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_ Arnoldi’s method for general matrices
How to construct a basis for IC?
Consider K™(A,v) = {v, Av, Ay, ... ,A’"*‘v}, generated by some matrix A
and a vector v.
1. Choose a vector v(Y) such that ||v("|| = 1
Fork=1,2,--- ,m
Fori=1,2,---  k
h,‘k = (AV(k),V(i))
End
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6. wk) = Av() — S~ v
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9
0

i=1
it = [[W®
If hy1,6 = 0, stop
. v — W hy
10. End

Memory demands: we keep all vectors v¥) and AvK) k =1,... m.



The result of Arnoldi’s process

» VM= {v(1) v ... v(M}is an orthonormal basis in
KM(A,V)
» AVYM — VmHm+Wm+1e,7,—,

Wm+1 (em)T
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Arnoldi’s method for symmetric matrices

For A - real symmetric, Arnoldi’'s method reduces to the Lanczos method.

Recall: H™ = (V™)TAV™

If Ais symmetric, then H™ must be symmetric too, i.e., H" is three-diagonal

v B2
m B2 2 Bs
Bm Ym
Thus, the vectors v%) satisfy a three-term recursion:

BV = AV — v ® gy

Arnoldi’s process - example

(Av(1), V(1)) (AV(2), V(1)) (Av(3), V(1))

H® = | (Av®), v)) - (AV®), v(2))
0 W@ (Av®),v®)
Since V™1 1 {v(1) v ... v™} then it follows that

(VMTAY™ = H™.
H™ is an upper-Hessenberg matrix.

(Av(1), V(1)) (AV(2), V(1)) (Av(3), V(1))

@ _ | Wl (Av® vB) (A v®)
N 0 Iw®| (Av®),v®)
0 0 Iw®|
Arnoldi Lanczos

v() such that ||v(V]| = 1
Fork=1,2,---.m
FOI’I:1’2, ’k
hi = (AvK) vy w — Av0) _ g yk=D
End Yk = (w(k)’v(k))

k
w(k) — Av(k) _ g hikv(i)

i=1
hice k= || W Brpr = w0
If her1,6 =0, stop if Bk1 = 0, stop
v(k+1) — w(k)/hk+1,k v(k+1) — W(k)//gk+1
End End
Set T = tridiag{ Bk, vk, Bk+1}

w®, 5= HW(O)H’ vih — w(o)/ﬁ
Fork=1,2,--- ' m

Wk = W) _ 5y
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Lanczos algorithm to solve symmetric linear

systems
Given: x(©) Th
e CG method
Compute 10 =b — Ax(©), 3 = ||r®), v(1) = 0 /3
Set By =0andv(® =0
For k=1:m
wk) = Av(k) — Bkv(k—”
i = (wik), v(9))
w() = W) _ oy (k)
Bry1 = |[wk)]|, if Bxsq = 0, go out of the loop
vkcH) = wik) /g,
End
Set Tm = tridiag{ Bk, vk, Bk+1}

Compute  ym = T, (Bel1)) = «—
Xm = Xo + VmYm

Observations regarding CG: (1) Observations regarding CG: (1), cont.
Relation 1: The residuals are orthogonal to each other. Thus, K™ is collinear with v(™*1).
Proof- We have r(M = b — Ax(m . Since v are orthogonal to each other, then the residuals are
Then b — Ax(™ = — 3., ;e ny(Mv(™+1) = const v(m+1), also mutually orthogonal, i.e.,

1 (r®) ¥(My = 0 for k # m,
To see the latter, recall thaty” = T,,"'(Se4) and
x(m) — x(0) + me(m) — x(0) + ym Tr;1ﬁe1
Then,

b—Ax(M = b-Ax©® _Av7"T, " gel
N—_——

pv!
= AV = (VT Huy(™ + hpppq meny(Mv(meD)
= pv' = V"Be] —hpiq mepy ™ vimeD)
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Observations re. CG: (2) Derivation of the CG method:

Denote G= V™L~7,G={g',¢% - .g"}. o (k1) _ (k) (K)
Relation 2: The vectors @ are A-conjugate, i.e., (Ag’,¢/) =0 M) x =X Tk
for i # j. b— Axk+1) = b — Ax() — 7, Ag¥)
Proof: pk+D) = k) — 1 Agk)
(vm )TA VLT o g 0 = (r,rK) — 7 (Aglh), r(k))
G = 7 = A
GTAG = L-T(vm)TAymym-T — [T (4a®.r0)
~—— ~—~—
symmetric lowertriang.
Thus, L~ 7L must be diagonal.
Derivation of the CG method, cont.: Derivation of the CG method (cont):

Rewrite the CG algorithm using the above relations:

(i) gkt = k1) 4 3, gk) Why is this so?

From the algorithm we have that Initialize: 1% = Ax® —b, g* =1
gkt = ¢v(k+1) 1 c,g(F) for some constants ¢y, co. For k=01, until convergence
We get (ii) after a proper scaling. Then Ttkﬂ)w "
(k+1) qk+1)y = (k+1) p(k+1) (k+1) q(k) X x + 79
(Ag™ 7, gt Y) = (AgH™H, R D) + Bk (Ag 9 ) Pk Z ) 4 A
0 (k) ki)

p(k) p(k) B = W

= Tk = —(,E\g(k) g(k))) g(k+1) — plk+1) 6kg(k)
(k1) agoy (KU, 2 (r() —rlrt)y) (k1) plk+1)) end

B = “gmagmy = T (glaAgmy = (.

r() —iteratively computed residuals
g®) — search directions

Note: the coefficients g are different from those in the Lanczos method.



CG: computer implementation

x = x0

r = AxxX-Db

deltal0 = (r,r)

g = -r

Repeat: h = AxQg
tau = deltal/ (g, h)
X = X + tauxg
r = r + tauxh
deltal = (r,r)

if deltal <= eps, stop
beta = deltal/deltal
g = —-r + betaxg

Optimality properties of the CG method

Opt5: Finite termination property: there are no breakdowns of the
CG algorithm.
Reasoning: if g¢*) = 0 then 7 is not defined. the vectors
g are computed from the formula g*) = r(%) 4+ g,g<—1.
Then

0= (r(k), g(k)) = _(r(k), r(k)) + Bk (r(k), gk—1), = k) = 0,
—_——
0

i.e., the solution is already found.

As soon as Xk £ Xeyacet, then 1K) =£ 0 and then

g(k—H)) #£0.

However, we can generate at most n mutually orthogonal
vectors in R", thus, CG has a finite termination property.

— o

Optimality properties of the CG method

Opt1: Mutually orthogonal search directions:
(k) Ag/)=0,/=0,--- .k
Opt2: There holds rct1) | Kp(A rO) ie.,
(rk+1) Ay =0,j=0,--- ,k
Opt3: Optimization property: ||r¥)| smallest possible at any step,
since CG minimizes the functional
f(X) = 1/2()(, AX) - (X, b)

Opt4: (e(k‘H)»Agj) = (g(/ﬂ'ﬂ7 Agf) = (r(k+1)’ r(k)) =0,/j=0,--- ,k

Connection to the matrix 7,

The general form of the m-dimensional Lanczos tri-diagonal
matrix T, in terms of the CG coefficients:

r 1
L VAR
1 Bo VB
VBo =t
Tm =
m \V Bm—2
Tm—2
Bm—2 1 Bm-—2
Tm—2 Tm—1 Tm—2
1 /Bk71 k
Qg = + y Mk+1 = 7ﬂ0:O7T—1:1
Tk—1 Tk— k—1



Convergence analysis of the CG method

Theorem: In exact arithmetic, CG has the property that
Xexact = XM for some m < n, where n is the order of A.

Demo Let S = {/\,, s}, be the system of eigensolutions of A.

Let Z f,sl Then, g(k) = Pk_1 (A)I’(O), where Pk—1 (t) is
i=1
some polynomlal of degree k — 1.

Note: ek xexact—x() thus, AeX =b — Ax(K) = r(k)
k — A=1¢(k) (k)

CGissuchthatHekHA: min || Xexact — Ylla
yex(® 4K

From (xx) we obtain ||eX||4 = |[F()]| 4-1

(k) — -
= g = min rls
Convergence of the CG method (cont) Rate of convergence of the CG method
Theorem: Let A be symmetric and positive definite.
Let |—|l1( _ {Pk of degree K, Pk( ) _ 1} and Sulppose. t:w%t for son:e sedt S, containing alllweiﬁenvz:]lules of A, f/%r someM
K — {r cRM-r— Pk(r(o P, e ) } polynomial P(A) € N, and some constant M there holds ng (A)’ < M.

Then,
Clearly, K ¢ K¥(A,r®) and r® ¢ K. Then .

||Xexact — x(k)HA < MHXexact — X(O)HA«

||r(k)||A—1 _ ?;ianrHA—‘ /I;roi)f: Leiij({/\;,s;}z:16:)e the system of eigensolutions of A,
= min ||Pe(ArO] 44 r® = Z@s & = (s, r).
ke-rﬂk (ON\T a—1 2.(0)\1/2 Then,
= gy (AT RAE) (FO)TA™ (LA = 32 60 P
N = [Fll5r = min 3ePAT ALV

kl1

Recall: (Px(A))TAPy(A) = A~ (Px(A))2. = [IF)la1 < Mzi;a,- 7= MO 0



Rate of convergence (cont)

To quantify M, we seek a polynomial l5k e M}, such that

M = max|Pu()
is small.

In this way, the convergence estimate is replaced by a
polynomial approximation problem, which is well known.
For an s.p.d. matrix A and Is = [A1, \p] find a polynomial
Py € N} such that

maXx
Aelg

P(N)| = min max |Pe(3)
Pren} A€ls

Rate of convergence (cont):

Thus, we obtain the following estimate:

1 0 1
Ant+Aq ||e ||A - »(A)+1 e
Tk (An—M) Tk (%(A)—1)

k k k
s forany 2 i(2:9) = 1 [ (¥:4)"+ ()] > 3 (:8)"

K
k \Y »x(A) -1
lle’|la <2 lm

le¥]la <

Rate of convergence (cont):

Repeat: r;ealz‘Pk( = Pmellq Ta,X|Pk(>\)|

The solution of the Iatter problem is given by the polynomial

.y - e )

)\n+>\1
T (33)

where Ti(z) = J(z¥ + z~1) are the Chebyshev polynomials of
degree k. Moreover,

1
max|Py(A)| = ——~
Aels Te ()

Rate of convergence (cont)

Repeat:

k
e < 2| 22| el

Seek now the smallest k, such that

1e¥]la < <le®]la

k
we want (\/‘/?j) >§

= k/n(%) > In(2)

= k> In(2)/In (YZ5) = In(2)/in (27

We are on the safe side if
> 1/ In(2) > In(2)/In (”(Q 1 )

<) > 2¢ for small e.

Note: In(1=




Alternative view-point

Let f(x) be a vector function and we restrict x to be of the form x = x + rd.
We pose the problem to minimize f(x) for such choice of x.

Since x* + 7d is a line, d is called a search direction and the process is
called line search.

Consider the special vector function f*(x) = (x* — x, A(X* — x)). The
minimum of f*(x) coincides with the minimum of f(x) = f*(x) + C, where C is
constant. For instance, we can take

C = —1(b,x*) + co. Then

f(x) = 3 (x)—3(b,x*)+co

Nl= N= = =

X, AX) — (X, X) + ¢co = F(X)

Thus, the minimizer of f(x) and that of F(x) coincide, provided that x* is the
exact solution of Ax = b.

Alternative view-point, cont.

Theorem 1:

Let F(x) € C')R") and let VF be the gradient of F at some
point x.

If (VF,d) <0, then d is a descent direction for F at x.
Proof: Descent direction: F(x + 7d) < F(x) for0 < 7 < 1

F(x+7d)=F(x)+7(VF,d)+0(7)
N——
<0
Thus, 7 can be chosen small enough so that

7(VF,d) + O(r) < 0

Alternative view-point, cont.

F(x) = 3(x, AX) — (X,X) + Co

We decide to compute the minimization problem for F(x) and to
do it iteratively, locally per iteration, performing a line search,
namely,

we seek x(k+1) = x(K) 1 7, dk such that F will be minimized.

How to choose 7, and d?

Alternative view-point, cont.

Theorem 2:

Among all search directions d at some point X, F descents most rapidly for
d=VF.

Proof: We want to minimize the directional derivative of F at x over all
possible search directions.

The (first) directional derivative in direction y at x is defined as follows:

dF (~OF

Ty = aT,” = (VF,y).
—1

I

Let y be arbitrary, |y|| = 1.

(VE Y < IVFIIYl = [IVF]

Thus, there holds |(VF,y)| > —||VF].
For the special choicey = —VF/||VF| we obtain
(VF,=VF/[IVF]) = =[IVF.



