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Basic Iterative Solution methods

Introduction:
The ideas to use iterative methods for solving linear systems of
equations go back to Gauss (1823), Liouville (1837) and Jacobi
(1845).

After deriving an iterative procedure, in 1823, Gauss has written in
a letter the following:

"... You will hardly eliminate directly anymore, at least not when
you have more than two unknowns. The indirect method can be
pursued while half asleep or while thinking about other things."
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Introduction:

Before considering iterative solution methods for linear systems of
equations, we recall how do we solve nonlinear problems
Let f (x) = 0 have to be solved and f (x) is a nonlinear function in x .
The usual way to approach the problem is:

F (x) ≡ x − f (x).

If x∗ is the solution of f (x) = 0, then x∗ is a stationary point for

x = F (x). (1)

Then we proceed with finding the stationary point for (1) and this is
done iteratively, namely,

x (k+1) = F (x (k)), k = 0, 1, · · · , x (0) given. (2)
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Convergence of the fixed point iteration:

For any initial guess x (0), there exists a unique fixed point x∗ for
F (x), x∗ = lim

k→∞
x (k) if and only if F is a contracting mapping, i.e.

‖F (x)− F (y)‖ ≤ q‖x − y‖

for some q ∈ (0, 1).
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Fixed point for linear problems:

Let now f (x) ≡ Ax− b be linear. We use the same framework:

F (x) = x− (Ax− b)

x(k+1) = x(k) − (Ax(k) − b) = x(k) + r(k)

where r(k) = b− Ax(k) is called the residual at iteration k .
In this way we obtain the simplest possible iterative scheme to solve

Ax = b,

namely,

x(k+1) = x(k) − (Ax(k) − b), k = 0, 1, · · ·
x(0) given.
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Fixed point for linear problems - when does it
converge?

‖F (x)− F (y)‖ = ‖x− (Ax− b)− y − (Ay − b‖)
= ‖(I − A)(x − y)‖ ≤ ‖(I − A)‖‖(x − y)‖

The simple iteration will not converge in general.
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Simple iteration

For many reasons the latter form of the simple iteration is replaced
by

x(k+1) = x(k) + τ r(k), (3)

where τ is some properly chosen method parameter.

Relation (3) defines the so-called stationary basic iterative method
of first kind.
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Stationary iterative methods ...

If we permit τ to change from one iteration to the next, we get

x(k+1) = x(k) + τkr(k), (4)

which latter defines the so-called
non-stationary basic iterative method of first kind.

So far τ and τk are some scalars. Nothing prevents us to replace
the method parameter by some matrix, however, if this would
improve the convergence of the iterative method.
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Nothing prevents us to replace the method parameter by some
matrix, however, if this would improve the convergence of the
iterative method. Thus, we can consider

x(k+1) = x(k) + C−1(b− Ax(k))
or
x(k+1) = x(k) + C−1r(k),

(5)

It is easy to see that we obtain (5) by replacing Ax = b with

C−1Ax = C−1b

and use the simple iteration framework.
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In this case the iterative scheme takes the form

Cd(k) = r(k),
x(k+1) = x(k) + d(k) (6)

The scheme
Cd(k) = r(k),
x(k+1) = x(k) + d(k)

has in general a higher computational complexity than (4), since a
solution of a system with the matrix C is required at each iteration.
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Concerns: I

C1: Does the iteration process converge to the solution, i.e. does
x(k) → x∗?

C2: If ’yes’, how fast does it converge?
The number of iterations it needed for the iterative method to
converge with respect to some convergence criterion, is a
function of the properties of A.
Say, it = it(n), where n is the size of A.
If it turns out that it = O(n2), we haven’t gained anything
compared to the direct solution methods.
The best one can hope for is to get it ≤ Const, where Const is
independent of n.
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Concerns: II

Since the computational complexity of one iteration is in many
cases proportional to n (for sparse matrices, for in-
stance) then the complexity of the whole solution process will be

O(n).
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Concerns: I

C3: Is the method robust with respect to the method parameters
(τ , τk)?

C4: Is the method robust with respect to various problem
parameters?

A = A(ρ, ν,E , · · · )

C5: When we are using the scheme C−1Ax = C−1b, it must be
easy to solve systems with C .

C6: Is the method parallelizable?
Parallelization aspects become more and more important since
n is XXL.
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Concerns (cont.): I

Suppose the method converges to the exact solution x∗.
Then more questions arise:
C7: When do we stop the iterations?

→ We want ‖x∗ − x(k)‖ ≤ ε but x∗ is not known.
→ What about checking on r(k)?
→ Is it enough to have ‖r(k)‖ ≤ ε̃?

Will the latter guarantee that ‖x∗ − x(k)‖ ≤ ε?
Denote e(k) = x∗ − x(k) (the error at iteration k). Then

r(k) = b− Ax(k) = A(x∗ − x(k)) = Ae(k).

In other words e(k) = A−1r(k).
Scenario: Suppose ‖A−1‖ = 108 and ε̃ = 10−4. Then

‖e(k)‖ ≤ ‖A−1‖‖r(k)‖ ≤ 104, which is not very exiting.
Example: Discrete Laplace ∆5

h:
‖A−1‖ ≈ λmin = 1

2 (πh)2 ≈ 104 for h = 10−2.
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Concerns (cont.): II

C8: How do we measure (estimate) the convergence rate?

C9: How do we find good method parameters (τ , τk , C ), which
will speed up the convergence?

We start our considerations with [C9].
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Choosing C :

Intuitively, C has to do something with A.
Note that if C = A, then C−1 = A−1 and we will get convergence
in one step!
However, the computational effort to construct A−1 is higher than
to use a direct solution method.

We try the following choice. Consider the following so-called
splitting of A,

A = C − R,

where C is nonsingular and R can be seen as an error matrix.
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Choosing C (cont.)

Then C−1A = C−1(C − R) = I − C−1R = I − B .

I The matrix B = C−1R is referred to as the iteration matrix.
I ‖Bm‖ is the convergence factor for m steps
I (‖Bm‖)1/m is called the average convergence factor.
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Equivalent formulation using the splitting:

Using the splitting A = C − R we obtain the following equivalent
form of the iterative procedure:

A = C − R −→ R = C − A
x(k+1) = x(k) + C−1(b− Ax(k))

= x(k) + C−1b− C−1(C − R)x(k)

= C−1b + C−1Rx(k)

Cx(k+1) = Rx(k) + b (7)

The matrix C is called a preconditioner to A. Its general purpose is
to improve the properties of A in order to achieve a better (faster)
convergence of the method.
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A general convergence result:

Theorem
The sequence {x(k)} from Cx(k+1) = Rx(k) + b converges to the solution
x∗ of Ax = b for any initial guess x(0) if and only if there holds

ρ(B) ≡ ρ(C−1R) < 1

where ρ(· · · ) denotes the spectral radius.

Proof.
Let e(k) = x∗ − x(k), A = C − R. Then

Cx∗ = Rx∗ + b
Cx(k) = Rx(k−1) + b

]
−

Ce(k) = Re(k−1)

e(k) = Be(k−1) = B2e(k−2) = · · · = Bke(0).

If ρ(C−1R) < 1 then lim
k→∞

Bk = 0 and e(k) → 0.
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If ρ(C−1R) ≥ 1:

Let λi = eig(B) and ρ(B) = |λj | i.e., λj is the eigenvalue of B ,
such that ρ(B) = |λj |. Let vj be the corresponding eigenvector.
Then

(
vj)m = Bmvj = λm

j vj 9 0.

e(0) =
n∑

k=1
βkvk = βjvj + · · ·

Bme(0) = β̃jBmvj + · · ·
and at least one component of e(m) does not converge to zero.
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Remarks on the proof:

The basic argument in the latter proof is that if ρ(B) < 1 then
Bk → 0.. This can be shown in the following way.

Lemma
Let T be a nonsingular matrix and let ‖x‖T = ‖Tx‖∞. Let
‖A‖T = sup

x6=0

‖Ax‖T
‖x‖T be the induced matrix norm. Then.

(a) ‖A‖T = ‖TAT−1‖∞
(b) For any ε > 0 and matrix A, there exists a nonsingular matrix

T such that ‖A‖T ≤ ρ(A) + ε.
In other words, there exist matrix norms, which are arbitrary
close to the spectral radius of a given matrix.
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Remarks on the proof:

Proof.
(a) ‖x‖T is a vector norm and T−1 exists.
‖A‖T = sup

x6=0

‖Ax‖T
‖x‖)T = sup

x6=0

‖TAx‖∞
‖Tx‖∞

= sup
y 6=0

‖TAT−1y‖∞
‖y‖∞ = ‖TAT−1‖∞.
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Proof (cont.)

(b) We use Schur’s lemma: There exists a unitary matrix U, such that

UAU−1 = W =




w11 ∗ ∗ · · · ∗
0 w22 ∗ · · · ∗

. . . · · ·
...

wnn


 ,

where wii = λi ∈ S(A); S(A) denotes the spectrum of A. Let δ > 0 and
define D = D(δ) = diag{δ−1, δ−2, · · · , δ−n}. Then DWD−1 is also

upper triangular and (DWD−1)ij =





0, j < i
wii , j = i
wijδ

j−1, j > i .

⇒ ‖DWD−1‖∞ ≤ max
i

{
|wii |+ n max

j>i
|wij |δj−1

}
.



25/35

Proof (cont.)

We see that for any given ε > 0 we can choose δ > 0 small enough
so that n max

j>i
|wijδ

j−1 < ε. Hence,

‖DWD−1‖∞ ≤ ρ(A) + ε
‖A‖T = ‖TAT−1‖∞ = ‖DUAU−1D−1‖∞
= ‖DWD−1‖∞ ≤ ρ(A) + ε.
(for T = DU, nonsingular).
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Convergence (cont.)

Lemma
For any square matrix there holds
(a) lim

k→∞
Ak = 0⇔ ρ(A) < 1,

(b) If ρ(A) < 1 then (I − A)−1 = I + A + A2 + · · · is convergent.

Proof.
(a)’⇒’: If ρ(A) < 1 then choose ε > 0: ρ(A) + ε < 1. Then there exists a
nonsingular T (which depends on A), such that ‖A‖T ≤ ρ(A) + ε < 1.
⇒ ‖Ak‖T ≤ ‖A[|kT → 0 ⇒ lim

k→∞
Ak = 0

(a)’⇐’: If lim
k→∞

Ak = 0, let {λ, v} be an eigensolution of A, then

λkv = Akv→ 0. This is true for all eigenvalues, thus ρ(A) = max |λ| < 1.
(b) (I − A)(I + A + A2 + · · · ) = I − Ak+1. If ρ(A) < 1 then Ak → 0 ⇒ (b)
follows.
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Rate of convergence

Theorem 1 shows both convergence and rate of convergence
(e(k) = Bke(k)). The latter is difficult to compute. Also the
convergence may not be monotone.

Theorem
Consider Cx(k+1) = Rx(k) + b, B = C−1R and let ρ(B) < 1. Then

‖x∗ − x(k)‖ ≤ ‖B‖
1− ‖B‖‖x

(k) − x(k−1)‖
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Rate of convergence, cont.

Proof.
x(k+1) − x(k) = B(x(k) − x(k−1)) and
x(k+m+1) − x(k+m) = Bm+1(x(k) − x(k−1)). We have

‖x(k+s) − x(k)‖ = ‖
s−1∑
j=0

(x(k+j+1) − x(k+j))‖ ≤

‖x(k+1) − x(k)‖+ ‖x(k+2) − x(k+1)‖+ · · ·
Therefore

‖x(k+m+1)−x(k+m)‖ ≤
m∑

j=0

‖B j‖ ‖x(k)−x(k−1)‖ =
‖B‖ − ‖B‖m+1

1− ‖B‖ ‖x(k)−x(k−1)‖

We let now m→∞, i.e., xk+m → x∗, ‖B‖m → 0.

⇒ ‖x∗ − x(k)‖ ≤ ‖B‖
1−‖B‖‖x(k) − x(k−1)‖.
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Stopping tests:

Theorem 4 can be used to get information whether the iteration
error e(k) = x∗ − x(k) is small enough.

In practice, most used stopping tests are:
(S1) ‖r(k)‖ ≤ ε, residual based, absolute

(S2) ‖r(k)‖ ≤ ε‖r(0)‖, residual based, relative
(S3) ‖x(k) − x(k−1)‖ ≤ ε
(S4) ‖x∗ − x(k)‖ ≤ ε0‖x∗ − x(0)‖.

If the latter is wanted, then we must check on (S3) and
choose ε such that ε ≤ ‖B‖

1−‖B‖ε0‖x∗ − x(0)‖.

Either estimate of ‖A−1‖ or of ‖B‖ is required.
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Choices of the matrix C

Choice ’J’
Let A = D − L− U, where D is diagonal, U is strictly upper triangular
and L is strictly lower triangular.
Let C ≡ D, R = L + U. The iterative scheme is known as Jacobi
iteration:

Dx(k+1) = (L + U)x(k) + b

Entry-wise xk+1
i = 1

aii

(
bi −

∑
i 6=j

aijxj

)
..

For the method to converge: B = D−1(L + U)

ρ(B) ≤ ‖D−1(L + U)‖∞ = max
1≤i≤n

n∑

j=1, j 6=i

∣∣∣∣
aij

aii

∣∣∣∣

We want ρ(B) < 1. One class of matrices, for which Jacobi method
converges is when A is strictly diagonally dominant.
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Choices of the matrix C

1. Choice GS-B Choose C ≡ D − U, R = L
Backward Gauss-Seidel (D − U)x(k+1) = Lx(k) + b

2. Choice GS-F Choose C ≡ D − L, R = U
Forward Gauss-Seidel (D − L)x(k+1) = Ux(k) + b

3. G-S is convergent for s.p.d. matrices.
4. make it more fancy: A = D − L− U. Then

ωA = ωD − ωL− ωL + D − D ← overrelaxation
= (D − ωL)− (ωU + (1− ω)D)

Choose C ≡ D − ωL, R = ωU + (1− ω)D:

SOR (D − ωL)x(k+1) = [ωU + (1− ω)D]x(k) + ωb
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SOR - back to 1940

One can see SOR as a generalization of G-S (ω = 1). Rewrite
(D − ωL)x(k+1) = [ωU + (1− ω)D]x(k) + ωb

as
( 1
ωD − L

)
x(k+1) =

[( 1
ω − 1

)
D + U

]
x(k) + b

For the iteration matrix Bω =
( 1
ωD − L

)−1 [( 1
ω − 1

)
D + U

]

One can show that ρ(Bω) < 1 for 0 < ω < 2. Furthermore, there is
an optimal value of ω, for which ρ(Bω) is minimized:

ωopt =
2

1 +

√
1− ρ(B̂)2

, B̂ = I − D−1
A A.
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SOR - cont.

Rate of convergence: Let λi = eig(Bω).∣∣∣∣
n∏

i=1
λi

∣∣∣∣ =
∣∣det

(
(1− ω)I + ωD−1U

)∣∣ = |1− ω|n. ⇒ at least one

λi ≥ |1− ω|.
⇒ ρ(Bω) ≥ |1− ω|.
We want ρ(Bω) < 1, i.e. |1− ω| ≤ ρ(Bω) < 1, ⇒ 0 < ω < 2.
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Splittings of A

Let A,C ,R ∈ Rn×n and consider A = C − R . A splitting of A is
called

I regular if C is monotone and R ≥ 0 (elementwise)
I weak regular if C is monotone and C−1R ≥ 0
I nonnegative if C−1 exists and C−1R ≥ 0
I convergent if ρ(C−1R) < 1.

Recall: A matrix is called monotone if Ax > 0 implies x > 0.
Theorem: A - monotone ⇔ A−1 ≥ 0.
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The Second Order Chebyshev iteration
method

Let A be symmetric matrix.

x0 given, x1 = x0 + 1
2β0r0

For k = 0, 1, · · · until convergence
xk+1 = αkxk + (1− αk)xk−1 + βkrk .
rk = b− Axk .

αk =
a + b
2

βk ,
1
βk

=
a + b
2
−
(
b − a
4

)2

βk−1, β0 =
4

a + b
.

Note that αk > 1, k ≥ 1.

Modifications for nonsymmetric matrices exist.


