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Multigrid methods

Algebraic Multigrid methods
Algebraic Multilevel Iteration

methods
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Residual correction

Ax = b,xexact, e(k) = xexact − x(k)

r(k) = b−Ax(k)

Residual equation: Ae(k) = r(k)

Residual correction: x(k+1) = x(k) + e(k)

Recall: x(k+1) = x(k) + C−1(b−Ax(k))

Error propagation: e(k+1) = (I − C−1A)e(k)
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Run Jacobi demo...

student/NLA/Demos/Module3/L5
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High and low frequencies - nonsmooth,

smooth
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Main idea: R. Fedorenko (1961), N.S.

Bakhvalov (1966)

Reduce the error e(k) = xexact − x(k) on the given (fine) grid by
successive residual corrections on a hierarchy of (nested)
coarser grids.

– p. 5/6
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Some numbers/contributors:

Years MG AMG Years MG AMG

1966-1986 3420 873 2007-2017 21700 16800

1987-1996 15400 5370 2018- 4610 2360

1997-2006 22000 12800

Archi Brandt Jan Mandel Tom Manteiffel
Wolggang Hackbusch Steve McCormick Yvan Notay
Jurgen Ruge Petr Vanec Irad Yavneh
Klaus Stüben Piet Hemker Panayot Vassilevski
.....

Ruge, J. W.; Stüben, K. Algebraic multigrid. Multigrid
methods, 73-130, Frontiers Appl. Math., 3, SIAM,
Philadelphia, PA, 1987.
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Borrowed from Yvan Notay

Algebraic multigrid and multilevel methods
https://perso.uclouvain.be/paul.vandooren/Notay.pdf

– p. 1/2

An example
PDE: −∆ u = 20 e−10 ((x−0.5)2+(y−0.5)2) in Ω = (0, 1) × (0, 1)

u = 0 on ∂Ω

Uniform grid with mesh size h , five-point finite difference.
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An idea
Fine grid (system to solve):

Au = b .

Coarse grid (auxiliary system):

AC uC = bC .

uC may be computed and prolongated (by interpolation)
on the fine grid:

u(1) = puC

u(1) may serve as initial approximation, i.e., one solves

A (u(1) + x) = b or Ax = b− ApA−1
C bC .

Algebraic multigrid and multilevel methods – p.6/66

How it works

Error on the fine grid
after interpolation
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Let us repeat

A (u(1) + x) = b or Ax = b−ApA−1
C bC = r(1) .

(1) Restrict on the coarse grid:

rC = r r(1) .

(2) Solve on the coarse grid:

x
(2)
C = A−1

C rC .

(3) Prolongate:

x(2) = px
(2)
C ,

u(2) = u(1) + x(2) .
Algebraic multigrid and multilevel methods – p.8/66

Still working ?

Error on the fine grid
after interpolation

Repeating the process . . .
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Error controlled through residual

Initial residual (r.h.s.) After coarse grid correction
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Explanation
Assume (for simplicity) that bC = r b .

One has
u− u(1) = u− pA−1

C r b

=
(
I − pA−1

C r A
)
u ,

u− u(2) =
(
I − pA−1

C r A
)2

u ,

etc. Similarly
r(1) = b− ApA−1

C r b

=
(
I − ApA−1

C r
)
r(0) .

pA−1
C r has rank nC →

ρ
(
I − ApA−1

C r
)

= ρ
(
I − pA−1

C r A
)

≥ 1 .
Algebraic multigrid and multilevel methods – p.11/66



Smoother enters the scene
u− u(1) and r(1) very oscillatory
→ improve u(1) with a simple iterative method,

efficient in smoothing the error & residual.

Example: symmetric Gauss-Seidel (SGS)

Lu(1+1/2) = b− (A − L)u(1) , (L = low(A))

U u(2) = b− (A − U)u(1+1/2) . (U = upp(A))

Same as
u(2) = u(1) + M−1r(1) , M = LD−1 U (D = diag(A))
Thus:

u− u(2) = (I − M−1A) (u− u(1))

r(2) = (I − AM−1) r(1)

One may repeat: r(m+1) = (I − AM−1)m r(1) .
Algebraic multigrid and multilevel methods – p.12/66

Smoothing effect

Residual after CG correction Adding 1 SGS step
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Smoothing + coarse grid correction

Adding now a CG correction

. . . and again 1 SGS step
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Smoothing + coarse grid correction

Adding now a CG correction . . . and again 1 SGS step
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What we learned
For each coarse grid correction:

u− u(m+1) =
(
I − pA−1

C r A
)
(u− u(m)) .

Cannot work alone because ρ
(
I − pA−1

C r A
)

≥ 1 .

For each smoothing step

u− u(m+1) =
(
I − M−1 A

)
(u− u(m)) .

Not efficient alone because ρ
(
I − M−1 A

)
≈ 1 .

However

ρ
( (

I − M−1 A
) (

I − pA−1
C r A

) (
I − M−1 A

) )
� 1

Rmk: if A = AT , we assume M = MT .
Algebraic multigrid and multilevel methods – p.15/66
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Borrowed from:

W. Gropp, A Multigrid Tutorial
Presentation by Van Emden Henson, LLNL
https://www.math.ust.hk/~mawang/teaching/math532/mgtut.pdf

R. Falgout, An Algebraic Multigrid Tutorial, Conference
presentation 2010.
https://mathinstitutes.org/videos/videos/5711

– p. 2/2
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1D Interpolation (Prolongation)

Ωh

Ω2h

• Values at points on the coarse grid map unchanged
to the fine grid

• Values at fine-grid points NOT on the coarse grid
are the averages of their coarse-grid neighbors
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The prolongation operator  (1D)

• We may regard        as a linear operator from
ℜ N/2-1          ℜ N-1

• e.g., for N=8,

•         has full rank, and thus null space
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1D Restriction by injection
• Mapping from the fine grid to the coarse grid:

• Let     ,         be defined on      ,       .  Then

    where               .

vh v2h Ωh Ω2h

vv h
i

h
i 2
2 =

I hhh
h

22 Ω→Ω:

vvI hhh
h

22 =
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1D Restriction by full-weighting

• Let     ,         be defined on      ,       .  Then

    where

vh v2h Ωh Ω2h

vvvv h
i

h
i

h
i

h
i 12212
2 )++(= 2

4
1

+−

vvI hhh
h

22 =
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The restriction operator R (1D)

• We may regard        as a linear operator from
ℜ N-1          ℜ N/2-1

• e.g., for N=8,

•         has rank       , and thus dim(NS(R))
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Multilevel preconditioning methods: MG

Procedure MG: u(k) ←MG
(
u(k), f (k), k, {ν(k)j }kj=1

)
;

if k = 0, then solve A(0)u(0) = f (0) exactly or by smoothing,
else

u(k) ←
s1
S(k)1

(
u(k), f (k)

)
, perform s1 pre-smoothing steps,

Correct the residual:
r(k) = A(k)u(k) − f (k); form the current residual,

r(k−1) ← R
(
r(k)

)
, restrict the residual on the next coarser grid,

e(k−1) ←MG
(
0, r(k−1), k − 1, {ν(k−1)

j }k−1
j=1

)
;

e(k) ← P
(
e(k−1)

)
; prolong the error from the next coarser to the

current grid,
u(k) = u(k) − e(k); update the solution,

u(k) ←
s2
S(k)2

(
u(k), f (k)

)
, perform s2 post-smoothing steps.

endif

end Procedure MG

– p. 1/18
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post-smoothing steps

pre-smoothing steps

exact solving

restriction prolongation

One MG step (V -cycle)

The MG W -cycle

– p. 2/18
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Nested iteration

Procedure NI : u(ℓ) ← NI
(
u(0),

{
f (k)

}(ℓ)

k=1
, ℓ, {ν(k)}ℓk=1

)
;

u(0) = A(0)−1
f (0),

for k= 1 to ℓ do

u(k) = P
(
u(k−1)

)
;

u(k) ←MG
(
u(k), f (k), k, {ν(k)j }kj=1

)
;

endfor

end Procedure NI

The so-called full MG corresponds to Procedure NI(·, ·, ℓ, {1, 1, · · · , 1})

The full MG (V -cycle)

– p. 3/18
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A compact formula presenting the MG procedure in terms of a recursively defined
iteration matrix:
( i) Let M(0) = 0,
(ii) For k = 1 to ℓ, define

M(k) = S(k)s2
(
A(k)−1 − Pk

k−1

(
I −M(k−1)ν

)
A(k−1)−1Rk−1

k

)
A(k)S(k)s1 ,

where S(k) is a smoothing iteration matrix (assuming S1 and S2 are the same), Rk−1
k

and Pk
k−1 are matrices which transfer data between two consecutive grids and

correspond to the restriction and prolongation operators R and P , respectively, and
ν = 1 and ν = 2 correspond to the V - and W -cycles.

It turns out that in many cases the spectral radius of M(ℓ), ρ
(
M(ℓ)

)
, is independent of ℓ,

thus the rate of convergence of the NI method is optimal. Also, a mechanism to make
the spectral radius of M(ℓ) smaller is to choose s1 and s2 larger. The price for the latter
is, clearly, a higher computational cost.

– p. 4/18
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MG ingredients

smoothers (many different)
Jacobi, weighted Jacobi (ωdiag(A), GS, SOR,
SSOR, SPAI

restriction and prolongation operators

coarse level matrix (approximation properties)

– p. 5/18



TDB − NLA

MG: Rate of convergence and computational

complexity

Let one Work Unit (WU) be the cost of one relaxation sweep
on the fine-grid.
– Ignore the cost of restriction and interpolation (typically
about 20% of the total cost).
– Consider a V-cycle with 1 pre-smoothing and 1
post-smoothing sweep.
– In d-dimensions, each coarse grid has about 2−d the number
of points as the finer grid. – Cost of V-cycle (in WU):

2(1 + 2−d + 2−2d ++2−3d + · · ·+ 2−ℓd ≤ 2

1− 2−d
.

– Total storage:

2Nd(1 + 2−d + 2−2d ++2−3d + · · ·+ 2−ℓd ≤ 2Nd

1− 2−d
.

– p. 6/18
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Algebraic Multigrid
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C-AMG coarsening 
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C-AMG coarsening 
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C-AMG coarsening 

select C-pt with 
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select neighbors 
as F-pts 
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C-AMG coarsening 

select C-pt with 
maximal measure 

  

select neighbors 
as F-pts 

  

update measures 
of F-pt neighbors 
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C-AMG coarsening 

select C-pt with 
maximal measure 

  

select neighbors 
as F-pts 

  

update measures 
of F-pt neighbors 
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C-AMG coarsening 

select C-pt with 
maximal measure 

  

select neighbors 
as F-pts 

  

update measures 
of F-pt neighbors 
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C-AMG coarsening 

select C-pt with 
maximal measure 

  

select neighbors 
as F-pts 

  

update measures 
of F-pt neighbors 
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C-AMG coarsening 

select C-pt with 
maximal measure 

  

select neighbors 
as F-pts 

  

update measures 
of F-pt neighbors 

3 5 5 5 5 5 3 
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C-AMG coarsening 

select C-pt with 
maximal measure 

  

select neighbors 
as F-pts 

  

update measures 
of F-pt neighbors 
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C-AMG coarsening is inherently sequential 

select C-pt with 
maximal measure 

  

select neighbors 
as F-pts 

  

update measures 
of F-pt neighbors 
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AMG: The ideal prolongation and

restriction

Reference: Wiesner, Tuminaro, Wall, Gee
Multigrid transfers for nonsymmetric systems based on Schur complements
and Galerkin projections, NLA, 2013

AMG and the Schur complement


Aff Afc

Acf Acc





xf

xc


 =


bf

bc


 .

Assuming Aff to be invertible, A has the corresponding LDU decomposition

Aff Afc

Acf Acc


 =


 I 0

AcfA
−1
ff I





Aff 0

0 S





I A−1

ff Afc

0 I




where S = Acc −AcfA
−1
ff Afc and is referred to as the Schur complement.

– p. 2/7
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Define

Ropt =
(
−AcfA

−1
ff I

)
, Popt =


−A−1

ff Afc

I


 and Î =


I

0


 .

One can easily verify that S = RoptAPopt,


 I 0

AcfA
−1
ff I




−1

=


 ÎT

Ropt


 and


I A−1

ff Afc

0 I




−1

=
(
Î Popt

)
.

Application of the inverses of the three operators in the exact factorization is
equivalent to restriction at the c-points , followed by solution of two systems:
Aff which can be interpreted as relaxation and RoptAPopt which is the coarse
correction. Finally, the coarse correction is interpolated and added to the
relaxation solution. As this procedure is exact, it converges in one iteration.
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Further work:
how to approximate Ropt, Popt and S, or rather the coarse
correction RoptAPopt, which is nothing but AcfA

−1
ffAfc.

We enter the full block factorized preconditioning framework,
that can be seen as purely algebraic and not related to MG.

– p. 4/7

TDB − NLA

Algebraic Multilevel Iteration Methods

(AMLI)

The so-called AMLI methods have been developed by Owe
Axelsson and Panayot Vassilevski in a series of papers
betwee 1989 and 1991.
These methods were originally developed for elliptix problems
and spd matrices, and are the first regularity-free optimal
order preconditioning methods.

Sequence of matrices
{
A(k)

}ℓ

k=k0

Nk0 ⊂ Nk0+1 ⊂ . . . ⊂ Nℓ

A(k) =



A

(k)
11 A

(k)
12

A
(k)
21 A

(k)
22




} Nk\Nk−1

} Nk−1

.

– p. 5/7
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A(k) has to approximate SA(k+1) in some way. For instance,

A(k) = A
(k+1)
22 −A

(k+1)
21 B

(k+1)
11 A

(k+1)
12 .

where B
(k+1)
11 is some sparse, positive definite, nonnegative

and symmetric approximation of A(k+1)−1

11 .
How to split Nk+1 into two parts: the order nk of the matrices
A(k) should decrease geometrically:

nk+1

nk
= ρk ≥ ρ > 1.

– p. 6/7

TDB − NLA

M(k0) = A(k0),

for k = k0, k0 + 1, . . . ℓ− 1

M(k+1) =




A
(k+1)
11 0

A
(k+1)
21 S̃(k)







I
(k+1)
1 A

(k+1)−1

11 A
(k+1)
12

0 I
(k+1)
2


 ,

endfor

where S̃(k) can be, for instance:

S̃(k) = A(k)
[
I − Pν(M

(k)−1
A(k))

]−1
,

Pν(t) denotes a polynomial of degree ν.

We could use some other way of stabilization.
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Forward sweep:

Solve




A
(k+1)
11 0

A
(k+1)
21 S̃(k)







w1

w2


 =




y1

y2


 , i.e.

(F1) w1 = A
(k+1)−1

11 y1,

(F2) w2 = S̃(k)−1
(
y2 −A

(k+1)
21 w1

)
.

Backward sweep:

Solve




I
(k+1)
1 A

(k+1)−1

11 A
(k+1)
12

0 I
(k+1)
2







x1

x2


 =




w1

w2


 , i.e.

(B1) x2 = w2,

(B2) x1 = w1 −A
(k+1)−1

11 A
(k+1)
12 x2.
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Procedure AMLI : u(k) ← AMLI
(
f (k), k, νk, {a(k)j }

νk
j=0

)
;

[f
(k)
1 , f

(k)
2 ]← f (k),

w
(k)
1 = B

(k)
11 f

(k)
1 ,

w
(k)
2 = f

(k)
2 −A

(k)
21 w

(k)
1 ,

k = k − 1,

if k = 0 then u
(0)
2 = A(0) w

(1)
2 , solve on the coarsest level exactly;

else

u
(k)
2 ← AMLI

(
a
(k)
νk w

(k)
2 , k, νk, {a(k)j }

νk
j=0

)
;

for j = 1 to νk − 1:

u
(k)
2 ← AMLI

(
A(k) u

(k)
2 + a

(k)
νk−jw

(k)
2 , k, νk, {a(k)j }

νk
j=0

)
;

endfor

endif

k = k + 1,

u
(k)
1 = w

(k)
1 −B

(k)
11 A

(k)
12 u

(k)
2 ,

u(k) ← [u
(k)
1 ,u

(k)
2 ]

end Procedure AMLI
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solution on
the coarsest level

multiplication
with A(k)

12 ,B(k)
11

multiplication
with A(k)

21 ,B(k)
11

multiplication with

A
(k)

level 0

level 1,

level 2,

level 3,

level 4,

level 5

ν=1

ν=3

ν=1

ν=1

One AMLI step (V -cycle) ν-fold W -cycle, [1, 1, 3, 1]
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AMLI: Computational complexity

l
l−1

...

l−m+1

l−m

...
l−m−1

l−2m+1

...

...

ν

ν

ν

1

1

1

1
...

...

1

Polynomial degree/
inner iterations

Level no.
wℓ=C(nℓ + · · ·+ nℓ−µ)

+Cν(nℓ−µ−1 + · · ·+ nℓ−2µ−1)

+Cν2(nℓ−2µ−2 + · · ·+ nℓ−3µ−2)

+ · · ·
≤Cnℓ

[
1 + 1

ρ
+ · · ·+

(
1
ρ

)µ] 1

1− νρ−(µ+1)
,

where 1 < ρ ≤ ρk =
nk+1

nk
,

k = 0, 1, . . . ℓ−1. Hence

ν < ρµ+1
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