Multigrid methods Algebraic Multigrid methods Algebraic Multilevel Iteration methods

Residual correction

 $A\mathbf{x} = \mathbf{b}, \mathbf{x}_{exact},$ $\mathbf{r}^{(k)} = \mathbf{b} - A\mathbf{x}^{(k)}$

$$\mathbf{e}^{(k)} = \mathbf{x}_{exact} - \mathbf{x}^{(k)}$$

Residual equation:	$A\mathbf{e}^{(k)} = \mathbf{r}^{(k)}$
Residual correction:	$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \mathbf{e}^{(k)}$
Recall:	$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + C^{-1}(\mathbf{b} - A\mathbf{x}^{(k)})$
Error propagation:	$\mathbf{e}^{(k+1)} = (I - C^{-1}A)\mathbf{e}^{(k)}$

- p. 1/6

TDB - NLA

- p. 3/6

- p. 4/6

Main idea: R. Fedorenko (1961), N.S.

Bakhvalov (1966)

Reduce the error $e^{(k)} = x_{exact} - x^{(k)}$ on the given (fine) grid by successive residual corrections on a hierarchy of (nested) coarser grids.

Some numbers/contributors:

Years	MG	AMG	Years	MG	AMG	
1966-1986	3420	873	2007-2017	21700	16800	
1987-1996	15400	5370	2018-	4610	2360	
1997-2006	22000	12800				
Archi Brandt		Jan Mandel		Tom I	Tom Manteiffel	
Wolggang Hackbusch		Steve McCormick		k Yvan	Yvan Notay	
Jurgen Ruge	9	Petr V	/anec	Irad \	Irad Yavneh	
Klaus Stüber	n	Piet Hemker		Pana	Panayot Vassilevs	

Ruge, J. W.; Stüben, K. Algebraic multigrid. Multigrid methods, 73-130, Frontiers Appl. Math., 3, SIAM, TDB-NLPhiladelphia, PA, 1987.

- p. 5/6

– p. 6/49

Borrowed from Yvan Notay

Algebraic multigrid and multilevel methods

https://perso.uclouvain.be/paul.vandooren/Notay.pdf

An example

PDE: $-\Delta u = 20 e^{-10((x-0.5)^2+(y-0.5)^2)}$ in $\Omega = (0,1) \times (0,1)$ u = 0 on $\partial \Omega$

ULB

Uniform grid with mesh size h, five-point finite difference.

- p. 1/2

An idea

ULB How it works

Fine grid (system to solve):

 $A\mathbf{u} = \mathbf{b}$.

Coarse grid (auxiliary system):

$$A_C \mathbf{u}_C = \mathbf{b}_C \,.$$

 \mathbf{u}_{C} may be computed and prolongated (by interpolation) on the fine grid:

$$\mathbf{u}^{(1)} = p \, \mathbf{u}_C$$

 $\mathbf{u}^{(1)}$ may serve as initial approximation, i.e., one solves

$$A(\mathbf{u}^{(1)} + \mathbf{x}) = \mathbf{b}$$
 or $A\mathbf{x} = \mathbf{b} - ApA_C^{-1}\mathbf{b}_C$

Algebraic multigrid and multilevel methods - p.6/66

Error on the fine grid after interpolation

Algebraic multigrid and multilevel methods - p.7/66

ULB

Let us repeat

ULB Still working?

$$A(\mathbf{u}^{(1)} + \mathbf{x}) = \mathbf{b}$$
 or $A\mathbf{x} = \mathbf{b} - ApA_C^{-1}\mathbf{b}_C = \mathbf{r}^{(1)}$.

(1) Restrict on the coarse grid:

$$\mathbf{r}_{C} = r \mathbf{r}(1)$$
.

(2) Solve on the coarse grid:

$$\mathbf{x}_{C}^{(2)} = A_{C}^{-1} \mathbf{r}_{C}$$

(3) Prolongate:

$$\begin{aligned} \mathbf{x}^{(2)} &= p \, \mathbf{x}^{(2)}_C \,, \\ \mathbf{u}^{(2)} &= \mathbf{u}^{(1)} + \mathbf{x}^{(2)} \,. \end{aligned}$$

Algebraic multigrid and multilevel methods - p.8/66

Error on the fine grid after interpolation

Repeating the process

ULB

Algebraic multigrid and multilevel methods - p.9/66

Smoother enters the scene

 $\mathbf{u}-\mathbf{u}^{(1)}$ and $\mathbf{r}^{(1)}$ very oscillatory

 \rightarrow improve $\mathbf{u}^{(1)}$ with a simple iterative method, efficient in smoothing the error & residual.

Example: symmetric Gauss-Seidel (SGS)

$$L \mathbf{u}^{(1+1/2)} = \mathbf{b} - (A - L) \mathbf{u}^{(1)}, \quad (L = \mathsf{low}(A))$$
$$U \mathbf{u}^{(2)} = \mathbf{b} - (A - U) \mathbf{u}^{(1+1/2)}. \quad (U = \mathsf{upp}(A))$$

Same as

$$\mathbf{u}^{(2)} = \mathbf{u}^{(1)} + M^{-1}\mathbf{r}^{(1)}, \quad M = L D^{-1} U \quad (D = \text{diag}(A))$$

Thus:
$$\mathbf{u} - \mathbf{u}^{(2)} = (I - M^{-1}A) (\mathbf{u} - \mathbf{u}^{(1)})$$
$$\mathbf{r}^{(2)} = (I - A M^{-1}) \mathbf{r}^{(1)}$$

One may repeat: $\mathbf{r}^{(m+1)} = (I - A M^{-1})^m \mathbf{r}^{(1)}$.

What we learned

ULB

For each coarse grid correction:

$$\mathbf{u} - \mathbf{u}^{(m+1)} = (I - p A_C^{-1} r A) (\mathbf{u} - \mathbf{u}^{(m)})$$

Cannot work alone because
$$ho\left(I-p\,A_{C}^{-1}\,r\,A
ight)~\geq~1$$

For each smoothing step

$$\mathbf{u} - \mathbf{u}^{(m+1)} = (I - M^{-1}A) (\mathbf{u} - \mathbf{u}^{(m)})$$

Not efficient alone because $\rho \left(I - M^{-1} A \right) \approx 1$.

However

$$\rho\left(\left(I - M^{-1}A\right)\left(I - pA_{C}^{-1}rA\right)\left(I - M^{-1}A\right)\right) \ll 1$$

Rmk: if $A = A^T$, we assume $M = M^T$.

praic multigrid and multilevel methods – p.15/66

Borrowed from:

- W. Gropp, A Multigrid Tutorial Presentation by Van Emden Henson, LLNL https://www.math.ust.hk/~mawang/teaching/math532/mgtut.pdf
- R. Falgout, An Algebraic Multigrid Tutorial, Conference presentation 2010.

https://mathinstitutes.org/videos/videos/5711

1D Interpolation (Prolongation)

- Values at points on the coarse grid map unchanged to the fine grid
- Values at fine-grid points NOT on the coarse grid are the averages of their coarse-grid neighbors

47 of 119

The prolongation operator (1D)

• We may regard I_{2h}^h as a linear operator from $\mathfrak{R}^{N/2-1} \longrightarrow \mathfrak{R}^{N-1}$

• e.g., for N=8,

$$\begin{pmatrix}
1/2 \\
1 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
7x3
\end{pmatrix}
\begin{pmatrix}
v_1^{2h} \\
v_2^{2h} \\
v_3^{2h} \\
v_4^{2h} \\
v_5^{2h} \\
v_6^{h} \\
v_6^{h} \\
v_7^{h} \\
v_7^{h$$

• I_{2h}^{h} has full rank, and thus null space $\{\phi\}$

48 of 119

1D Restriction by injection

- Mapping from the fine grid to the coarse grid: $I_h^{2h}:\Omega^h\to\Omega^{2h}$
- Let v^h , v^{2h} be defined on Ω^h , Ω^{2h} . Then $I_h^{2h}v^h = v^{2h}$ where $v_i^{2h} = v_{2i}^h$.

1D Restriction by full-weighting

- Let
$$v^h$$
, v^{2h} be defined on Ω^h , Ω^{2h} . Then $I_h^{2h}v^h=v^{2h}$

where

$$v_i^{2h} = \frac{1}{4} (v_{2i-1}^h + 2v_{2i}^h + v_{2i+1}^h)$$

The restriction operator R (1D)

• We may regard I_h^{2h} as a linear operator from $\mathfrak{R}^{N-1} \longrightarrow \mathfrak{R}^{N/2-1}$

• e.g., for N=8,

$$\begin{pmatrix} 1/4 & 1/2 & 1/4 \\ & 1/4 & 1/2 & 1/4 \\ & & 1/4 & 1/2 & 1/4 \end{pmatrix} \begin{pmatrix} v_1^h \\ v_2^h \\ v_3^h \\ v_4^h \\ v_7^h \\ v_6^h \\ v_7^h \end{pmatrix} = \begin{pmatrix} v_1^{2h} \\ v_2^{2h} \\ v_2^{2h} \\ v_3^{2h} \end{pmatrix}$$

•
$$I_h^{2h}$$
 has rank $\sim \frac{N}{2}$, and thus dim(NS(R)) $\sim \frac{N}{2}$

54 of 119

Multilevel preconditioning methods: MG

- p. 1/18

A compact formula presenting the MG procedure in terms of a recursively defined iteration matrix:

(i) Let $M^{(0)} = 0$, (ii) For k = 1 to ℓ , define

$$M^{(k)} = \mathcal{S}^{(k)^{s_2}} \left(A^{(k)^{-1}} - \mathcal{P}_{k-1}^k \left(I - M^{(k-1)^{\nu}} \right) A^{(k-1)^{-1}} \mathcal{R}_k^{k-1} \right) A^{(k)} \mathcal{S}^{(k)^{s_1}}$$

where $S^{(k)}$ is a smoothing iteration matrix (assuming S_1 and S_2 are the same), \mathcal{R}_k^{k-1} and \mathcal{P}_{k-1}^k are matrices which transfer data between two consecutive grids and correspond to the restriction and prolongation operators \mathcal{R} and \mathcal{P} , respectively, and $\nu = 1$ and $\nu = 2$ correspond to the V- and W-cycles.

It turns out that in many cases the spectral radius of $M^{(\ell)}$, $\rho(M^{(\ell)})$, is independent of ℓ , thus the rate of convergence of the NI method is optimal. Also, a mechanism to make the spectral radius of $M^{(\ell)}$ smaller is to choose s_1 and s_2 larger. The price for the latter is, clearly, a higher computational cost.

TDB - NLA

- p. 4/18

MG ingredients

- smoothers (many different)
 - Jacobi, weighted Jacobi (*ωdiag*(*A*), GS, SOR, SSOR, SPAI
- restriction and prolongation operators
- coarse level matrix (approximation properties)

- → select C-pt with maximal measure
- select neighbors as F-pts
- → update measures of F-pt neighbors

Lawrence Livermore National Laboratory

C-AMG coarsening

→ select C-pt with maximal measure

- → select neighbors as F-pts
- update measures of F-pt neighbors

- → select C-pt with maximal measure
- → select neighbors as F-pts
- → update measures of F-pt neighbors

C-AMG coarsening

→ select C-pt with maximal measure

- select neighbors as F-pts
- → update measures of F-pt neighbors

- → select C-pt with maximal measure
- select neighbors as F-pts
- → update measures of F-pt neighbors

C-AMG coarsening

→ select C-pt with maximal measure

→ select neighbors as F-pts

update measures of F-pt neighbors

- → select C-pt with maximal measure
- select neighbors as F-pts
- → update measures of F-pt neighbors

C-AMG coarsening

- → select C-pt with maximal measure
- → select neighbors as F-pts
- → update measures of F-pt neighbors

C-AMG coarsening is inherently sequential

→ select C-pt with maximal measure

- select neighbors as F-pts
- update measures of F-pt neighbors

Lawrence Livermore National Laboratory

AMG: The ideal prolongation and restriction

Reference: Wiesner, Tuminaro, Wall, Gee Multigrid transfers for nonsymmetric systems based on Schur complements and Galerkin projections, *NLA*, *2013*

AMG and the Schur complement

$$\begin{pmatrix} A_{ff} & A_{fc} \\ A_{cf} & A_{cc} \end{pmatrix} \begin{pmatrix} x_f \\ x_c \end{pmatrix} = \begin{pmatrix} b_f \\ b_c \end{pmatrix}.$$

Assuming A_{ff} to be invertible, A has the corresponding LDU decomposition

$$\begin{pmatrix} A_{ff} & A_{fc} \\ A_{cf} & A_{cc} \end{pmatrix} = \begin{pmatrix} I & 0 \\ A_{cf}A_{ff}^{-1} & I \end{pmatrix} \begin{pmatrix} A_{ff} & 0 \\ 0 & S \end{pmatrix} \begin{pmatrix} I & A_{ff}^{-1}A_{fc} \\ 0 & I \end{pmatrix}$$

where $S = A_{cc} - A_{cf} A_{ff}^{-1} A_{fc}$ and is referred to as the Schur complement.

TDB - NLA

– p. 2/7

Define

$$\mathcal{R}^{opt} = \begin{pmatrix} -A_{cf}A_{ff}^{-1} & I \end{pmatrix}, \ \mathcal{P}^{opt} = \begin{pmatrix} -A_{ff}^{-1}A_{fc} \\ I \end{pmatrix} \text{ and } \hat{I} = \begin{pmatrix} I \\ 0 \end{pmatrix}$$

One can easily verify that $S = \mathcal{R}^{opt} A \mathcal{P}^{opt}$,

$$\begin{pmatrix} I & 0 \\ A_{cf}A_{ff}^{-1} & I \end{pmatrix}^{-1} = \begin{pmatrix} \hat{I}^T \\ \mathcal{R}^{opt} \end{pmatrix} \text{ and } \begin{pmatrix} I & A_{ff}^{-1}A_{fc} \\ 0 & I \end{pmatrix}^{-1} = \begin{pmatrix} \hat{I} & \mathcal{P}^{opt} \end{pmatrix}.$$

Application of the inverses of the three operators in the exact factorization is equivalent to restriction at the *c*-points , followed by solution of two systems: A_{ff} which can be interpreted as relaxation and $\mathcal{R}^{opt}A\mathcal{P}^{opt}$ which is the coarse correction. Finally, the coarse correction is interpolated and added to the relaxation solution. As this procedure is exact, it converges in one iteration.

- p. 3/7

Further work:

how to approximate \mathcal{R}^{opt} , \mathcal{P}^{opt} and S, or rather the coarse correction $\mathcal{R}^{opt}A\mathcal{P}^{opt}$, which is nothing but $A_{cf}A_{ff}^{-1}A_{fc}$.

We enter the full block factorized preconditioning framework, that can be seen as purely algebraic and not related to MG.

Algebraic Multilevel Iteration Methods

(AMLI)

The so-called AMLI methods have been developed by Owe Axelsson and Panayot Vassilevski in a series of papers betwee 1989 and 1991.

These methods were originally developed for elliptix problems and spd matrices, and are the first regularity-free optimal order preconditioning methods.

Sequence of matrices $\{A^{(k)}\}_{k=k_0}^{\ell}$

$$N_{k_0} \subset N_{k_0+1} \subset \ldots \subset N_\ell$$

$$A^{(k)} = \begin{bmatrix} A_{11}^{(k)} & A_{12}^{(k)} \\ & & \\ A_{21}^{(k)} & A_{22}^{(k)} \end{bmatrix} \} N_k \backslash N_{k-1}$$

- p. 4/7

TDB - N

– p. 5/7

 ${\cal A}^{(k)}$ has to approximate ${\cal S}_{{\cal A}^{(k+1)}}$ in some way. For instance,

 $A^{(k)} = A_{22}^{(k+1)} - A_{21}^{(k+1)} B_{11}^{(k+1)} A_{12}^{(k+1)}.$

where $B_{11}^{(k+1)}$ is some sparse, positive definite, nonnegative and symmetric approximation of $A_{11}^{(k+1)^{-1}}$. How to split N_{k+1} into two parts: the order n_k of the matrices $A^{(k)}$ should decrease geometrically:

$$\frac{n_{k+1}}{n_k} = \rho_k \ge \rho > 1$$

TDB - NLA

$$\begin{split} M^{(k_0)} &= A^{(k_0)},\\ \text{for } k &= k_0, k_0 + 1, \dots \ell - 1\\ M^{(k+1)} &= \begin{bmatrix} A_{11}^{(k+1)} & 0\\ \\ A_{21}^{(k+1)} & \widetilde{S}^{(k)} \end{bmatrix} \begin{bmatrix} I_1^{(k+1)} & A_{11}^{(k+1)^{-1}} A_{12}^{(k+1)}\\ \\ 0 & I_2^{(k+1)} \end{bmatrix} \end{split}$$

endfor

where $\widetilde{S}^{(k)}$ can be, for instance:

$$\widetilde{S}^{(k)} = A^{(k)} \left[I - P_{\nu} (M^{(k)^{-1}} A^{(k)}) \right]^{-1},$$

 $P_{\nu}(t)$ denotes a polynomial of degree ν .

We could use some other way of stabilization.

– p. 6/7

- p. 7/7

$$\begin{aligned} & \operatorname{Solve} \begin{bmatrix} A_{11}^{(k+1)} & 0\\ & \\ A_{21}^{(k+1)} & \widetilde{S}^{(k)} \end{bmatrix} \begin{bmatrix} \mathbf{w}_1\\ \mathbf{w}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{y}_1\\ \mathbf{y}_2 \end{bmatrix}, & \text{ i.e} \end{aligned}$$

$$\begin{aligned} & (F1) \quad \mathbf{w}_1 &= A_{11}^{(k+1)^{-1}} \mathbf{y}_1, \\ & (F2) \quad \mathbf{w}_2 &= \widetilde{S}^{(k)^{-1}} \left(\mathbf{y}_2 - A_{21}^{(k+1)} \mathbf{w}_1 \right). \end{aligned}$$

Backward sweep:

Solve
$$\begin{bmatrix} I_1^{(k+1)} & A_{11}^{(k+1)^{-1}} A_{12}^{(k+1)} \\ 0 & I_2^{(k+1)} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{w}_1 \\ \mathbf{w}_2 \end{bmatrix}, \quad \text{i.e.}$$

$$(B1) \quad \mathbf{x}_2 = \mathbf{w}_2,$$

$$(B2) \quad \mathbf{x}_1 = \mathbf{w}_1 - A_{11}^{(k+1)^{-1}} A_{12}^{(k+1)} \mathbf{x}_2.$$

 $\label{eq:rescaled_$

– p. 8/7

– p. 9/7

