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Projection-type methods
continued

I Recall: Arnoldi/Lanczos process
I The Conjugate Gradient method - derivation, properties

and convergence
I The GMRES method - derivation, properties and

convergence
I Optional: The Generalized Conjugate Gradient method -

derivation, properties and convergence
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How to construct a basis for K?
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Arnoldi’s method for general matrices

Consider Km(A, v) = {v,Av,A2v, · · · ,Am−1v}, generated by some matrix A
and a vector v.

1. Choose a vector v(1) such that ‖v(1)‖ = 1
2. For k = 1, 2, · · · ,m
3. For i = 1, 2, · · · , k
4. hik = (Av(k), v(i))
5. End

6. w(k) = Av(k) −
k∑

i=1
hik v(i)

7. hk+1,k = ‖w(k)‖
8. If hk+1,k = 0, stop
9. v(k+1) = w(k)/hk+1,k

10. End

Memory demands: we keep all vectors v(k) and Av(k), k = 1, · · · ,m.
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The result of Arnoldi’s process

I V m = {v(1),v(2), · · · ,v(m)} is an orthonormal basis in
Km(A,v)

I AV m = V mHm + wm+1eT
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Arnoldi’s process - example

H(3) =




(Av(1),v(1)) (Av(2),v(1)) (Av(3),v(1))

‖w1‖ (Av(2),v(2)) (Av(3),v(2))

0 ‖w(2)‖ (Av(3),v(3))




Since V m+1 ⊥ {v(1),v(2), · · · ,vm} then it follows that
(V m)T AV m = Hm.
Hm is an upper-Hessenberg matrix.

H
(3)

=




(Av(1),v(1)) (Av(2),v(1)) (Av(3),v(1))

‖w1‖ (Av(2),v(2)) (Av(3),v(2))

0 ‖w(2)‖ (Av(3),v(3))

0 0 ‖w(3)‖
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Arnoldi’s method for symmetric matrices

For A - real symmetric, Arnoldi’s method reduces to the Lanczos method.

Recall: Hm = (V m)T AV m

If A is symmetric, then Hm must be symmetric too, i.e., Hm is three-diagonal

Hm =




γ1 β2

β2 γ2 β3

. . .
βm γm




Thus, the vectors v(k) satisfy a three-term recursion:

βk+1v(k+1) = Av(k) − γk v(k) − βk v(k−1)
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Arnoldi
Lanczos

1. v(1) such that ‖v(1)‖ = 1 w(0), β = ‖w(0)‖, v(1) = w(0)/β
2. For k = 1, 2, · · · ,m For k = 1, 2, · · · ,m
3. For i = 1, 2, · · · , k
4. hik = (Av(k), v(i)) w(k) = Av(k) − βk v(k−1)

5. End γk = (w(k), v(k))

6. w(k) = Av(k) −
(k)∑
i=1

hik v(i) w(k) = w(k) − γk v(k)

7. hk+1,k = ‖w(k)‖ βk+1 = ‖w(k)‖
8. If hk+1,k = 0, stop if βk+1 = 0, stop
9. v(k+1) = w(k)/hk+1,k v(k+1) = w(k)/βk+1

10. End End
Set Tm = tridiag{βk , γk , βk+1}
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Lanczos algorithm to solve symmetric linear
systems

Given: x(0)

Compute r(0) = b− Ax(0), β = ‖r(0)‖, v(1) = r(0)/β

Set β1 = 0 and v(0) = 0
For k = 1 : m

w(k) = Av(k) − βkv(k−1)

γk = (w(k),v(k))

w(k) = w(k) − γkv(k)

βk+1 = ‖w(k)‖, if βk+1 = 0, go out of the loop
v(k+1) = w(k)/βk+1

End
Set Tm = tridiag{βk , γk , βk+1}
Compute ym = T−1

m (βe(1))⇐=⇐=
xm = x0 + Vmym
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The CG method
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Observations regarding CG: (1)

Relation 1: The residuals are orthogonal to each other.
Proof: We have r(m) = b− Ax(m).
Then b− Ax(m) = −βm+1emy(m)v(m+1) = const v(m+1).

To see the latter, recall that ym = T−1
m (βe1) and

x(m) = x(0) + V my(m) = x(0) + V mT−1
m βe1

Then,

b− Ax(m) = b− Ax(0)
︸ ︷︷ ︸

βv1

−AV mT−1
m βeT

1

= βv1 − (V mHmy(m) + hm+1,meT
my(m)v(m+1))

= βv1 − V mβeT
1︸ ︷︷ ︸

0

−hm+1,meT
my(m)

︸ ︷︷ ︸
const

v(m+1)
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Observations regarding CG: (1), cont.

Thus, r(m) is collinear with v(m+1).
Since vj are orthogonal to each other, then the residuals are
also mutually orthogonal, i.e.,
(r(k), r(m)) = 0 for k 6= m.
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Observations re. CG: (2)

Denote G = V mL−T , G = {g1,g2, · · · ,gm}.
Relation 2: The vectors gj are A-conjugate, i.e., (Agi ,gj) = 0
for i 6= j .
Proof:

(V m)T AV m = Tm = LLT

(V m)T A V mL−T
︸ ︷︷ ︸

G

= L

GT AG︸ ︷︷ ︸
symmetric

= L−T (V m)T AV mV mL−T = L−T L︸ ︷︷ ︸
lowertriang.

Thus, L−T L must be diagonal.
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Derivation of the CG method:

(i) x(k+1) = x(k) + τkg(k)

b− Ax(k+1) = b− Ax(k) − τkAg(k)

r(k+1) = r(k) − τkAg(k)

Ag(k) = 1
τk

(r(k) − r(k+1))

0 = (r(k), r(k))− τk (Ag(k), r(k))

⇒ τk = (r(k),r(k))

(Ag(k),r(k))
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Derivation of the CG method, cont.:

(ii) g(k+1) = r(k+1) + βkg(k) Why is this so?
From the algorithm we have that
g(k+1) = c1v(k+1) + c2g(k) for some constants c1, c2.
We get (ii) after a proper scaling. Then
(Ag(k+1),g(k+1)) = (Ag(k+1), r(k+1)) + βk (Ag(k+1),g(k))︸ ︷︷ ︸

0

⇒ τk = (r(k),r(k))

(Ag(k),g(k))

βk = (r(k+1),Ag(k))

(g(k),Ag(k))
=

(r(k+1), 1
τk

(r(k)−r(k+1)))

(g(k),Ag(k))
= − (r(k+1),r(k+1))

(r(k),r(k))

16/32

Derivation of the CG method (cont):

Rewrite the CG algorithm using the above relations:

Initialize: r(0) = Ax(0) − b, g(0) = r(0)

For k = 0, 1, · · · , until convergence
τk = (r(k),r(k))

(Ag(k),g(k))

x(k+1) = x(k) + τk g(k)

r(k+1) = r(k) + τk Ag(k)

βk = (r(k+1),r(k+1))

(r(k),r(k))

g(k+1) = r(k+1) + βk g(k)

end

r(k) – iteratively computed residuals
g(k) – search directions
Note: the coefficients βk are different from those in the Lanczos method.
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CG: computer implementation

x = x0
r = A*x-b
delta0 = (r,r)
g = -r
Repeat: h = A*g

tau = delta0/(g,h)
x = x + tau*g
r = r + tau*h
delta1 = (r,r)
if delta1 <= eps, stop
beta = delta1/delta0
g = -r + beta*g
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Optimality properties of the CG method

Opt1: Mutually orthogonal search directions:
(g(k+1),Agj) = 0, j = 0, · · · , k

Opt2: There holds r(k+1) ⊥ Km(A, r(0), i.e.,
(r(k+1),Ar(k)) = 0, j = 0, · · · , k

Opt3: Optimization property: ‖r(k)‖ smallest possible at any step,
since CG minimizes the functional
f (x) = 1/2(x,Ax)− (x,b)

Opt4: (e(k+1),Agj ) = (g(k+1),Agj) = (r(k+1), r(k)) = 0, j = 0, · · · , k
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Optimality properties of the CG method

Opt5: Finite termination property: there are no breakdowns of the
CG algorithm.
Reasoning: if g(k) = 0 then τk is not defined. the vectors
g(k) are computed from the formula g(k) = r(k) + βkgk−1.
Then
0 = (r(k),g(k)) = −(r(k), r(k)) + βk (r(k),gk−1)︸ ︷︷ ︸

0

,⇒ r(k) = 0,

i.e., the solution is already found.
As soon as x(k) 6= xexact , then r(k) 6= 0 and then
g(k+1)) 6= 0.
However, we can generate at most n mutually orthogonal
vectors in Rn, thus, CG has a finite termination property.
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Connection to the matrix Tm

The general form of the m-dimensional Lanczos tri-diagonal
matrix Tm in terms of the CG coefficients:

Tm =




1
τ0

√
β0

√
β0

1
τ1

+ β0
τ0

√
β1
τ1

· · ·
√
βm−2
τm−2

√
βm−2
τm−2

1
τm−1

+
βm−2
τm−2




αk =
1

τk−1
+
βk−1

τk−2
, ηk+1 =

√
βk

τk−1
, β0 = 0, τ−1 = 1
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Demo
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Convergence analysis of the CG method

Theorem: In exact arithmetic, CG has the property that
xexact = x(m) for some m ≤ n, where n is the order of A.

Let S = {λi ,si}ni=1 be the system of eigensolutions of A.

Let r(0) =
n∑

i=1
ξisi . Then, g(k) = pk−1(A)r(0), where pk−1(t) is

some polynomial of degree k − 1.
Note: ek = xexact − x(k) , thus, Aek = b− Ax(k) = r(k) .

ek = A−1r(k) (∗∗)
CG is such that ‖ek‖A = min

y∈x(0)+K
‖xexact − y‖A

From (∗∗) we obtain ‖ek‖A = ‖r(k)‖A−1

⇒ ‖r(k)‖A−1 = min
r∈r(0)+K

‖r‖A−1
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Convergence of the CG method (cont)

Let Π1
k = {Pk of degree k ,Pk (0) = 1} and

K̃ =
{

r ∈ Rm : r = Pk (r(0)),Pk ∈ Π1
k
}

.
Clearly, K̃ ⊂ K k (A, r(0)) and r(0) ∈ K̃ . Then

‖r(k)‖A−1 = min
r∈K̃
‖r‖A−1

= min
Pk∈Π1

k

‖Pk (A)r(0)‖A−1

= min
Pk∈Π1

k

(
(r(0))T A−1(Pk (A))2r(0)

)1/2

Recall: (Pk (A))T A−1Pk (A) = A−1(Pk (A))2.
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Rate of convergence of the CG method

Theorem: Let A be symmetric and positive definite.
Suppose that for some set S, containing all eigenvalues of A, for some
polynomial P̃(λ) ∈ Π1

k and some constant M there holds max
λ∈S

∣∣∣P̃(λ)
∣∣∣ ≤ M.

Then,
‖xexact − x(k)‖A ≤ M‖xexact − x(0)‖A.

Proof: Let S = {λi , si}n
i=1 be the system of eigensolutions of A,

λ1 ≤ · · · ≤ λn, (si , sj ) = δij .

r(0) =
n∑

i=1
ξisi , ξi = (si , r(0)).

Then,

(r(0))T A−1(Pk (A))2r(0) =
n∑

i=1
ξ2

i λ
−1
i Pk (λi )

2

⇒ ‖r(0)‖A−1 = min
Pk∈Π1

k

n∑
i=1
ξ2

i λ
−1
i Pk (λi )

2

⇒ ‖r(k)‖A−1 ≤ M2
n∑

i=1
ξ2

i λ
−1
i = M2‖r(0)‖A−1
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Rate of convergence (cont)

To quantify M, we seek a polynomial P̃k ∈ Π1
k , such that

M = max
λ∈S

∣∣∣P̃k (λ)
∣∣∣

is small.
In this way, the convergence estimate is replaced by a
polynomial approximation problem, which is well known.
For an s.p.d. matrix A and IS = [λ1, λn] find a polynomial
P̃k ∈ Π1

k such that

max
λ∈IS

∣∣∣P̃k (λ)
∣∣∣ = min

Pk∈Π1
k

max
λ∈IS
|Pk (λ)|
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Rate of convergence (cont):

Repeat: max
λ∈IS

∣∣∣P̃k (λ)
∣∣∣ = min

Pk∈Π1
k

max
λ∈IS
|Pk (λ)|

The solution of the latter problem is given by the polynomial

P̃k (λ) =
Tk

(
λn+λ1−2λ
λn−λ1

)

Tk

(
λn+λ1
λn−λ1

)

where Tk (z) = 1
2(zk + z−1) are the Chebyshev polynomials of

degree k . Moreover,

max
λ∈IS
|Pk (λ)| =

1

Tk

(
λn+λ1
λn−λ1

) .
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Rate of convergence (cont):

Thus, we obtain the following estimate:

‖ek‖A ≤
1

Tk

(
λn+λ1
λn−λ1

)‖e0‖A =
1

Tk

(
κ(A)+1
κ(A)−1

)‖e0‖A

Since for any z, Tk ( z+1
z−1 ) = 1

2

[(√
z+1√
z−1

)k
+
(√

z−1√
z+1

)k
]
> 1

2

(√
z+1√
z−1

)k
,

‖ek‖A ≤ 2

[√
κ(A)− 1√
κ(A) + 1

]k

‖e0‖A
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Rate of convergence (cont)

Repeat:

‖ek‖A ≤ 2
[
κ(A)− 1
κ(A) + 1

]k

‖e0‖A

Seek now the smallest k , such that

‖ek‖A ≤ ε‖e0‖A

we want
(√κ+1√κ−1

)k
> 2

ε

⇒ k ln
(√κ+1√κ−1

)
> ln( 2

ε
)

⇒ k > ln( 2
ε

)/ln
(√κ+1√κ−1

)
= ln( 2

ε
)/ln

(
1+(
√κ)−1

1−(
√κ)−1

)

We are on the safe side if
k > 1

2

√
κ ln( 2

ε
) > ln( 2

ε
)/ln

(
1+(
√κ)−1

1−(
√κ)−1

)

Note: ln( 1+ε
1−ε ) > 2ε for small ε.
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Alternative view-point

Let f (x) be a vector function and we restrict x to be of the form x = x + τd.
We pose the problem to minimize f (x) for such choice of x.
Since x∗ + τd is a line, d is called a search direction and the process is
called line search.
Consider the special vector function f ∗(x) = (x∗ − x,A(x∗ − x)). The
minimum of f ∗(x) coincides with the minimum of f (x) = f ∗(x) + C, where C is
constant. For instance, we can take
C = − 1

2 (b, x∗) + c0. Then

f (x) = 1
2 f ∗(x)− 1

2 (b, x∗) + c0

= 1
2 (x∗ − x,A(x∗ − x))− 1

2 (b, x∗) + c0

= 1
2 (x∗,Ax∗)− 2

2 (x,Ax∗) + 1
2 (x,Ax)− 1

2 (b, x∗) + c0

= 1
2 (x,Ax)− (x, x) + c0 ≡ F (x)

Thus, the minimizer of f (x) and that of F (x) coincide, provided that x∗ is the
exact solution of Ax = b.
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Alternative view-point, cont.

F (x) = 1
2(x,Ax)− (x,x) + c0

We decide to compute the minimization problem for F (x) and to
do it iteratively, locally per iteration, performing a line search,
namely,
we seek x(k+1) = x(k) + τkdk such that F will be minimized.

How to choose τk and dk?
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Alternative view-point, cont.

Theorem 1:
Let F (x) ∈ C1)Rn) and let ∇F be the gradient of F at some
point x.
If (∇F ,d) < 0, then d is a descent direction for F at x.
Proof: Descent direction: F (x + τd) ≤ F (x) for 0 ≤ τ ≤ τ0

F (x + τd) = F (x) + τ (∇F ,d)︸ ︷︷ ︸
<0

+O(τ)

Thus, τ can be chosen small enough so that
τ(∇F ,d) + O(τ) < 0
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Alternative view-point, cont.

Theorem 2:
Among all search directions d at some point x, F descents most rapidly for
d = ∇F .
Proof: We want to minimize the directional derivative of F at x over all
possible search directions.
The (first) directional derivative in direction y at x is defined as follows:

d F
dy

=
n∑

i=1

∂F
∂xi

yi = (∇F , y).

Let y be arbitrary, |y‖ = 1.

|(∇F , y)| ≤ ‖∇F‖‖y‖ = ‖∇F‖
Thus, there holds |(∇F , y)| ≥ −‖∇F‖.
For the special choice y = −∇F/‖∇F‖ we obtain
(∇F ,−∇F/‖∇F‖) = −‖∇F‖.


