Residual correction

Ax = b; Xexact e(k) = Xeract — X(k)
r) = b — Ax()
Multigrid methods
. . Residual equation: ~ Ae(*) = r(*)

Algebmzc MMltlgTZd methods Residual correction:  x*+1) = x(*) 4 e(*)

Algebraic Multilevel Iteration Recall D= — ax)
Error propagation: e t1) = (1 — C~1A)e®

methods
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High and low frequencies - nonsmooth,

smooth

Run Jacobi demo...

st udent / NLA/ Denps/ Modul e3/ L5

~p.3/6 ~p.4/6



Main idea: R. Fedorenko (1961), N.S.

Bakhvalov (1966) Some numbers/contributors:

Reduce the error e®) = x.,..: — x¥) on the given (fine) grid by

. . . . Years MG AMG Years MG AMG

successive residual corrections on a hierarchy of (nested)

coarser grids. 1966-1986 3420 873 || 2007-2017 21700 16800
1987-1996 15400 5370 2018- 4610 2360
1997-2006 22000 12800

Archi Brandt Jan Mandel Tom Manteiffel
N e Wolggang Hackbusch Steve McCormick Yvan Notay
Jurgen Ruge Petr Vanec Irad Yavneh
Klaus Stlben Piet Hemker Panayot Vassilevski
N A e

Ruge, J. W.; Stiben, K. Algebraic multigrid. Multigrid
methods, 73-130, Frontiers Appl. Math., 3, SIAM,

Gei~Bhiladelphia, PA, 1987.

-p.5/6
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An example ULB

PDE: —Au = 20 ¢ 0@090-05% in 0 = (0,1) x (0,1)
u = 0 on 9f)

Uniform grid with mesh size h, five-point finite difference.

Borrowed from Yvan Notay

Algebraic multigrid and multilevel methods

https://perso.uclouvain.be/paul.vandooren/Notay.pdf 4SSN
THATSARREKSS N
ARSI
s
RSSO
:'060.0,6‘0¢\t\\\\s$}}“\*§*‘§a}§n
pIt

il

Solution with A~ = 50 Solution with A~ = 25

Algebraic multigrid and multilevel methods — p.5/66
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vie  How It works ULB

An idea

Fine grid (system to solve): =rier @i e e @ife
Au = b after interpolation

Coarse grid (auxiliary system):
AC U — bc.

uc may be computed and prolongated (by interpolation)
on the fine grid:

u(l) = pUuc

u) may serve as initial approximation, i.e., one solves

AW 4+x) =b or Ax =b-ApAz'be.

Algebraic multigrid and multilevel methods — p.6/66 Algebraic multigrid and multilevel methods — p.7/66



Let us repeat Still working ?

(1) . O Error on the fine grid Repeating the process...
APV +x) =b or  Ax =b-ApAsbe = 1. after interpolation

(1) Restrict on the coarse grid:

re = rr(l).

(2) Solve on the coarse grid:

Xg) = Aal I'c
(3) Prolongate:
x?) = pxg),
u?® = u® 4 x@

Algebraic multigrid and multilevel methods — p.8/66 Algebraic multigrid and multilevel methods — p.9/66



Error controlled through residual 8 Explanation

Initial residual (r.h.s.) After coarse grid correction [l Assume (for simplicity) that be = rb.

One has

ARSI
AN
O\‘&\\\\ﬁs\s

u—ul) = u—pAalrb
= (I—pAaer) u,
‘\“‘\‘\‘&&\\\\

\ SO ‘ MM 2

A\ AN I \ (2) ( —]. )

NN ~ AR ‘ | R =

AN - Se‘,« PN ) = I-pAgrA) u,

ST
TN
I

__ M etc. Similarly
rl) = b—ApAZlrb

— (I— ApAalr) r©

Ib—Ap Az bl
[b]]

= 0.7142
p Az rhasrank ng  —

p(I—ApAalr) = p([—pAEer) > 1.

Algebraic multigrid and multilevel methods — p.10/66 Algebraic multigrid and multilevel methods — p.11/66



Smoother enters the scene

Smoothing effect

u —u and r(V) very oscillatory

Residual after CG correction
— improve u'Y with a simple iterative method,
efficient in smoothing the error & residual.

Adding 1 SGS step
Example: symmetric Gauss-Seidel (SGS)

Lud*? = b—(A-L)u?, (L =low(A))
Uu? = b—(A—U)ut¥2 (U = upp(A))
Same as
u® = uW + MW, M=LD'U (D = diag(A))
Thus:

u—u? = I—M1'4) (u-uW)
r® = T-AMYHeW

One may repeat: r(”+!

|

{ []

“\“\\!3\\\\.\{@%

= [ —AMDHm e,

Algebraic multigrid and multilevel methods — p.12/66
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Smoothing + coarse grid correction 8 Smoothing + coarse grid correction

Adding now a CG correction Adding now a CG correction ...and again 1 SGS step

//llllll

\\\ v
\“\\\/\\\“\\“\\\ U

4 cv‘«‘»'ﬂ'«'«»' .\' i

N “\\\\\'\I\\I\\I” ‘“‘

il — 0746 il — 0.746 el — 00155

||rpreV|ous | ||rpreV|ous | ||I'previous ||

Algebraic multigrid and multilevel methods — p.14/66 Algebraic multigrid and multilevel methods — p.14/66



What we learned

For each coarse grid correction:

u—u™ = (I-pAz'rA) (u—u™).

Cannot work alone because p (I —pAz'r A) > 1.

For each smoothing step

u—u™ = (I-M714) (u-u™).

Not efficient alone because p (I — M! A) ~ 1.
However
p((T= M A) (I-pArA) (1-M4)) < 1

Borrowed from:

m W. Gropp, A Multigrid Tutorial
Presentation by Van Emden Henson, LLNL
https://www.math.ust.hk/~mawang/teaching/math532/mgtut.pdf

m R. Falgout, An Algebraic Multigrid Tutorial, Conference
presentation 2010.
https://mathinstitutes.org/videos/videos/5711

Rmk: if A = AT, we assume M = MT .

Algebraic multigrid and multilevel methods — p.15/66
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1D Interpolation (Prolongation)
e Values at points on the coarse grid map unchanged
to the fine grid

e Values at fine-grid points NOT on the coarse grid
are the averages of their coarse-grid neighbors

Q2h

Qh

47 of 119

The prolongation operator (1D)

 We may regard |£‘h as a linear operator from
[] N/2-1 e— [JN-1

e e.g., for N=8,

12

V2 12

12 12

12

x1

. ng has full rank, and thus null space {(F}

48 of 119



1D Restriction by injection
e Mapping from the fine grid to the coarse grid:

FN RNy o bl
e Let VN, v® be definedon Q" 02, Then
120vh = y2h
where v = v |

]

1D Restriction by full-weighting

« Let vh, v® pe defined on Q" Q2% Then
12vh = y2h
where
1
van =4 vR_p+2vl +vl L)

53 of 119



The restriction operator R (1D)

Multilevel preconditioning methods: MG

e We may regard Iﬁh as a linear operator from Procedure MG: u® «— M@ (u(k),f(k),k, {Vj(k)}?:l) ;
[] N-1 —p [] N/2-1 if k = 0, then solve A(Qu(® = £(0) exactly or by smoothing,
else
" ulk) « SH*) (u® £(*)), perform s; pre-smoothing steps,
e €e.d., for N=8, vi‘ Correct the residual:
2 r®) = AR k) — £(k); form the current residual,
vl vah _ . . i )
V4 12 U4 3 I r(k=1) < 72 (r(), restrict the residual on the next coarser grid,
[ V4 12 14 vi | = | v e « MG (0,01 | — 1,{;/;’“*1)};?;11) ;
Y4 12 Yazi yh vg" e(®) « P (e(*=1)); prolong the error from the next coarser to the
vg current grid,
vh ulk) = u®) — e(¥); update the solution,
ulk) < S§F) (u(®), £(k)), perform s post-smoothing steps.
endif
N end Procedure MG

. |r2]h has rank Dg, and thus dim(NS(R)) O—

2 54.0f 119
7
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Nested iteration

pre-smoothing steps

post-smoothing steps

Procedure NI: u(®) « NI (u®, {£®}[7 o v} _);
u(® = A0 ~1g(0)
for k= 1to ¢ do

- - k) _ - .
restriction prolongation u( ) = P (u(k 1))'
u® — MG (u<k> £5) e, (P yk_ )
L ) y IV J 3_1 )
exact solving endfor
One MG step (V-cycle) end Procedure NT
f The so-called full MG corresponds to Procedure NI(-,-,¢,{1,1,---,1})

L O\ /.

The MG W-cycle

The full MG (V-cycle)

-p-2/18 -p.3/18



MG ingredients

A compact formula presenting the MG procedure in terms of a recursively defined ® smoothers (many different)

iteration matrix: m Jacobi, weighted Jacobi (wdiag(A), GS, SOR,
() Let M) =0, SSOR, SPAI
(i) For k = 1 to ¢, define ’
) _ s (A<k>*1 e (1 B M(k_w) A<k—1>*17z’,g*1) A5 W restriction and prolongation operators

B coarse level matrix (approximation properties)
where S(¥) is a smoothing iteration matrix (assuming S; and Sy are the same), R’lj_l
and P,’j_l are matrices which transfer data between two consecutive grids and
correspond to the restriction and prolongation operators R and P, respectively, and
v =1 and v = 2 correspond to the V- and W-cycles.

It turns out that in many cases the spectral radius of M (), p (M (), is independent of ¢,
thus the rate of convergence of the NI method is optimal. Also, a mechanism to make
the spectral radius of M (©) smaller is to choose s; and ss larger. The price for the latter
is, clearly, a higher computational cost.

-p.4/18 -p.5/18



MG: Rate of convergence and computational

complexity Algebraic Multigrid

Let one Work Unit (WU) be the cost of one relaxation sweep
on the fine-grid.

— Ignore the cost of restriction and interpolation (typically
about 20% of the total cost).

— Consider a V-cycle with 1 pre-smoothing and 1
post-smoothing sweep.

— In d-dimensions, each coarse grid has about 2—¢ the number
of points as the finer grid. — Cost of V-cycle (in WU):

2(1+2—d+2—2d++2—3d++2—Zd§ -

— Total storage:

d

—d
1-2 -p.6/18 -p.7/18



C-AMG coarsening
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C-AMG coarsening

C-AMG coarsening
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C-AMG coarsening

C-AMG coarsening
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C-AMG coarsening

2 select C-pt with
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C-AMG coarsening
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C-AMG coarsening

> select C-pt with
maximal measure

3 select neighbors
as F-pts

2 update measures
of F-pt neighbors

Lawrence Livermore National Laboratory

C-AMG coarsening is inherently sequential

.
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of F-pt neighbors

Lawrence Livermore National Laboratory

.



AMG: The ideal prolongation and

restriction

Reference: Wiesner, Tuminaro, Wall, Gee
Multigrid transfers for nonsymmetric systems based on Schur complements
and Galerkin projections, NLA, 2013

AMG and the Schur complement

App Age) [zs by
Acf ACC Tc bc

Assuming Ay to be invertible, A has the corresponding LDU decomposition

Aff Afc _ I 0 Aff 0 I A;;Afc
Ay Ace AcsAz; T 0 S/ \o I

where S = Acc — AcfA]?flAfc and is referred to as the Schur complement.

Define
—A7rA,. .
R = (=As A7} 1), PP = | ) and =
I 0
One can easily verify that S = R°P! AP°P,
I 0 _ I and I AffAfc _ (f popt) '
AcsAs; T RO 0 I

Application of the inverses of the three operators in the exact factorization is
equivalent to restriction at the c-points , followed by solution of two systems:
Ay which can be interpreted as relaxation and R°?* AP°P* which is the coarse
correction. Finally, the coarse correction is interpolated and added to the
relaxation solution. As this procedure is exact, it converges in one iteration.

-p.3/7



Algebraic Multilevel Iteration Methods

(AMLI)

Further work: The so-called AMLI methods have been developed by Owe
how to approximate R°Pt, P°P* and S, or rather the coarse Axelsson and Panayot Vassilevski in a series of papers
correction R°Pt AP°Pt, which is nothing but ACfAJ?}AfC. betwee 1989 and 1991.

These methods were originally developed for elliptix problems
We enter the full block factorized preconditioning framework, and spd matrices, and are the first regularity-free optimal
that can be seen as purely algebraic and not related to MG. order preconditioning methods.

Sequence of matrices {A(’f)}izko

NkOCNkO+1C...CNg

k k
®) Ag.l) A§.2) } Nk\Nk_l
Ak —

AR ARy N
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k . . .
A*®) has to approximate S ,.+1) in some way. For instance, k) — ACko)

fork =ko,ko+1,...£—1

k) _ 4(k+1) (k+1) p(k+1) 4 (k+1) _
Ak — Ase W — Ay VB AT Agii-u) B I§k+1) Agziﬂ) 1A§1;+1)
M(k+1) — ,
where Bf{“) IS some sparse, positive definite, nonnegative AGHD G 0 I{+
. . . —1
and symmetric approximation of Ag'f’l) : endfor
How to split NV, into two parts: the order n; of the matrices where S(*) can be, for instance:

k ; .
A™%) should decrease geometrically: 509 — a0 [1 - PV(M(k)flA(k))rly

Nk+1 .
+1 oK > p > 1. P, (t) denotes a polynomial of degree v.

n
k We could use some other way of stabilization.

~p.6/7 -p.7/7



Forward sweep:

k
A§1+1) 0 Wi Y1
Solve = , i.e.
k+1) &
A;1 ) Ew Wy Yo
-1
(F1) wy =AYy

(F2) wa §O7 (y2— Al wr)

Backward sweep:

k41 E4+1)"1  (k+1

Ii D Ag1+ ) A§2+ ) X1 w1

Solve = , i.e.
k+1
0 Ié +1) X, W,
(Bl) x2 = wagq,
P -1
(B2) x1 = wi-AfTY Al Yy,

-p.8/7

e TDB - ;;}

Procedure AMLI: u®) «+ AMLI (f(k), k, vk, {ag.k)};io) ;
(£, £87] £,
WEZ; - Eﬁg) fl(k)('k) (*)
wy o =8 = Ay wy
k=k—-1,
if k= 0then ul’) = A w{" solve on the coarsest level exactly;
else
uék) +— AMLI (af,’z)wék),k,yk, {ag.k)}?io) ;

forj=1tov, — 1:

uék) «— AMLI (A(k) ugk) + a(k)_jwék), k, v, {agk)};io) ;

Vi
endfor
endif
k=k+1,

k k k) 4 (k) . (k
) = wlt) B o,
u® i, uf?)
end Procedure AM LI
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AMLI: Computational complexity

— - level 5
multiplication with nomi .
\\1 A<k)‘\/ \ / level 4, v=1 tevel no. iFr’1?1Igr rt)eraa::t)cjnesg eel wZZC(nk 4.4 néfu)
|
\ / level 3, v=1 1 ‘1’ + CV(W—H—1 4y ne_%_l)
multiplication multiplication \ / level 2. v=3
h T W \ AN/ | | OV (s e )
solution on level 1, v=1
VAT VNV Ve Sk o
bm-l o 1 <Cng[1+l+~-~+(l)”:|;,
One AMLI step (V-cycle) v-fold W-cycle, [1,1,3,1] R = ’ p) 1T~
-2m+
where 1 < p < pj, = “EEL
v k=0,1,...4—1. Hence
1
| | | v < p,u"rl
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