Assignments by Stefano Serra Capizzano (March 9th 2021)

Consider the matrix of size $n \geq 1$

$$
A_{n}(a)=\left[\begin{array}{cccc}
a_{\frac{1}{2}}+a_{\frac{3}{2}} & -a_{\frac{3}{2}} & & \tag{1}\\
-a_{\frac{3}{2}} & a_{\frac{3}{2}}+a_{\frac{5}{2}} & -a_{\frac{5}{2}} & \\
& \ddots & \ddots & \ddots \\
& & -a_{n-\frac{1}{2}} & a_{n-\frac{1}{2}}+a_{n+\frac{1}{2}}
\end{array}\right], \quad a_{t}=a\left(\frac{t}{n+1}\right)
$$

where $a:[0,1] \rightarrow \mathbf{R}$ is a positive function.

1. Prove that the matrix in (1) is the discretization of the boundary value problem

$$
\begin{cases}-\left(a(x) u_{x}\right)_{x}=f(x) \tag{2}\\ \text { Dirichlet B.C. on } \partial \Omega, & \text { on } \Omega=(0,1) \\ \end{cases}
$$

by centered Finite Differences of precision order 2 and step-size $h=(n+1)^{-1}$.
2. Prove that $A_{n}(a)$ as in (1) is positive definite.
3. Prove that $P_{n}^{-1} A_{n}(a)$ is similar to a positive definite matrix with $P_{n}=A_{n}(1)$.
4. Prove that any eigenvalue of $P_{n}^{-1} A_{n}(a)$ belongs $=$ to $\left[a_{*}, a^{*}\right]$ with $a_{*}=\min _{x \in[0,1]} a(x)$ and $a^{*}=\max _{x \in[0,1]} a(x)$.
5. Prove the very same statements as in Items 2-4 for the matrices $A_{n}(a)$ and P_{n} as in Hands on D and E.
6. Prove that $T_{n}(f(s))$ with $f(s)=s^{2}$ and $n \geq 2=$ is the symmetric Toeplitz matrix whose central row is the one appearing in (3), Hands on F.
7. Give localization results (uniformly with respect to $=$ the size n) for the eigenvalues of the matrices appearing in Hands on F and G.

