
Division of Scientific Computing, Department of Information Technology, Uppsala University

Numerical Linear Algebra
Feb-March, 2021

Hands-on: Ill-conditioning, basic iterative methods, general experience with
solving linear systems of equations

The aim of this computer lab is to experience matrices with various properties, ill-conditioning
and issues related to the solution of linear systems using basic iterative solution methods.

Requirement: Prepare at least two questions to discuss at the next lecture.

Exercise 1 (Ill-conditioning)
Consider the problem Ax = b, where

Ax =

[
0.835 0.667
0.333 0.266

] [
x1
x2

]
=

[
b1
b2

]
= b.

Let the right-hand vector b be a result of an experiment and is read from the dial of a test

instrument as b0 =

[
0.168
0.067

]
. However, due to the small uncertainty, we have to expect that

0.167 ≤ b1 ≤ 0.169 and 0.066 ≤ b2 ≤ 0.068.

Thus, the solution for b1 =

[
0.167
0.068

]
and for b2 =

[
0.169
0.066

]
should be expected to be as valid as

that in the first case.

1. Find the exact solution of the system for each of the above vectors b0,b1,b2.

2. Is the observed instability due to some numerical procedure, the vector b, the matrix A or
a combination of these factors?

3. Try to quantify how ill-condition the problem is. How would you do this?

4. Perturbe the system as follows[
0.835 0.667
0.333 0.266

] [
x1
x2

]
=

[
0.1669995
0.066601

]
Determine the exact solution and compare it with the exact solution corresponding to[
0.168
0.067

]
.

On the basis of the results formulate a statement concerning the necessity for the solution
of an ill-posed system to undergo a radical change for every perturbation of the original
system.

1



Exercise 2
Consider the Hilbert matrix H of size n defined by

Hi,j =
1

i+ j − 1
, 1 ≤ i, j ≤ n

The matrix is generated by the matlab command hilb(n).
This is an example of a rather nasty matrix to do numerical computations with. To illustrate this
we try to solve a system with a Hilber matrix and to compute its inverse.

• Solution of systems with Hilbert matrices

1. Check the condition number for Hilbert matrices of a few different sizes.

2. Perform the following experiments

for n = 2:2:16
H = Hilbert_matrix(n);
x = ones(n,1);
b = H*x;
y = H\b;
disp([’Norm of the residual: ’ num2str(norm(b-H*y))])
disp([’Norm of the error: ’ num2str(norm(x-y))])
figure(1), clf, plot(b-H*y)
figure(2), clf, plot(abs(x-y))
pause

end

Note how perfect the residual looks and how bad the error is.

What is the reason for this behaviour and what can we do to improve the situation?

• Compute the inverse of a Hilbert matrix. It turns out that entries of the inverse of a Hilbert
matrix have analytical expression:

H̃i,j = H̃j,i =
rij

i+ j − 1
, 1 ≤ i, j ≤ n

where H̃i,j is defined for j > i by the following recurrences rii = p2i

rij = −(n− j + 1)(n+ j − 1)

(j − 1)2
r1,j−1, j > i

 p0 = n

pi = −(n− i+ 1)(n− i− 1)

(i− 1)2
pi−1, 1 ≤ i ≤ n

These computations are performed by the command invhilb(n).

Try the following experiment to check the limitations of the inv command.

2



for i = 1:20
x = max(max(abs(invhilb(i)-inv(hilb(i)))));
fprintf(1,’For size i = %d deviation is x = %g \n’,i,x);

end

Exercise 3 (Forward and backward Gauss-Seidel method)
Background problem: Consider the convection-diffusion problem in two dimensions

−ε∆u+ v1ux + v2uy = f (x, y) ∈ Ω = [0, 1]2. (1)

The diffusion parameter ε is positive but can be very small. The coefficients v1 and v2 are in
general functions of x, y and may change sign being both positive and negative in the domain Ω.
Equation (1) can be discretized using different methods, resulting in discrete systems of linear
equations with matrices, that can have very different properties. Due to the convectio term, the
matrices are in general nonsymmetric, but for special choice of the method and the coefficients
v1 and v2, these can be also symmetric.

Two classical discretization methods for problem (1) are ”Central Differences” and ”Upwind”,
below referred to as ”cd” and ”up”. These are implemented in Matlab and the corresponding
matrices are obtained via a call to the functions cd cd2d and cd upwd2d.
To generate both types of matrices use cd main. The program is interactive and asks for three
parameters:
Refinement parameter n determines how large the system will be. The resulting

matrix will be of size
A((n− 1)2 × (n− 1)2)).

Epsilon cdeps The ε parameter in equation (1). For the numerical tests ε
should be taken equal to 1, 0.01 and 1e− 6.

Vector field flag flag A parameter determining v1 and v2

The program creates the matrices A cd and A up, calls both the forward and backward Gauss-
Seidel methods, and reports the iteration counts.

1. Load all files with names starting with cd and the file GaussSeidel.m. The latter
contains an implementation of the Forward and Backward Gauss-Seidel method. The ma-
trices and the right hand side vectors are named A cd, b cd, A up, b up. An exact
solution is also generated, named sol.

2. Run cd main for problem sizes n = 51, 101, 201, ε = 1, 10−6 and flag = 1, 2. Take ac-
count for the number of iterations required, how this increase with size and how it depends
on ε.

You may study the matrices - sparsity patterns, are these symmetric or not. Compute
their complete spectra for a few not very large sizes n by using the MATLAB function
eig(full(A)). Plot those and see how the spectrum develops when n increases.

3



3. Monitor the performance of the forward and backward Gauss-Seidel methods on both ma-
trices A cd, A up.

For flag = 1 and ε = 10−6, one of the two methods is performing exceptionally good on
the upwind matrices matrices. Why is this so?

Do you observe the same behaviour for flag = 2?

Note: You may wish to plot the convergence of GS on the same plot. For that reason you
have to uncomment a few lines in the routine GaussSeidel.m.

4. Perform the following test: Uncomment lines 39-54, where the central difference matrix
is used and run cd main for n = 51, flag = 1 and ε = 5 10−3 and then for n = 51,
flag = 1 and ε = 4 10−3.

What do you see? Explain, please.

Exercise 4 (PMHSS) Consider the Preconditioned Modified Hermitian Skew-Hermitian
Splitting (PMHSS) method ([1])
The PMHSS method can be used to solve the complex linear system

Cz = h, (2)

where C = A + iB, z = x + iy and h = f + ig. The complex system can be rewritten in a
matrix form [

A −B
B A

] [
x
y

]
=

[
f
g

]
.

The PMHSS method takes the form of a stationary iterative method,

(αV + A)xk+1/2 = (αV − iB)xk + b (3)
(αV +B)xk+1 = (αV + iA)xk+1/2 − ib

where α is a given positive parameter, V a prescribed symmetric positive definite matrix and i is
the imaginary unit. We assume that A is symmetric positive devinite (spd) and B is symmetric
positive semi-definite (spsd). It follows that both αV + A and αV + B are spd. For V = I the
method reduces to the modified Hermitian and skew-Hermitian splitting method, presented in
[2]. One possible choice of V is A.
The method in (3) can be written in a compact form as

xk+1 = L(V ;α)xk +R(V ;α)b , k = 0, 1, 2, . . . (4)

where the iteration matrix, L(V ;α), has the form

L(V ;α) = (αV +B)−1(αV + iA)(αV + A)−1(αV − iB)

and
R(V ;α) = (1− i)α(αV +B)−1V (αV + A)−1 .

4



Tasks:

• Based on the form (3), formulate PMHSS for α = 1 and V = A.

• Implement the PMHSS algorithm in Matlab.
Hint: the method requires only one solution with the matrix A+B and some vector oper-
ations. Use Matlab’s \ command to solve with A+B. Choose the initial approximation to
be x0 = 0 + i0 and compute the right-hand side vector as b=random complex(n);,
where n is the size of the system.

• Load the files (one after another)

Laplace2D_FEM_1089.mat
Laplace2D_FEM_4225.mat
Laplace2D_FEM_16641.mat
Laplace2D_FEM_66049.mat
Laplace2D_FEM_263169.mat

The files contain two matrices K and M of sizes 1089, 4225, 16641, 66049 and 263169, a
finite element stiffness (discrete Laplacian) and a mass matrix, correspondingly.

• Run your implementation for the complex matrix A + i B, where A = K and B = ωM ,
where ω could be 0.1, 1, 100, for instance. Time the execution. Check how much time it
takes for the direct solver to solve the original complex system. Compare.

Exercise 5 (’Impossible’ matrices)
Load the matrices PF 54.mat and PF 186.mat. These correspond a numerical model of
a real-life problem to two consequtive refinements of a model of the so-called ’wetting’ phe-
nomenon.
Study the matrices by all means you know - spectrum, condition number, scaling...
This is just to give you an indication how difficult real-life problems could be.

References
[1] Bai, Z.-Z., Benzi, M., Chen, F.: On preconditioned MHSS iteration methods for complex

symmetric linear systems, Numer. Alg., 56 (2011), 297–317.

[2] Bai, Z.-Z., Benzi, M., Chen, F.: Modified HSS iteration methods for a class of complex
symmetric linear systems, Computing, 87(2010), 93-111.

5


