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Hands-on: Krylov Subspace iterative solution methods: CG, GMRES,
BiCG, QMR, MINRES and more

The aim of this computer lab is to get some insight on the convergence of some of the most
often used Krylov subspace methods and to experience Lanczos method for estimating the
extreme eigenvalues of a matrix.

Requirement: Prepare at least two questions to discuss at the next lecture.
Prepare a written report using Matlab’s ’Publish’ option.

A suggestion: when you plot the convergence history (the vector, containing the residual
norm at each iteration (resvec)), in particular when you plot the result of several runs on
one figure, use semilogy(resvec./resvec(1)).

Exercise 1 (Convergence of the unpreconditioned CG method)

1. Consider the solution of Ax = b by the standard conjugate gradient, where

A =


2 −1
−1 2 −1

. . . . . .

−1 2 −1
−1 1

 ,b =


1
0
0
0
0

 .
The exact solution is x̂ = [1, 1, · · · , 1]T . Starting with x0 = [0, 0, · · · , 0]T run the un-
preconditioned conjugate gradient method. You can either use your own implementa-
tion of the standard CG method or the one available in Matlab, called for example as

[x it,fl,resnorm,it,resvec]=pcg(A,b,1e-6,size(A,1));

The matrix A can be generated in various ways. One lazy possibility is the following:

e = ones(n,1);
A = spdiags([-e 2*e -e], -1:1, n, n);
A(n,n)=1;

Run experiments for a number of different sizes of the matrix A, say, n = 10, 50, 100, · · · .

2. For how many iterations does the method converges? Monitor the current CG iterates
(the approximations of the solution x produced during each iteration. What do you
observe?
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3. It is very instructive to derive the exact form of the CG iterates and see how the
method proceeds. One finds that after k iterations

x(k) =

[
k

k + 1
,
k − 1

k + 1
, · · · , 1

k + 1
, 0, · · · , 0

]T
for 1 ≤ k ≤ n− 1 and x(n) = x̂.

Hence, the information travels one step at a time from left to right and it takes n
steps before the last component has changed at all.

4. Will the convergence be faster if you choose a different initial guess?
x0 = rand(n,1);
[x it,fl,resnorm,it,resvec]=pcg(A,b,1e-6,size(A,1),[],[],x0);

or

[x it,fl,resnorm,it,resvec]=pcg(A,b,1e-6,size(A,1),[],[],ones(n,1)-x0);

5. Why CG converges so slow in this case?

Exercise 2 (A nonsymmetric matrix; convergence of the GMRES method)

1. Consider the non-symmetric sparse matrix stored in pores 2.mat, which is the
coefficient matrix resulting from a problem in oil reservoir modeling.

Study the matrix - its sparsity pattern, conditioning, scaling. Is the matrix strongly
nonsymmetric or not? Is it well- or ill-conditioned?

2. Solve the pores 2-problem using the GMRES iterative method, implemented by the
Matlab commands gmres.

[x,flag,relres,iter,resvec] = gmres(A,b,restart,tol,maxit);

As right-hand vectors use the vector stored in pores 2 b.mat and in pores 2 b1.mat,
and as a stopping tolerance use tol=1e-6. Try different values of the restarting
length, including full GMRES.

Plot the convergence history of each run (for instance, as semilogy(resvec)).
Compute the exact solution by the direct Matlab solver and compare the difference
between that one and the iteratively computed solution.

3. Scale the matrix A symmetrically to unit diagonal. Run the experiments again. Does
the scaling help? If ’yes’, in what sense? Does diagonal scaling affect the accuracy
of the computed solution?

4. Investigate the effect of using some incomplete LU-factorization preconditioner, given
by the Matlab command luinc. What are your conclusions?
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Exercise 3 (Peaks and plateaus)
Background: In the so-called Galerkin methods, typical representatives of which are the
Full Orthogonalization method (FOM), Biconjugate gradient (BICG) method and the Lanc-
zos method, the approximation x(k) is chosen such that the corresponding residual is orthog-
onal to a certain space. The methods in this class suffer some numerical instabilities and
various minimum- and quasi-minimum residual methods have been developed to overcome
these instabilities.
Examples of such pairs of methods are
1: GMRES and FOM
2: QMR and BICG
3: Minres and Lanczos
4: GCG-RM and GCG-OR.
The convergence behaviour of pairs of such methods shows striking similarities. One es-
sential result shown is a relation between residuals of these pairs, called the effect of peaks
and plateaus. Whenever a peak appears in the convergence plot of the orthogonal resid-
ual method, there is a plateau under it for the corresponding norm-minimizing method.
Several peaks may sit on the top of what appears to be a single plateau, where there are
unacceptably small improvements in the residual norm over a number of consecutive it-
erations. In addition, whenever the residual norm plot for the norm-minimizing method
rapidly decreases, the corresponding residual norm plot for the orthogonal residual method
also rapidly decreases. Thus, the corresponding residual plots appear to track each other if
the arithmetic used is exact. In finite precision arithmetic one extremely high peak could
lead to loss of accuracy and then the convergence plot of the orthogonal method will not
meet the convergence plot of the corresponding minimal residual method at the end of the
plateau under this peak.
Denote by r(k) and r(k,G) the residual of a minimal residual method and the residual of the
corresponding Galerkin orthogonal residual method. It is shown that if the residuals are
computed exactly at step k, they satisfy the following relation

‖r(k,G)‖ ≥ ‖r(k)‖√
1− ‖r(k)‖2

‖r(k−1)‖2

.

Whenever ‖r(k)‖2
‖r(k−1)‖2 is close to unity, then ‖r(k,G)‖ is much larger than ‖r(k)‖.

The following test illustrates the effect of peaks and plateaus.

1. Use some nonsymmetric matrix (matrices), for instance the convection-diffusion ma-
trix A upp, generated by cd main with Refinement parameter: 20,
Epsilon: 1e-8 and
Vector field flag: 1.

2. Solve the corresponding system A up*x=b up by the BICG and the QMR methods
with a stopping tolerance 10−6 or 10−8:

[x qmr,f qmr,rres qmr,it qmr,rvec qmr] = qmr(A up,b up,1e-6,size(A up,1));
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[x bcg,f bcg,rres bcg,it bcg,rvec bcg] = bicg(A up,b up,1e-6,size(A up,1));

Plot the convergence histories of both methods on one figure. Check whether the
accuracy of the solution is affected from the erratic convergence behaviour of the
BICG method.

3. Can you check the peak-plateau effects on the matrix from Task 2? What do you
observe?

Exercise 4 (The Chebyshev iteration method (Oh, again!)) Use Lanczos method
for estimating the extreme eigenvalues of a matrix.
Test the Second Order Chebyshev iterative solution method, which works for symmetric
positive definite matrices.
The details on the method are given in the appendix below.
You can use some of the following four test matrices which have different properties, how-
ever are all symmetric and positive definite. Below, s determines the size of the problem,
namely, the matrix size is n = 2s.

A: A=matgen disco(s,1);
B: B=matgen disco(s,0.001);
C: C=matgen anisot(s,1,1);
D: D=matgen anisot(s,1,0.001);

• matgen disco.m
The routine matgen disco.m generates a finite element stiffness matrix for the
Laplace equation

− ∂

∂x

(
a
∂u

∂x

)
− ∂

∂y

(
a
∂u

∂y

)
= f (1)

in Ω ≡ (0, 1)2 where a is a constant and a = ε � 1 in a subset Ω̃ ⊂ Ω and a = 1

elsewhere with Ω̃ ≡ {1/4 ≤ x ≤ 3/4, 1/4 ≤ y ≤ 3/4}. The problem is then discretized
using regular isosceles triangles and piece-wise linear basis functions. The mesh-size
parameter h is equal to 2−s for some integer s and is chosen always such that there
will be mesh-lines along the edges of Ω̃

The routine is called as A=matgen disco(s,a);.

• matgen anisot.m
The routine matgen anisot.m generates a finite difference (5-point) discretization
of the anisotropic Laplacian

−εxuxx − εyuyy.

The routine is called as A=matgen anisot(s,epsx,epsy);, where again mesh-
size parameter h is equal to 2−s.

Clearly, when both epsx and epsy are equal to one, the generated matrix corresponds
to −∆u = f discretized with central differences.
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• Lanczos.m
In order to use the Chebyshev iterative method one needs to estimate the extremal
eigenvalues of A. The routine Lanczos computes such approximations. Note, how-
ever that there is no guarantee that we will obtain a lower bound for λmin and an
upper bound for λmax!

The routine is called as [lanmin,lanmax]=Lanczos(A); It performs internally
a number of Lanczos steps until the following criteria are met:

|λ(k)
1 − λ

(k−1)
1 | ≤ ε and |λ(k)

n − λ(k−1)
n | ≤ ε

with a default value of ε = 0.01.

Remark: You can estimate the extreme eigenvalues using some other technique, for
example, using Gershgorin’s theorem.

Tasks

1. Have a look at the description of the algorithm. You have to notice the following
important features of that algorithm:

(i) The method needs bounds for the spectrum of the matrix (a lower bound of the
smallest eigenvalue and a upper bound for the largest eigenvalue).

(ii) The method does not require any scalar products, which is an important feature
when implemented in parallel, since no global communications are needed.

(ii) For a given accuracy ε, formula (7) predicts in advance how many iterations
should be performed, thus, no stopping test is needed.

2. Test the method and the sensitivity with respect to the accuracy of the eigenvalue
bounds. Change the stopping tolerance in the Lanczos algorithm. Can Gershgorin
theorem help? Use also the exact extreme eigenvalues for a comparison.

Appendix: The Second Order Chebyshev iterative solution method

Description
Let A be a real symmetric positive definite (s.p.d.) matrix of order n. Consider the solution
of the linear system Ax = b using the following iterative scheme, known as the Second
Order Chebyshev iterative solution method:

x0 given, x1 = x0 + 1
2
β0r0

For k = 0, 1, · · · until convergence
xk+1 = αkxk + (1− αk)xk−1 + βkrk.
rk = b− Axk.

(2)
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Let x∗ be the exact solution of the above linear system. Denote by ek = x∗ − xk the
iterative error at step k. Clearly, rk = b− Axk = A(x∗ − xk) = Aek.
It is seen from the recursive formula (2) that for each k, the errors satisfy a relation of the
form

ek+1 = αkek + (1− αk)ek−1 + βkAek = Qk(A)e0,

where Qk(·) is some polynomial of degree k. Furthermore, the polynomials Qk(A) are
related among themselves as follows:

Qk+1(A)− αkQk(A)− βkAQk(A) + (1− αk)Qk−1(A) = 0, k = 1, 2, · · · (3)

We compare the recurrence (3) with the recursive formula for the Chebyshev polynomials,
namely,

T0(z) = 1, T1(z) = z, Tk+1(z)− 2Tk(z) + Tk−1(z) = 0. (4)

One can easily see that for the following special choice of the method parameters

αk =
2c Tk(z)

Tk+1(z)
= 1 +

Tk−1(z)

Tk+1(z)

and

βk =
4

b− a
Tk(z)/Tk+1(z), where z =

b+ a

b− a
, 0 < a ≤ λmin(A), λmax(A) ≤ b,

we get

Qk(A) =
Tk(z)

Tk(z)
, Z =

1

b− a
[(b+ a)I − 2A] .

We now recall that the Chebyshev polynomials possess the following optimal approximation
property - among all normalized polynomials of degree n defined in an interval [a, b], the
nth degree Chebyshev polynomial is the one which differs from zero least (measured in
local min and max in [a, b]).
Therefore, for this particular polynomial Qk(A) we have (due the above approximation
properties of the Chebyshev polynomials)

max
z
|Qk(A)z| ≤ min

P∈Πk

|P (A)z|,

i.e., at each step we achieve the best possible error reduction. (Here Πk is the set of all
polynomials of degree k.)
In order to use the Chebyshev iteration method we need to estimate the extreme eigenvalues
of A and to determine an interval [a, b] which contains the spectrum of A.
Having done that, one finds the following formulas to compute the method parameters
recursively:

αk =
a+ b

2
βk,

1

βk
=
a+ b

2
−
(
b− a

4

)2

βk−1, β0 =
4

a+ b
. (5)

Note that αk > 1, k ≥ 1.
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Theorem 1 The following results hold:

lim
k→∞

βk =
4(√

a+
√
b
)2 ,

‖ek‖A
‖e0‖A

≤ 1

Tk
(
b+a
b−a

) ≤ 2
σk

1 + σ2k
, σ =

1−
√
a/b

1 +
√
a/b

.

It follows then that ‖ek‖A‖e0‖A
→ 0 monotonically.

(For the special choice a = λmin(A), b = λmax(A), we have σ =
1−
√

κ(A)−1

1+
√

κ(A)−1
.)

From the above convergence rate estimate one can determine a priory the number of Cheby-
shev iterations needed to be performed in order to achieve an error reduction

‖ek‖A
‖e0‖A

≤ ε. (6)

Indeed, to insure (6), it suffices to perform

k ≥ ln

(
1

ε
+

√
1

ε2
− 1

)
/ ln(σ−1) or k∗ =

⌈
1

2

√
b

a
ln

2

ε

⌉
iterations. (7)

7


