Projection-type methods
 continued

Numerical Linear Algebra

Maya Neytcheva, TDB, February-March 2021

- Recall: Arnoldi/Lanczos process
- The Conjugate Gradient method - derivation, properties and convergence
- The GMRES method - derivation, properties and convergence
- Optional: The Generalized Conjugate Gradient method derivation, properties and convergence

Arnoldi's method for general matrices

```
Consider \(\mathcal{K}^{m}(A, \mathbf{v})=\left\{\mathbf{v}, A \mathbf{v}, A^{2} \mathbf{v}, \cdots, A^{m-1} \mathbf{v}\right\}\), generated by some matrix \(A\)
and a vector \(\mathbf{V}\).
    Choose a vector \(\mathbf{v}^{(1)}\) such that \(\left\|\mathbf{v}^{(1)}\right\|=1\)
        For \(k=1,2, \cdots, m\)
            For \(i=1,2, \cdots, k\)
                \(h_{i k}=\left(A \mathbf{v}^{(k)}, \mathbf{v}^{(i)}\right)\)
            End
            \(\mathbf{w}^{(k)}=A \mathbf{v}^{(k)}-\sum_{i=1}^{k} h_{i k} \mathbf{v}^{(i)}\)
            \(h_{k+1, k}=\left\|\mathbf{w}^{(k)}\right\|\)
            If \(h_{k+1, k}=0\), stop
            \(\mathbf{v}^{(k+1)}=\mathbf{w}^{(k)} / h_{k+1, k}\)
        End
Memory demands: we keep all vectors \(\mathbf{v}^{(k)}\) and \(A \mathbf{v}^{(k)}, k=1, \cdots, m\)
```


Arnoldi's process - example

- $V^{m}=\left\{\mathbf{v}^{(1)}, \mathbf{v}^{(2)}, \cdots, \mathbf{v}^{(m)}\right\}$ is an orthonormal basis in $\mathcal{K}^{m}(A, \mathbf{v})$
- $A V^{m}=V^{m} H^{m}+\mathbf{w}^{m+1} \mathbf{e}_{m}^{T}$

Arnoldi's method for symmetric matrices

For A - real symmetric, Arnoldi's method reduces to the Lanczos method.
Recall: $H^{m}=\left(V^{m}\right)^{T} A V^{m}$
If A is symmetric, then H^{m} must be symmetric too, i.e., H^{m} is three-diagonal

$$
H^{m}=\left[\begin{array}{llll}
\gamma_{1} & \beta_{2} & & \\
\beta_{2} & \gamma_{2} & \beta_{3} & \\
& & \ddots & \\
& & \beta_{m} & \gamma_{m}
\end{array}\right]
$$

Thus, the vectors $\mathbf{v}^{(k)}$ satisfy a three-term recursion:

$$
\beta_{k+1} \mathbf{v}^{(k+1)}=\boldsymbol{A} \mathbf{v}^{(k)}-\gamma_{k} \mathbf{v}^{(k)}-\beta_{k} \mathbf{v}^{(k-1)}
$$

$$
H^{(3)}=\left[\begin{array}{ccc}
\left(A \mathbf{v}^{(1)}, \mathbf{v}^{(1)}\right) & \left(A \mathbf{v}^{(2)}, \mathbf{v}^{(1)}\right) & \left(A \mathbf{v}^{(3)}, \mathbf{v}^{(1)}\right) \\
\left\|\mathbf{w}^{1}\right\| & \left(A \mathbf{v}^{(2)}, \mathbf{v}^{(2)}\right) & \left(A \mathbf{v}^{(3)}, \mathbf{v}^{(2)}\right) \\
0 & \left\|\mathbf{w}^{(2)}\right\| & \left(A \mathbf{v}^{(3)}, \mathbf{v}^{(3)}\right)
\end{array}\right]
$$

Since $V^{m+1} \perp\left\{\mathbf{v}^{(1)}, \mathbf{v}^{(2)}, \cdots, \mathbf{v}^{m}\right\}$ then it follows that $\left(V^{m}\right)^{T} A V^{m}=H^{m}$.
H^{m} is an upper-Hessenberg matrix.

$$
\bar{H}^{(3)}=\left[\begin{array}{ccc}
\left(A \mathbf{v}^{(1)}, \mathbf{v}^{(1)}\right) & \left(A \mathbf{v}^{(2)}, \mathbf{v}^{(1)}\right) & \left(A \mathbf{v}^{(3)}, \mathbf{v}^{(1)}\right) \\
\left\|\mathbf{w}^{1}\right\| & \left(A \mathbf{v}^{(2)}, \mathbf{v}^{(2)}\right) & \left(A \mathbf{v}^{(3)}, \mathbf{v}^{(2)}\right) \\
0 & \left\|\mathbf{w}^{(2)}\right\| & \left(A \mathbf{v}^{(3)}, \mathbf{v}^{(3)}\right) \\
0 & 0 & \left\|\mathbf{w}^{(3)}\right\|
\end{array}\right]
$$

```
```

v (1)}\mathrm{ such that |v(')}|=

```
```

```
```

v (1)}\mathrm{ such that |v(')}|=

```
```



```
```

For k = 1,2,\cdots,m

```
```

For k = 1,2,\cdots,m
hik}=(A\mp@subsup{\mathbf{v}}{}{(k)},\mp@subsup{\mathbf{v}}{}{(i)}
hik}=(A\mp@subsup{\mathbf{v}}{}{(k)},\mp@subsup{\mathbf{v}}{}{(i)}
End
End
\mp@subsup{w}{}{(k)}=A\mp@subsup{\mathbf{v}}{}{(k)}-\mp@subsup{\sum}{i=1}{(k)}\mp@subsup{h}{ik}{}\mp@subsup{\mathbf{v}}{}{(i)}
\mp@subsup{w}{}{(k)}=A\mp@subsup{\mathbf{v}}{}{(k)}-\mp@subsup{\sum}{i=1}{(k)}\mp@subsup{h}{ik}{}\mp@subsup{\mathbf{v}}{}{(i)}
If h}\mp@subsup{h}{k+1,k}{=0,
If h}\mp@subsup{h}{k+1,k}{=0,
If \mp@subsup{h}{k+1,k}{\prime}=0, stop
If \mp@subsup{h}{k+1,k}{\prime}=0, stop
End

```
```

End

```
```

 \(h_{k+1, k}=\left\|\mathbf{w}^{(k)}\right\| \quad \beta_{k+1}=\left\|\mathbf{w}^{(k)}\right\|\)

Lanczos

$\mathbf{w}^{(0)}, \beta=\left\|\mathbf{w}^{(0)}\right\|, \mathbf{v}^{(1)}=\mathbf{w}^{(0)} / \beta$
For $k=1,2, \cdots, m$

$$
\begin{aligned}
& \qquad \begin{array}{l}
\mathbf{w}^{(k)}=\boldsymbol{A} \mathbf{v}^{(k)}-\beta_{k} \mathbf{v}^{(k-1)} \\
\gamma_{k}=\left(\mathbf{w}^{(k)}, \mathbf{v}^{(k)}\right) \\
\quad \mathbf{w}^{(k)}=\mathbf{w}^{(k)}-\gamma_{k} \mathbf{v}^{(k)} \\
\beta_{k+1}=\left\|\mathbf{w}^{(k)}\right\| \\
\text { if } \beta_{k+1}=0, \text { stop } \\
\mathbf{v}^{(k+1)}=\mathbf{w}^{(k)} / \beta_{k+1} \\
\text { End } \\
\text { Set } T_{m}=\operatorname{tridiag}\left\{\beta_{k}, \gamma_{k}, \beta_{k+1}\right\}
\end{array}
\end{aligned}
$$

Lanczos algorithm to solve symmetric linear

 systems```
Given: \(\quad \mathbf{x}^{(0)}\)
Compute \(\quad \mathbf{r}^{(0)}=\mathbf{b}-A \mathbf{x}^{(0)}, \beta=\left\|\mathbf{r}^{(0)}\right\|, \mathbf{v}^{(1)}=\mathbf{r}^{(0)} / \beta\)
Set \(\quad \beta_{1}=0\) and \(\mathbf{v}^{(0)}=\mathbf{0}\)
For \(\quad k=1: m\)
End
Set \(\quad T_{m}=\operatorname{tridiag}\left\{\beta_{k}, \gamma_{k}, \beta_{k+1}\right\}\)
Compute \(\quad \mathbf{y}_{m}=T_{m}^{-1}\left(\beta \mathbf{e}^{(1)}\right) \Longleftarrow \Longleftarrow\)
\(\mathbf{x}_{m}=\mathbf{x}_{0}+V_{m} \mathbf{y}_{m}\)
```

```
 \(\mathbf{w}^{(k)}=\boldsymbol{A} \mathbf{v}^{(k)}-\beta_{k} \mathbf{v}^{(k-1)}\)
```

    \(\mathbf{w}^{(k)}=\boldsymbol{A} \mathbf{v}^{(k)}-\beta_{k} \mathbf{v}^{(k-1)}\)
    \(\gamma_{k}=\left(\mathbf{w}^{(k)}, \mathbf{v}^{(k)}\right)\)
    \(\gamma_{k}=\left(\mathbf{w}^{(k)}, \mathbf{v}^{(k)}\right)\)
    \(\mathbf{w}^{(k)}=\mathbf{w}^{(k)}-\gamma_{k} \mathbf{v}^{(k)}\)
    \(\mathbf{w}^{(k)}=\mathbf{w}^{(k)}-\gamma_{k} \mathbf{v}^{(k)}\)
    \(\beta_{k+1}=\left\|\mathbf{w}^{(k)}\right\|\), if \(\beta_{k+1}=0\), go out of the loop
    \(\beta_{k+1}=\left\|\mathbf{w}^{(k)}\right\|\), if \(\beta_{k+1}=0\), go out of the loop
    \(\mathbf{v}^{(k+1)}=\mathbf{w}^{(k)} / \beta_{k+1}\)
    ```
 \(\mathbf{v}^{(k+1)}=\mathbf{w}^{(k)} / \beta_{k+1}\)
```


## Observations regarding CG: (1)

Relation 1: The residuals are orthogonal to each other.
Proof: We have $\mathbf{r}^{(m)}=\mathbf{b}-A \mathbf{x}^{(m)}$.
Then $\mathbf{b}-A \mathbf{x}^{(m)}=-\beta_{m+1} \mathbf{e}_{m} \mathbf{y}^{(m)} \mathbf{v}^{(m+1)}=\operatorname{const} \mathbf{v}^{(m+1)}$.
To see the latter, recall that $\mathbf{y}^{m}=T_{m}^{-1}\left(\beta \mathbf{e}_{1}\right)$ and
$\mathbf{x}^{(m)}=\mathbf{x}^{(0)}+V^{m} \mathbf{y}^{(m)}=\mathbf{x}^{(0)}+V^{m} T_{m}^{-1} \beta \mathbf{e}_{1}$
Then,

$$
\begin{aligned}
\mathbf{b}-A \mathbf{x}^{(m)} & =\underbrace{\mathbf{b}-A \mathbf{x}^{(0)}}_{\beta \mathbf{v}^{1}}-A V^{m} T_{m}^{-1} \beta \mathbf{e}_{1}^{T} \\
& =\beta \mathbf{v}^{1}-\left(V^{m} H_{m} \mathbf{y}^{(m)}+\mathbf{h}_{m+1, m} \mathbf{e}_{m}^{T} \mathbf{y}^{(m)} \mathbf{v}^{(m+1)}\right) \\
& =\underbrace{\beta \mathbf{v}^{1}-V^{m} \beta \mathbf{e}_{1}^{T}}_{0}-\underbrace{\mathbf{h}_{m+1, m} \mathbf{e}_{m}^{T} \mathbf{y}^{(m)}}_{\text {const }} \mathbf{v}^{(m+1)}
\end{aligned}
$$

## The CG method

Denote $G=V^{m} L^{-T}, G=\left\{\mathbf{g}^{1}, \mathbf{g}^{2}, \cdots, \mathbf{g}^{m}\right\}$.
Relation 2: The vectors $\mathbf{g}^{j}$ are $A$-conjugate, i.e., $\left(A \mathbf{g}^{i}, \mathbf{g}^{j}\right)=0$ for $i \neq j$.
Proof:

$$
\begin{aligned}
& \left(V^{m}\right)^{T} A V^{m}=T_{m}=L L^{T} \\
& \left(V^{m}\right)^{T} A \underbrace{V^{m} L^{-T}}_{G}=L \\
& \underbrace{G^{T} A G}_{\text {symmetric }}=L^{-T}\left(V^{m}\right)^{T} A V^{m} V^{m} L^{-T}=\underbrace{L^{-T} L}_{\text {lowertriang }}
\end{aligned}
$$

(i) $\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}+\tau_{k} \mathbf{g}^{(k)}$

$$
\begin{aligned}
\mathbf{b}-A \mathbf{x}^{(k+1)} & =\mathbf{b}-A \mathbf{x}^{(k)}-\tau_{k} A \mathbf{g}^{(k)} \\
\mathbf{r}^{(k+1)} & =\mathbf{r}^{(k)}-\tau_{k} A \mathbf{g}^{(k)} \\
A \mathbf{g}^{(k)} & =\frac{1}{\tau_{\tau}}\left(\mathbf{r}^{(k)}-\mathbf{r}^{(k+1)}\right) \\
0 & =\left(\mathbf{r}^{(k)}, \mathbf{r}^{(k)}\right)-\tau_{k}\left(A \mathbf{g}^{(k)}, \mathbf{r}^{(k)}\right) \\
\Rightarrow \tau_{k} & =\frac{\left(\mathbf{r}^{(k)} \mathbf{r}^{(k)}\right)}{\left(A \mathbf{r}^{(k)}, \mathbf{r}^{(k)}\right)}
\end{aligned}
$$

Thus, $L^{-T} L$ must be diagonal.

## Derivation of the CG method, cont.:

(ii) $\mathbf{g}^{(k+1)}=\mathbf{r}^{(k+1)}+\beta_{k} \mathbf{g}^{(k)} \quad$ Why is this so?

From the algorithm we have that
$\mathbf{g}^{(k+1)}=c_{1} \mathbf{v}^{(k+1)}+c_{2} \mathbf{g}^{(k)}$ for some constants $c_{1}, c_{2}$.
We get (ii) after a proper scaling. Then

$$
\begin{aligned}
& \left(A \mathbf{g}^{(k+1)}, \mathbf{g}^{(k+1)}\right)=\left(A \mathbf{g}^{(k+1)}, \mathbf{r}^{(k+1)}\right)+\beta_{k} \underbrace{\left(A \mathbf{g}^{(k+1)}, \mathbf{g}^{(k)}\right)}_{0} \\
& \Rightarrow \tau_{k}=\frac{\left(\mathbf{r}^{(k)}, \mathbf{r}^{(k)}\right)}{\left(A \mathbf{g}^{\left.(k), \mathbf{g}^{(k)}\right)}\right.} \\
& \beta_{k}=\frac{\left(\mathbf{r}^{(k+1)}, A \mathbf{g}^{(k)}\right)}{\left(\mathbf{g}^{(k)}, \mathbf{A g} \mathbf{g}^{(k)}\right)}=\frac{\left(\mathbf{r}^{(k+1)}, \frac{1}{\tau_{2}}\left(\mathbf{r}^{(k)}-\mathbf{r}^{(k+1)}\right)\right)}{\left(\mathbf{g}^{(k)}, A \mathbf{g}^{(k)}\right)}=-\frac{\left.\left(\mathbf{r}^{(k+1)}\right) \mathbf{r}^{(k+1)}\right)}{\left(\mathbf{r}^{\left.(k), \mathbf{r}^{(k)}\right)}\right.}
\end{aligned}
$$

## Derivation of the CG method (cont):

Rewrite the CG algorithm using the above relations:

$$
\begin{array}{ll}
\text { Initialize: } & \mathbf{r}^{(0)}=A \mathbf{x}^{(0)}-\mathbf{b}, \mathbf{g}^{(0)}=\mathbf{r}^{(0)} \\
\text { For } & k=0,1, \cdots, \text { until convergence } \\
& \tau_{k}=\frac{\left(\mathbf{r}^{(k)}, \mathbf{r}^{(k)}\right)}{\left(A \mathbf{g}^{(k)}, \mathbf{g}^{(k)}\right)} \\
& \mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}+\tau_{k} \mathbf{g}^{(k)} \\
& \mathbf{r}^{(k+1)}=\mathbf{r}^{(k)}+\tau_{k} A \mathbf{g}^{(k)} \\
& \beta_{k}=\frac{\left(\mathbf{r}^{(k+1)}, \mathbf{r}^{(k+1)}\right)}{\left(\mathbf{r}^{(k)} \mathbf{r}^{(k)}\right)} \\
& \mathbf{g}^{(k+1)}=\mathbf{r}^{(k+1)}+\beta_{k} \mathbf{g}^{(k)} \\
\text { end } &
\end{array}
$$

$\mathbf{r}^{(k)}$ - iteratively computed residuals
$\mathbf{g}^{(k)}$ - search directions
Note: the coefficients $\beta_{k}$ are different from those in the Lanczos method.

## Optimality properties of the CG method

```
x = x0
r = A*x-b
delta0 = (r,r)
g = -r
Repeat: h = A*g
 tau = delta0/(g,h)
 x = x + tau*g
 r = r + tau*h
 delta1 = (r,r)
 if deltal <= eps, stop
 beta = deltal/delta0
 g = -r + beta*g
```

Opt1: Mutually orthogonal search directions:

$$
\left(\mathbf{g}^{(k+1)}, \mathbf{A g}^{j}\right)=0, j=0, \cdots, k
$$

Opt2: There holds $\mathbf{r}^{(k+1)} \perp K_{m}\left(A, \mathbf{r}^{(0)}\right.$, i.e., $\left(\mathbf{r}^{(k+1)}, \boldsymbol{A r}^{(k)}\right)=0, j=0, \cdots, k$
Opt3: Optimization property: $\left\|\mathbf{r}^{(k)}\right\|$ smallest possible at any step, since CG minimizes the functional

$$
f(\mathbf{x})=1 / 2(\mathbf{x}, A \mathbf{x})-(\mathbf{x}, \mathbf{b})
$$

Opt4: $\left(\mathbf{e}^{\left.(k+1), A \mathbf{A g}^{\prime}\right)}=\left(\mathbf{g}^{(k+1)}, \boldsymbol{A g}^{j}\right)=\left(\mathbf{r}^{(k+1)}, \mathbf{r}^{(k)}\right)=0, j=0, \cdots, k\right.$

## Optimality properties of the CG method

Opt5: Finite termination property: there are no breakdowns of the CG algorithm.
Reasoning: if $\mathbf{g}^{(k)}=\mathbf{0}$ then $\tau_{k}$ is not defined. the vectors $\mathbf{g}^{(k)}$ are computed from the formula $\mathbf{g}^{(k)}=\mathbf{r}^{(k)}+\beta_{k} \mathbf{g}^{k-1}$. Then
$0=\left(\mathbf{r}^{(k)}, \mathbf{g}^{(k)}\right)=-\left(\mathbf{r}^{(k)}, \mathbf{r}^{(k)}\right)+\beta_{k} \underbrace{\left(\mathbf{r}^{(k)}, \mathbf{g}^{k-1}\right)}_{0}, \Rightarrow \mathbf{r}^{(k)}=\mathbf{0}$,
i.e., the solution is already found.

As soon as $\mathbf{x}^{(k)} \neq \mathbf{x}_{\text {exact }}$, then $\mathbf{r}^{(k)} \neq \mathbf{0}$ and then $\left.\mathbf{g}^{(k+1)}\right) \neq \mathbf{0}$.
However, we can generate at most $n$ mutually orthogonal vectors in $R^{n}$, thus, CG has a finite termination property.

## Connection to the matrix $T_{m}$

The general form of the $m$-dimensional Lanczos tri-diagonal matrix $T_{m}$ in terms of the CG coefficients:

$$
\begin{gathered}
T_{m}=\left[\begin{array}{cccc}
\frac{1}{\tau_{0}} & \sqrt{\beta_{0}} & & \\
\sqrt{\beta_{0}} & \frac{1}{\tau_{1}}+\frac{\beta_{0}}{\tau_{0}} & \frac{\sqrt{\beta_{1}}}{\tau_{1}} & \\
& \cdot & \cdot & \cdot \\
& & \frac{\sqrt{\beta_{m-2}}}{\tau_{m-2}} & \frac{1}{\tau_{m-1}}+\frac{\beta_{m-2}}{\tau_{m-2}}
\end{array}\right] \\
\alpha_{k}=\frac{1}{\tau_{k-1}}+\frac{\beta_{k-1}}{\tau_{k-2}}, \eta_{k+1}=\frac{\sqrt{\beta_{k}}}{\tau_{k-1}}, \beta_{0}=0, \tau_{-1}=1
\end{gathered}
$$

## Convergence analysis of the CG method

## Demo

Theorem: In exact arithmetic, CG has the property that $\mathbf{x}_{\text {exact }}=\mathbf{x}^{(m)}$ for some $m \leq n$, where $n$ is the order of $A$.

Let $S=\left\{\lambda_{i}, \mathbf{s}^{i}\right\}_{i=1}^{n}$ be the system of eigensolutions of $A$.
Let $\mathbf{r}^{(0)}=\sum_{i=1}^{n} \xi_{i} \mathbf{s}^{i}$. Then, $\mathbf{g}^{(k)}=p_{k-1}(A) \mathbf{r}^{(0)}$, where $p_{k-1}(t)$ is
some polynomial of degree $k-1$.
$\begin{aligned} & \text { Note: } \mathbf{e}^{k}=\mathbf{x}_{\text {exact }}-\mathbf{x}^{(k)} \text {, thus, } A \mathbf{e}^{k}=\mathbf{b}-A \mathbf{x}^{(k)}=\mathbf{r}^{(k)} . \\ & \mathbf{e}^{k}=A^{-1} \mathbf{r}^{(k)} \quad(* *)\end{aligned}$
CG is such that $\left\|\mathbf{e}^{k}\right\|_{A}=\min _{\mathbf{y} \in \mathbf{x}^{(0)}+K}\left\|\mathbf{x}_{\text {exact }}-\mathbf{y}\right\|_{A}$
From (**) we obtain $\left\|\mathbf{e}^{k}\right\|_{A}=\left\|\mathbf{r}^{(k)}\right\|_{A^{-1}}$

$$
\Rightarrow \quad\left\|\mathbf{r}^{(k)}\right\|_{A^{-1}}=\min _{\mathbf{r} \in \mathbf{r}^{(0)}+K}\|\mathbf{r}\|_{A^{-1}}
$$

## Convergence of the CG method (cont)

Let $\Pi_{k}^{1}=\left\{P_{k}\right.$ of degree $\left.k, P_{k}(0)=1\right\}$ and $\widetilde{K}=\left\{\mathbf{r} \in R^{m}: \mathbf{r}=P_{k}\left(\mathbf{r}^{(0)}\right), P_{k} \in \Pi_{k}^{1}\right\}$.
Clearly, $\widetilde{K} \subset K^{k}\left(A, \mathbf{r}^{(0)}\right)$ and $\mathbf{r}^{(0)} \in \widetilde{K}$. Then

$$
\begin{aligned}
\left\|\mathbf{r}^{(k)}\right\|_{A^{-1}} & =\min _{\mathbf{r} \in \widetilde{K}}\|\mathbf{r}\|_{A^{-1}} \\
& =\min _{P_{k} \in \Pi_{k}^{1}}\left\|P_{k}(A) \mathbf{r}^{(0)}\right\|_{A^{-1}} \\
& =\min _{P_{k} \in \Pi_{k}^{1}}\left(\left(\mathbf{r}^{(0)}\right)^{T} A^{-1}\left(P_{k}(A)\right)^{2} \mathbf{r}^{(0)}\right)^{1 / 2}
\end{aligned}
$$

Recall: $\left(P_{k}(A)\right)^{T} A^{-1} P_{k}(A)=A^{-1}\left(P_{k}(A)\right)^{2}$.

## Rate of convergence of the CG method

Theorem: Let $A$ be symmetric and positive definite.
Suppose that for some set $S$, containing all eigenvalues of $A$, for some polynomial $\widetilde{P}(\lambda) \in \Pi_{k}^{1}$ and some constant $M$ there holds $\max _{\lambda \in S}|\widetilde{P}(\lambda)| \leq M$. Then,

$$
\left\|\mathbf{x}_{\text {exact }}-\mathbf{x}^{(k)}\right\|_{A} \leq M\left\|\mathbf{x}_{\text {exact }}-\mathbf{x}^{(0)}\right\|_{A} .
$$

Proof: Let $S=\left\{\lambda_{i}, \mathbf{s}^{i}\right\}_{i=1}^{n}$ be the system of eigensolutions of $A$,
$\lambda_{1} \leq \cdots \leq \lambda_{n},\left(\mathbf{s}^{\prime}, \mathbf{s}^{\prime}\right)=\delta_{i j}$.
$\mathbf{r}^{(0)}=\sum_{i=1}^{n} \xi_{i} \mathbf{s}^{i}, \xi_{i}=\left(\mathbf{s}^{i}, \mathbf{r}^{(0)}\right)$.
Then,

$$
\begin{aligned}
& \left(\mathbf{r}^{(0)}\right)^{T} A^{-1}\left(P_{k}(A)\right)^{2} \mathbf{r}^{(0)}=\sum_{i=1}^{n} \xi_{i}^{2} \lambda_{i}^{-1} P_{k}\left(\lambda_{i}\right)^{2} \\
& \Rightarrow\left\|\mathbf{r}^{(0)}\right\|_{A^{-1}}=\min _{P_{k} \in \Pi_{k}^{1}} \sum_{i=1}^{n} \xi_{i}^{2} \lambda_{i}^{-1} P_{k}\left(\lambda_{i}\right)^{2} \\
& \Rightarrow\left\|\mathbf{r}^{(k)}\right\|_{A^{-1}} \leq M^{2} \sum_{i=1}^{n} \xi_{i}^{2} \lambda_{i}^{-1}=M^{2}\left\|\mathbf{r}^{(0)}\right\|_{A^{-1}}
\end{aligned}
$$

## Rate of convergence (cont)

To quantify $M$, we seek a polynomial $\widetilde{P}_{k} \in \Pi_{k}^{1}$, such that

$$
M=\max _{\lambda \in S}\left|\widetilde{P}_{k}(\lambda)\right|
$$

is small.
In this way, the convergence estimate is replaced by a polynomial approximation problem, which is well known. For an s.p.d. matrix $A$ and $I_{S}=\left[\lambda_{1}, \lambda_{n}\right]$ find a polynomial $\widetilde{P}_{k} \in \Pi_{k}^{1}$ such that

$$
\max _{\lambda \in I_{S}}\left|\widetilde{P}_{k}(\lambda)\right|=\min _{P_{k} \in \Pi_{k}^{1}} \max _{\lambda \in l_{S}}\left|P_{k}(\lambda)\right|
$$

Rate of convergence (cont):
Repeat: $\max _{\lambda \in \mid s}\left|\widetilde{P}_{k}(\lambda)\right|=\min _{P_{k} \in \prod_{k}} \max _{\lambda \in l_{S}}\left|P_{k}(\lambda)\right|$
The solution of the latter problem is given by the polynomial

$$
\widetilde{P}_{k}(\lambda)=\frac{T_{k}\left(\frac{\lambda_{n}+\lambda_{1}-2 \lambda}{\lambda_{n}-\lambda_{1}}\right)}{T_{k}\left(\frac{\lambda_{n}+\lambda_{1}}{\lambda_{n}-\lambda_{1}}\right)}
$$

where $T_{k}(z)=\frac{1}{2}\left(z^{k}+z^{-1}\right)$ are the Chebyshev polynomials of degree $k$. Moreover,

$$
\max _{\lambda \in I_{s}}\left|P_{k}(\lambda)\right|=\frac{1}{T_{k}\left(\frac{\lambda_{n}+\lambda_{1}}{\lambda_{n}-\lambda_{1}}\right)} .
$$

## Rate of convergence (cont): <br> Rate of convergence (cont)

Thus, we obtain the following estimate:

$$
\left\|\mathbf{e}^{\mathbf{k}}\right\|_{A} \leq \frac{1}{T_{k}\left(\frac{\lambda_{n}+\lambda_{1}}{\lambda_{n}-\lambda_{1}}\right)}\left\|\mathbf{e}^{\mathbf{0}}\right\|_{A}=\frac{1}{T_{k}\left(\frac{\varkappa(A)+1}{\varkappa(A)-1}\right)}\left\|\mathbf{e}^{\mathbf{0}}\right\|_{A}
$$

Since for any $z, T_{k}\left(\frac{z+1}{z-1}\right)=\frac{1}{2}\left[\left(\frac{\sqrt{z}+1}{\sqrt{z}-1}\right)^{k}+\left(\frac{\sqrt{z}-1}{\sqrt{z}+1}\right)^{k}\right]>\frac{1}{2}\left(\frac{\sqrt{z}+1}{\sqrt{z}-1}\right)^{k}$,

$$
\left\|\mathbf{e}^{\mathbf{k}}\right\|_{A} \leq 2\left[\frac{\sqrt{\varkappa(A)}-1}{\sqrt{\varkappa(A)}+1}\right]^{k}\left\|\mathbf{e}^{0}\right\|_{A}
$$

Repeat:

$$
\left\|\mathbf{e}^{\mathbf{k}}\right\|_{A} \leq 2\left[\frac{\varkappa(A)-1}{\varkappa(A)+1}\right]^{k}\left\|\mathbf{e}^{0}\right\|_{A}
$$

Seek now the smallest $k$, such that

$$
\left\|\mathbf{e}^{k}\right\|_{A} \leq \varepsilon\left\|\mathbf{e}^{0}\right\|_{A}
$$

$$
\begin{aligned}
& \text { we want }\left(\frac{\sqrt{\varkappa}+1}{\sqrt{\varkappa}-1}\right)^{k}>\frac{2}{\varepsilon} \\
& \Rightarrow k \ln \left(\frac{\sqrt{x}+1}{\sqrt{\varkappa}-1}\right)>\ln \left(\frac{2}{\varepsilon}\right) \\
& \Rightarrow k>\ln \left(\frac{2}{\varepsilon}\right) / \ln \left(\frac{\sqrt{\varkappa}+1}{\sqrt{\varkappa}-1}\right)=\ln \left(\frac{2}{\varepsilon}\right) / \ln \left(\frac{1+(\sqrt{\varkappa})^{-1}}{1-(\sqrt{\varkappa})^{-1}}\right)
\end{aligned}
$$

We are on the safe side if

$$
k>\frac{1}{2} \sqrt{\varkappa} \ln \left(\frac{2}{\varepsilon}\right)>\ln \left(\frac{2}{\varepsilon}\right) / \ln \left(\frac{1+(\sqrt{x})^{-1}}{1-(\sqrt{\varkappa})^{-1}}\right)
$$

Note: $\ln \left(\frac{1+\epsilon}{1-\epsilon}\right)>2 \epsilon$ for small $\epsilon$.

## Alternative view-point

Let $f(\mathbf{x})$ be a vector function and we restrict $\mathbf{x}$ to be of the form $\mathbf{x}=\mathbf{x}+\tau \mathbf{d}$. We pose the problem to minimize $f(\mathbf{x})$ for such choice of $\mathbf{x}$.
Since $\mathbf{x}^{*}+\tau \mathbf{d}$ is a line, $\mathbf{d}$ is called a search direction and the process is called line search.
Consider the special vector function $f^{*}(\mathbf{x})=\left(\mathbf{x}^{*}-\mathbf{x}, A\left(\mathbf{x}^{*}-\mathbf{x}\right)\right)$. The minimum of $f^{*}(\mathbf{x})$ coincides with the minimum of $f(\mathbf{x})=f^{*}(\mathbf{x})+C$, where $C$ is constant. For instance, we can take
$C=-\frac{1}{2}\left(\mathbf{b}, \mathbf{x}^{*}\right)+c_{0}$. Then
$f(\mathbf{x})=\frac{1}{2} f^{*}(\mathbf{x})-\frac{1}{2}\left(\mathbf{b}, \mathbf{x}^{*}\right)+c_{0}$
$=\frac{1}{2}\left(\mathbf{x}^{*}-\mathbf{x}, A\left(\mathbf{x}^{*}-\mathbf{x}\right)\right)-\frac{1}{2}\left(\mathbf{b}, \mathbf{x}^{*}\right)+c_{0}$
$=\frac{1}{2}\left(\mathbf{x}^{*}, A \mathbf{x}^{*}\right)-\frac{2}{2}\left(\mathbf{x}, A \mathbf{x}^{*}\right)+\frac{1}{2}(\mathbf{x}, A \mathbf{x})-\frac{1}{2}\left(\mathbf{b}, \mathbf{x}^{*}\right)+c_{0}$
$=\frac{1}{2}(\mathbf{x}, A \mathbf{x})-(\mathbf{x}, \mathbf{x})+c_{0} \equiv F(\mathbf{x})$
Thus, the minimizer of $f(\mathbf{x})$ and that of $F(\mathbf{x})$ coincide, provided that $\mathbf{x}^{*}$ is the exact solution of $A \mathbf{x}=\mathbf{b}$.

## Alternative view-point, cont.

$F(\mathbf{x})=\frac{1}{2}(\mathbf{x}, A \mathbf{x})-(\mathbf{x}, \mathbf{x})+c_{0}$
We decide to compute the minimization problem for $F(\mathbf{x})$ and to do it iteratively, locally per iteration, performing a line search, namely,
we seek $\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}+\tau_{k} \mathbf{d}^{k}$ such that $F$ will be minimized.
How to choose $\tau_{k}$ and $\mathbf{d}^{k}$ ?

## Alternative view-point, cont.

## Theorem 1:

Let $\left.F(\mathbf{x}) \in C^{1}\right) R^{n}$ ) and let $\nabla F$ be the gradient of $F$ at some point $\mathbf{x}$.
If $(\nabla F, \mathbf{d})<0$, then $\mathbf{d}$ is a descent direction for $F$ at $\mathbf{x}$.
Proof: Descent direction: $F(\mathbf{x}+\tau \mathbf{d}) \leq F(\mathbf{x})$ for $0 \leq \tau \leq \tau_{0}$

$$
F(\mathbf{x}+\tau \mathbf{d})=F(\mathbf{x})+\tau \underbrace{(\nabla F, \mathbf{d})}_{<0}+O(\tau)
$$

Thus, $\tau$ can be chosen small enough so that

$$
\tau(\nabla F, \mathbf{d})+O(\tau)<0
$$

## Alternative view-point, cont.

## Theorem 2:

Among all search directions $\mathbf{d}$ at some point $\mathbf{x}, F$ descents most rapidly for $\mathbf{d}=\nabla F$.
Proof: We want to minimize the directional derivative of $F$ at $\mathbf{x}$ over all possible search directions.
The (first) directional derivative in direction $\mathbf{y}$ at $\mathbf{x}$ is defined as follows:

$$
\frac{d F}{d \mathbf{y}}=\sum_{i=1}^{n} \frac{\partial F}{\partial x_{i}} y_{i}=(\nabla F, \mathbf{y})
$$

Let $\mathbf{y}$ be arbitrary, $\mid \mathbf{y} \|=1$.

$$
|(\nabla F, \mathbf{y})| \leq\|\nabla F\|\|\mathbf{y}\|=\|\nabla F\|
$$

Thus, there holds $|(\nabla F, \mathbf{y})| \geq-\|\nabla F\|$.
For the special choice $\mathbf{y}=-\nabla F /\|\nabla F\| \quad$ we obtain $(\nabla F,-\nabla F /\|\nabla F\|)=-\|\nabla F\|$.

