingular, then the following holds:

(a) α
(k)
k−1 =

det(Λ
(k)
0 )

det(Λ(k))
(r(k−1),Brk−1)0,

where Λ
(k)
0 is the first principal minor of Λ(k).

If M0B + BT M0 is p.d., and r(k−1) 6= 0, then α(k)
k−1 > 0.

(b) The method converges monotonically, i.e., f (x(k+1) < f (x(k)) as long as
(r(k),Brk )0 6= 0.

(c) The rate of convergence is defined by

(r(k+1), r(k+1))0 = (r(k), r(k))0 −
det(Λ

(k)
0 )

det(Λ(k))
(r(k),Br(k))2

0.

18/27

Convergence of the GCG method (cont):

Theorem (cont):

(c) If sk ≥ 1, then

(r(k+1), r(k+1))0 = (r(k), r(k))0 − (r(k),Br(k))2
0

min
g∈Wk−1

‖Br(k)−g‖2
0

≤ (1− ξ)(r(k), r(k))0

where ξ = λmax (B̃ + B̃T )λmin(B̃ + B̃T )−1 and B̃ = M1/2
0 BM−1/2

0 .

Proof: (b): From (r(k),Bv(j))0 = 0, k − sk ≤ j ≤ k we get

(r(k+1), r(k+1))0 = (r(k+1), r(k) +
∑
α

(k)
j Bv(j))0

= (r(k+1), r(k))0 + α
(k)
k (Bvk , r(k))0

= (r(k+1), r(k))0 + α
(k)
k (Br(k), r(k))0

19/27

GCG - final termination property:

Consider now the full (untruncated) version of GCG: sk = k .

Let v0 = −r(0). Then, since vk = −r(k) +
k−1∑
k−sk

β
(k)
j v(j), then

vk ∈ V k (v0,B) = span{r(0),Br(0), · · · ,Bk−1r(0)}

=⇒ vk = (I + Pk−1(B))r(0) for some polynomial of degree
k − 1.

=⇒ f (xk ) = 1
2(r(k), r(k)) = 1

2‖(I + Pk−1(B))r(0)‖20

Note: Pk (B)r(0) can be considered as an approximation of
r(k)

=⇒ (r(k), r(k)) = min
Pk∈Π0

k

‖(I + Pk−1(B))r(0)‖20.

20/27

GCG - final termination property (cont):

Theorem: (Use Hamilton-Kayley’s theorem)
Unless stagnation, there exists a minimal degree polynomial of
B, P̃m(B) of degree m such that m ≤ n, where n is the size of
the matrix B
and the method will automatically stop after at most n iterations.

In case of ν distinct eigenvalues of B, then m ≤ ν.



21/27

Special forms of the GCG method:

We have in hand two parameters to choose:

the two scalar products (·, ·)0 and (·, ·)1, or, respectively, the two matrices
M0,M1 .

Case 1: (·, ·)0 = (·, ·)1 and M0 = M1 = In

Let vk = −r(k) +
k−1∑
k−sk

β
(k)
j v(j).

The vectors vk are mutually orthogonal and since
(Bvk ,Bvj )0 = (Bvk ,Bvj )1 = 0, then Λ(k) becomes diagonal.

22/27

Special forms of the GCG method:
M0 = M1 = In

Algorithm:[GCG–LS(1)]
Given: x(0), r(0) = Bx(0) − b, v0 = −r(0)

Compute Br(0) = −Bvk and set k = 1
Loop over k

αk = (Br(k−1), r(k−1))/(Bvk−1,Bvk−1)

x(k) = x(k−1) + αk vk−1

r(k) = r(k−1) + αk Bvk−1

Check if (r(k), r(k)) < ε, stop if ’yes’
Compute Br(k)

βk
j = (Br(k),Bvj )/(Bvj ,Bvj ), j = k − sk , · · · , k − 1

vk = −r(k) +
k−1∑
k−sk

βk
j vj )

Bvk = −Br(k) +
k−1∑
k−sk

βk
j Bvj

End
(ORTHOMIN, Vinsome, 1976)

23/27

GCG - version M0 = M1 = In:

Memory requirements

vj Bvj r(k) x(k) Br(k)

k k 1 1 1

2k + 3 vectors

Computational complexityů
sk + 1 inner products

2sk linked triads
1 solve with C (remember: B = C−1A)
1 multiplication with A

This version computes the minimal pseudoresidual solution, i.e., computes
x(k), such that (r(k), r(k))0 → min, where r(k) = Bx(k)

24/27

GCG - other versions:

Case 2: M0 = M1 = CT C – GCG-LS(s)
minimizes the true residual on the cost of multiplications with A
and AT

Case 3: M0 = CT C, M1 = (BBT )−1 – minimizes the true
residual as well but does not need an extra multiplication with
AT , however we solve a small system of equations at each
iteration.

Case 4: · · ·



25/27

Automatic truncation of the GCG method

Automatic truncation means that in the full version of the method, in the
recursion

x(k) = x(k−1) +
k−1∑

k−sk

α
(k)
j v(j)

some coefficients will become zero and we will work with less search
directions. This holds for certain classes of matrices.
Theorem: Let

(1) M0 = M1 be Hermitian positive definite,

(2) B be M0-normal with respect to r(0) of M0-normal degree
m = m(B,M0, r(0))

(3) M0B + B∗M0 be positive definite.

Then GCG-LS(s) is identical to the full version if anf only if s = m.

26/27

GCG-MR: Matlab implementation

function [it,x]=gcgmr(A,rhs,x,max_vec,max_iter,eps,..
absrel,nonzero_guess)

Hsub=[]; rnorm=1e13; it=0;
r = A*x-rhs;
h = my_favourite_prec(r); h = -h; InitRes=sqrt(r’*r);
if absrel==’rel’, eps = eps_gcgmr*InitRes; end

while (rnorm>eps)&(it<max_iter),
it = it + 1; ThisPos = mod(it-1, max_vec) + 1;
d(:,ThisPos)=h; Ad(:,ThisPos)=A*h;
j0 = it - max_vec + 1; if it<=max_vec, j0 = 1; end
[tau,Hsub,flagH]=solveH(r,Ad,Hsub,Ad(:,ThisPos),j0);
for j=j0:it,

ThisPos = mod(j-1,max_vec) + 1;
x = x + tau(j-j0+1)*d(:,ThisPos);
r = r + tau(j-j0+1)*Ad(:,ThisPos);

end
rnorm=sqrt(r’*r);
h = my_favourite_prec(r); h = -h;

end

27/27

GCG-LS: MATLAB implementation

function [it,x]=gcgls(A,rhs,x,max_vec,eps)
rnorm=1e13; it=0; r=A*x-rhs;
h=my_favourite_prec(r); h=-h;
InitRes=sqrt(r’*r);
eps = eps*InitRes;

while (rnorm>ceps),
it = it + 1;
ThisPos = mod(it-1, max_vec) + 1;
NextPos = mod(it, max_vec) + 1;
d=h; g=A*h; Gamma = d’*g; tau = -r’*d/Gamma;
x = x + tau*d; r = r + tau*g;
rnorm=sqrt(r’*r);
h=my_favourite_prec(r); h=-h;
for j=j0:it

ThisPos = mod(j-1,max_vec) + 1;
beta = h’*g; h = h - beta*d;

end
end


