

Multigrid methods

 Algebraic Multigrid methods Algebraic Multilevel Iteration methods

Run Jacobi demo...

student/NLA/Demos/Module3/L5

High and low frequencies - nonsmooth, smooth

Ruge, J. W.; Stüben, K. Algebraic multigrid. Multigrid methods, 73-130, Frontiers Appl. Math., 3, SIAM, TDB-NLRhiladelphia, PA, 1987.

Borrowed from Yvan Notay

Algebraic multigrid and multilevel methods
https://perso.uclouvain.be/paul.vandooren/Notay.pdf

An example

```
PDE: -\Deltau=20 e 
    u=0 on }\partial
```

Uniform grid with mesh size h, five-point finite difference.

Solution with $h^{-1}=50$

Solution with $h^{-1}=25$

An idea

Fine grid (system to solve):

$$
A \mathbf{u}=\mathbf{b}
$$

Coarse grid (auxiliary system):

$$
A_{C} \mathbf{u}_{C}=\mathbf{b}_{C}
$$

\mathbf{u}_{C} may be computed and prolongated (by interpolation) on the fine grid:

$$
\mathbf{u}^{(1)}=p \mathbf{u}_{C}
$$

$\mathbf{u}^{(1)}$ may serve as initial approximation, i.e., one solves

$$
A\left(\mathbf{u}^{(1)}+\mathbf{x}\right)=\mathbf{b} \quad \text { or } \quad A \mathbf{x}=\mathbf{b}-A p A_{C}^{-1} \mathbf{b}_{C} .
$$

Error on the fine grid after interpolation

Let us repeat uıs Still working ?

$A\left(\mathbf{u}^{(1)}+\mathbf{x}\right)=\mathbf{b} \quad$ or $\quad A \mathbf{x}=\mathbf{b}-A p A_{C}^{-1} \mathbf{b}_{C}=\mathbf{r}^{(1)}$.
(1) Restrict on the coarse grid:

$$
\mathbf{r}_{C}=r \mathbf{r}(1)
$$

(2) Solve on the coarse grid:

$$
\mathbf{x}_{C}^{(2)}=A_{C}^{-1} \mathbf{r}_{C}
$$

(3) Prolongate:

$$
\begin{aligned}
\mathbf{x}^{(2)} & =p \mathbf{x}_{C}^{(2)} \\
\mathbf{u}^{(2)} & =\mathbf{u}^{(1)}+\mathbf{x}^{(2)} .
\end{aligned}
$$

Error on the fine grid after interpolation

$$
\frac{\left\|\mathbf{u}-\mathbf{u}^{(1)}\right\|}{\|\mathbf{u}\|}=0.0019
$$

Repeating the process ...

$$
\frac{\left\|\mathbf{u}-\mathbf{u}^{(2)}\right\|}{\|\mathbf{u}\|}=0.0018
$$

Error controlled through residual uıв Explanation

Assume (for simplicity) that $\mathbf{b}_{C}=r \mathbf{b}$.
One has

$$
\begin{aligned}
\mathbf{u}-\mathbf{u}^{(1)} & =\mathbf{u}-p A_{C}^{-1} r \mathbf{b} \\
& =\left(I-p A_{C}^{-1} r A\right) \mathbf{u} \\
\mathbf{u}-\mathbf{u}^{(2)} & =\left(I-p A_{C}^{-1} r A\right)^{2} \mathbf{u}
\end{aligned}
$$

etc. Similarly

$$
\begin{aligned}
\mathbf{r}^{(1)} & =\mathbf{b}-A p A_{C}^{-1} r \mathbf{b} \\
& =\left(I-A p A_{C}^{-1} r\right) \mathbf{r}^{(0)} .
\end{aligned}
$$

$p A_{C}^{-1} r$ has rank $n_{C} \rightarrow$

$$
\rho\left(I-A p A_{C}^{-1} r\right)=\rho\left(I-p A_{C}^{-1} r A\right) \geq 1
$$

Smoother enters the scene

$\mathbf{u}-\mathbf{u}^{(1)}$ and $\mathbf{r}^{(1)}$ very oscillatory
\rightarrow improve $\mathbf{u}^{(1)}$ with a simple iterative method, efficient in smoothing the error \& residual.
Example: symmetric Gauss-Seidel (SGS)

$$
\begin{aligned}
L \mathbf{u}^{(1+1 / 2)} & =\mathbf{b}-(A-L) \mathbf{u}^{(1)}, \quad(L=\operatorname{low}(A)) \\
U \mathbf{u}^{(2)} & =\mathbf{b}-(A-U) \mathbf{u}^{(1+1 / 2)} . \quad(U=\operatorname{upp}(A))
\end{aligned}
$$

Same as
$\mathbf{u}^{(2)}=\mathbf{u}^{(1)}+M^{-1} \mathbf{r}^{(1)}, \quad M=L D^{-1} U \quad(D=\operatorname{diag}(A))$ Thus:

$$
\begin{aligned}
\mathbf{u}-\mathbf{u}^{(2)} & =\left(I-M^{-1} A\right)\left(\mathbf{u}-\mathbf{u}^{(1)}\right) \\
\mathbf{r}^{(2)} & =\left(I-A M^{-1}\right) \mathbf{r}^{(1)}
\end{aligned}
$$

One may repeat: $\mathbf{r}^{(m+1)}=\left(I-A M^{-1}\right)^{m} \mathbf{r}^{(1)}$.
uıв Smoothing effect

Adding 3 SGS steps

Adding 1 SGS step

Adding 8 SGS steps

Smoothing + coarse grid correction

Adding now a CG correction

$$
\frac{\|\mathbf{r}\|}{\left\|\mathbf{r}_{\text {previous }}\right\|}=0.746
$$

Adding now a CG correction

$\frac{\|\mathbf{r}\|}{\left\|\mathbf{r}_{\text {previous }}\right\|}=0.746$

$$
\frac{\|\mathbf{r}\|}{\left\|\mathbf{r}_{\text {previous }}\right\|}=0.0155
$$

What we learned

For each coarse grid correction:

$$
\mathbf{u}-\mathbf{u}^{(m+1)}=\left(I-p A_{C}^{-1} r A\right)\left(\mathbf{u}-\mathbf{u}^{(m)}\right) .
$$

Cannot work alone because $\rho\left(I-p A_{C}^{-1} r A\right) \geq 1$.
For each smoothing step

$$
\mathbf{u}-\mathbf{u}^{(m+1)}=\left(I-M^{-1} A\right)\left(\mathbf{u}-\mathbf{u}^{(m)}\right)
$$

Not efficient alone because $\rho\left(I-M^{-1} A\right) \approx 1$.
However

$$
\rho\left(\left(I-M^{-1} A\right)\left(I-p A_{C}^{-1} r A\right)\left(I-M^{-1} A\right)\right) \ll 1
$$

Rmk: if $A=A^{T}$, we assume $M=M^{T}$.
$1 \mathcal{D}$ Interpolation (Prolongation)

- Values at points on the coarse grid map unchanged to the fine grid
- Values at fine-grid points $\mathcal{N} O \mathcal{T}$ on the coarse grid are the averages of their coarse-grid neighbors

The prolongation operator (1D)

- We may regard $I_{2 h}^{h}$ as a line ar operator from $\mathfrak{N} N / 2-1 \longrightarrow \mathfrak{N N} \mathfrak{N}$
- e.g., for $\mathcal{N}=8$,

$$
\left(\begin{array}{cccc}
1 / 2 & & \\
1 & & \\
1 / 2 & 1 / 2 & \\
& 1 & \\
& 1 / 2 & 1 / 2 \\
& & 1 \\
& & 1 / 2
\end{array}\right)_{7 \times 3}\left(\begin{array}{l}
v_{1}^{2 h} \\
v_{2}^{2 h} \\
\\
\\
v_{3}^{2 h}
\end{array}\right)_{3 \times 1}=\left(\begin{array}{l}
v_{1}^{h} \\
v_{2}^{h} \\
v_{3}^{h} \\
v_{4}^{h} \\
v_{4}^{h} \\
v_{5}^{h} \\
v_{7}^{h}
\end{array}\right)_{7 \times 1}
$$

- $I_{2 h}^{h}$ has full rank, and thus null space $\{\phi\}$
$1 \mathcal{D}$ Restriction by injection
- Mapping from the fine grid to the coarse grid:

$$
I_{h}^{2 h}: \Omega^{h} \rightarrow \Omega^{2 h}
$$

- Let $v^{h}, v^{2 h}$ bedefined on $\Omega^{h}, \Omega^{2 h}$. Then

$$
I_{h}^{2 h} v^{h}=v^{2 h}
$$

where $v_{i}^{2 h}=v_{2 i}^{h}$.

$1 \mathcal{D}$ Restriction by full- weighting

- Let $v^{h}, v^{2 h}$ be defined on $\Omega^{h}, \Omega^{2 h}$. Then

$$
I_{h}^{2 h} v^{h}=v^{2 h}
$$

where

$$
v_{i}^{2 h}=\frac{1}{4}\left(v_{2 i-1}^{h}+2 v_{2 i}^{h}+v_{2 i+1}^{h}\right)
$$

The restriction operator $\mathcal{R}(1 \mathcal{D})$

- We may regard $I_{h}^{2 h}$ as a linear operator from $\mathfrak{N N} \longrightarrow \mathfrak{R N}^{2}-1$
- e.g., for $\mathfrak{N}=8$,

- $I_{h}^{2 h}$ has rank $\sim \frac{N}{2}$, and thus dim($\left.\mathcal{N} S(\mathcal{R})\right) \sim \frac{N}{2}$

Multilevel preconditioning methods: MG

Procedure $M G: \mathbf{u}^{(k)} \leftarrow M G\left(\mathbf{u}^{(k)}, \mathbf{f}^{(k)}, k,\left\{\nu_{j}^{(k)}\right\}_{j=1}^{k}\right)$;
if $k=0$, then solve $A^{(0)} \mathbf{u}^{(0)}=\mathbf{f}^{(0)}$ exactly or by smoothing,
else
$\mathbf{u}^{(k)} \underset{s_{1}}{\leftarrow} \mathcal{S}_{1}^{(k)}\left(\mathbf{u}^{(k)}, \mathbf{f}^{(k)}\right)$, perform s_{1} pre-smoothing steps,
Correct the residual:
$\mathbf{r}^{(k)}=A^{(k)} \mathbf{u}^{(k)}-\mathbf{f}^{(k)}$; form the current residual,
$\mathbf{r}^{(k-1)} \leftarrow \mathcal{R}\left(\mathbf{r}^{(k)}\right)$, restrict the residual on the next coarser grid,
$\mathbf{e}^{(k-1)} \leftarrow M G\left(\mathbf{0}, \mathbf{r}^{(k-1)}, k-1,\left\{\nu_{j}^{(k-1)}\right\}_{j=1}^{k-1}\right) ;$
$\mathbf{e}^{(k)} \leftarrow \mathcal{P}\left(\mathbf{e}^{(k-1)}\right)$; prolong the error from the next coarser to the current grid,
$\mathbf{u}^{(k)}=\mathbf{u}^{(k)}-\mathbf{e}^{(k)}$; update the solution,
$\mathbf{u}^{(k)} \underset{s_{2}}{\leftarrow} \mathcal{S}_{2}^{(k)}\left(\mathbf{u}^{(k)}, \mathbf{f}^{(k)}\right)$, perform s_{2} post-smoothing steps.
endif
end Procedure $M G$

The MG W-cycle

where $\mathcal{S}^{(k)}$ is a smoothing iteration matrix (assuming \mathcal{S}_{1} and \mathcal{S}_{2} are the same), \mathcal{R}_{k}^{k-1} and \mathcal{P}_{k-1}^{k} are matrices which transfer data between two consecutive grids and correspond to the restriction and prolongation operators \mathcal{R} and \mathcal{P}, respectively, and $\nu=1$ and $\nu=2$ correspond to the V - and W-cycles.

It turns out that in many cases the spectral radius of $M^{(\ell)}, \rho\left(M^{(\ell)}\right)$, is independent of ℓ, thus the rate of convergence of the $N I$ method is optimal. Also, a mechanism to make the spectral radius of $M^{(\ell)}$ smaller is to choose s_{1} and s_{2} larger. The price for the latter is, clearly, a higher computational cost.

MG ingredients

■ smoothers (many different)
■ Jacobi, weighted Jacobi ($\omega \operatorname{diag}(A)$, GS, SOR, SSOR, SPAI

- restriction and prolongation operators

■ coarse level matrix (approximation properties)

Let one Work Unit (WU) be the cost of one relaxation sweep on the fine-grid.

- Ignore the cost of restriction and interpolation (typically about 20% of the total cost).
- Consider a V-cycle with 1 pre-smoothing and 1 post-smoothing sweep.
- In d-dimensions, each coarse grid has about 2^{-d} the number of points as the finer grid. - Cost of V-cycle (in WU):

$$
2\left(1+2^{-d}+2^{-2 d}++2^{-3 d}+\cdots+2^{-\ell d} \leq \frac{2}{1-2^{-d}}\right.
$$

- Total storage:

TDB-NLA $2 N^{d}\left(1+2^{-d}+2^{-2 d}++2^{-3 d}+\cdots+2^{-\ell d} \leq \frac{2 N^{d}}{1-2^{-d}}\right.$.

C-AMG coarsening

Lawrence Livermore National Laboratory
\rightarrow select C-pt with maximal measure
\rightarrow select neighbors as F-pts
\rightarrow update measures of F-pt neighbors

\rightarrow select C-pt with maximal measure
\rightarrow select neighbors as F-pts
\rightarrow update measures of F-pt neighbors

Lawrence Livermore National Laboratory

C-AMG coarsening

\rightarrow select C-pt with maximal measure
\rightarrow select neighbors as F-pts
\rightarrow update measures of F-pt neighbors

Lawrence Livermore National Laboratory

\rightarrow select C-pt with maximal measure
\rightarrow select neighbors as F-pts
\rightarrow update measures
of F-pt neighbors

Lawrence Livermore National Laboratory

C-AMG coarsening

\rightarrow select C-pt with maximal measure
\rightarrow select neighbors as F-pts
\rightarrow update measures of F-pt neighbors

Lawrence Livermore National Laboratory

\rightarrow select C-pt with maximal measure
\rightarrow select neighbors as F-pts
\rightarrow update measures of F-pt neighbors

Lawrence Livermore National Laboratory

C-AMG coarsening

\rightarrow select C-pt with maximal measure
\rightarrow select neighbors as F-pts
\rightarrow update measures
of F-pt neighbors

Lawrence Livermore National Laboratory

\rightarrow select C-pt with maximal measure
\rightarrow select neighbors as F-pts
\rightarrow update measures
of F-pt neighbors

Lawrence Livermore National Laboratory

C-AMG coarsening

\rightarrow select C-pt with maximal measure
\rightarrow select neighbors as F-pts
\rightarrow update measures
of F-pt neighbors

Lawrence Livermore National Laboratory \square_{34}

\rightarrow select C-pt with maximal measure
\rightarrow select neighbors as F-pts
\rightarrow update measures of F-pt neighbors

Lawrence Livermore National Laboratory

AMG: The ideal prolongation and restriction

Reference: Wiesner, Tuminaro, Wall, Gee
Multigrid transfers for nonsymmetric systems based on Schur complements and Galerkin projections, NLA, 2013

AMG and the Schur complement

$$
\left(\begin{array}{cc}
A_{f f} & A_{f c} \\
A_{c f} & A_{c c}
\end{array}\right)\binom{x_{f}}{x_{c}}=\binom{b_{f}}{b_{c}} .
$$

Assuming $A_{f f}$ to be invertible, A has the corresponding LDU decomposition

$$
\left(\begin{array}{cc}
A_{f f} & A_{f c} \\
A_{c f} & A_{c c}
\end{array}\right)=\left(\begin{array}{cc}
I & 0 \\
A_{c f} A_{f f}^{-1} & I
\end{array}\right)\left(\begin{array}{cc}
A_{f f} & 0 \\
0 & S
\end{array}\right)\left(\begin{array}{cc}
I & A_{f f}^{-1} A_{f c} \\
0 & I
\end{array}\right)
$$

where $S=A_{c c}-A_{c f} A_{f f}^{-1} A_{f c}$ and is referred to as the Schur complement.

One can easily verify that $S=\mathcal{R}^{o p t} A \mathcal{P}^{o p t}$,

$$
\left(\begin{array}{cc}
I & 0 \\
A_{c f} A_{f f}^{-1} & I
\end{array}\right)^{-1}=\binom{\hat{I}^{T}}{\mathcal{R}^{o p t}} \text { and }\left(\begin{array}{cc}
I & A_{f f}^{-1} A_{f c} \\
0 & I
\end{array}\right)^{-1}=\left(\begin{array}{ll}
\hat{I} & \mathcal{P}^{o p t}
\end{array}\right) .
$$

Application of the inverses of the three operators in the exact factorization is equivalent to restriction at the c-points, followed by solution of two systems: $A_{f f}$ which can be interpreted as relaxation and $\mathcal{R}^{o p t} A \mathcal{P}^{o p t}$ which is the coarse correction. Finally, the coarse correction is interpolated and added to the relaxation solution. As this procedure is exact, it converges in one iteration.

Algebraic Multilevel Iteration Methods

(AMLI)

The so-called AMLI methods have been developed by Owe

 Axelsson and Panayot Vassilevski in a series of papers betwee 1989 and 1991.These methods were originally developed for elliptix problems and spd matrices, and are the first regularity-free optimal order preconditioning methods.

Sequence of matrices $\left\{A^{(k)}\right\}_{k=k_{0}}^{\ell}$

$$
\begin{gathered}
N_{k_{0}} \subset N_{k_{0}+1} \subset \ldots \subset N_{\ell} \\
\left.A^{(k)}=\left[\begin{array}{cc}
A_{11}^{(k)} & A_{12}^{(k)} \\
A_{21}^{(k)} & A_{22}^{(k)}
\end{array}\right]\right\} N_{k} \backslash N_{k-1} .
\end{gathered}
$$

$A^{(k)}$ has to approximate $S_{A^{(k+1)}}$ in some way. For instance,

$$
A^{(k)}=A_{22}^{(k+1)}-A_{21}^{(k+1)} B_{11}^{(k+1)} A_{12}^{(k+1)}
$$

where $B_{11}^{(k+1)}$ is some sparse, positive definite, nonnegative and symmetric approximation of $A_{11}^{(k+1)^{-1}}$. How to split N_{k+1} into two parts: the order n_{k} of the matrices $A^{(k)}$ should decrease geometrically:

$$
\frac{n_{k+1}}{n_{k}}=\rho_{k} \geq \rho>1
$$

endfor
where $\widetilde{S}^{(k)}$ can be, for instance:

$$
\widetilde{S}^{(k)}=A^{(k)}\left[I-P_{\nu}\left(M^{(k)^{-1}} A^{(k)}\right)\right]^{-1}
$$

$P_{\nu}(t)$ denotes a polynomial of degree ν.
We could use some other way of stabilization.

$(F 1) \quad \mathbf{w}_{1}=A_{11}^{(k+1)^{-1}} \mathbf{y}_{1}$,
$(F 2) \quad \mathbf{w}_{2}=\widetilde{S}^{(k)^{-1}}\left(\mathbf{y}_{2}-A_{21}^{(k+1)} \mathbf{w}_{1}\right)$.

Backward sweep:

$$
\text { Solve }\left[\right]\left[\begin{array}{l}
\mathbf{x}_{1} \\
\mathbf{x}_{2}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{w}_{1} \\
\mathbf{w}_{2}
\end{array}\right]
$$

$$
(B 1) \quad \mathbf{x}_{2}=\mathbf{w}_{2}
$$

$$
(B 2) \quad \mathbf{x}_{1}=\mathbf{w}_{1}-A_{11}^{(k+1)^{-1}} A_{12}^{(k+1)} \mathbf{x}_{2}
$$

Procedure $A M L I: \mathbf{u}^{(k)} \leftarrow A M L I\left(\mathbf{f}^{(k)}, k, \nu_{k},\left\{a_{j}^{(k)}\right\}_{j=0}^{\nu_{k}}\right) ;$
$\left[\mathbf{f}_{1}^{(k)}, \mathbf{f}_{2}^{(k)}\right] \leftarrow \mathbf{f}^{(k)}$,
$\mathbf{w}_{1}^{(k)}=B_{11}^{(k)} \mathbf{f}_{1}^{(k)}$,
$\mathbf{w}_{2}^{(k)}=\mathbf{f}_{2}^{(k)}-A_{21}^{(k)} \mathbf{w}_{1}^{(k)}$,
$k=k-1$,
if $k=0$ then $\mathbf{u}_{2}^{(0)}=A^{(0)} \mathbf{w}_{2}^{(1)}$, solve on the coarsest level exactly;
else
$\mathbf{u}_{2}^{(k)} \leftarrow A M L I\left(a_{\nu_{k}}^{(k)} \mathbf{w}_{2}^{(k)}, k, \nu_{k},\left\{a_{j}^{(k)}\right\}_{j=0}^{\nu_{k}}\right) ;$
for $j=1$ to $\nu_{k}-1$:
$\mathbf{u}_{2}^{(k)} \leftarrow A M L I\left(A^{(k)} \mathbf{u}_{2}^{(k)}+a_{\nu_{k}-j}^{(k)} \mathbf{w}_{2}^{(k)}, k, \nu_{k},\left\{a_{j}^{(k)}\right\}_{j=0}^{\nu_{k}}\right) ;$ endfor

endif

$k=k+1$,
$\mathbf{u}_{1}^{(k)}=\mathbf{w}_{1}^{(k)}-B_{11}^{(k)} A_{12}^{(k)} \mathbf{u}_{2}^{(k)}$,
$\mathbf{u}^{(k)} \leftarrow\left[\mathbf{u}_{1}^{(k)}, \mathbf{u}_{2}^{(k)}\right]$
end Procedure $A M L I$

AMLI: Computational complexity

