Numerical Linear Algebra VT 2021

Assignment 3 Numerical methods for eigenproblems

1. Implement the Implicitly Restarted Arnoldi method

The task is to write a MatLab function that implements a simplified version of the Implicitly Restarted Arnoldi (IRA) method (see, e.g. Jan Brandts, Lecture Notes).

Part 1

Recall that an Arnoldi factorization is an orthonormal basis of the Krylov subspace $\mathcal{K}^{k+1}(A, v)$ represented as the columns of a matrix V_{k+1} together with the upper Hessenberg representation $H_{k+1,k}$ of AV_k on this basis. They are related as follows,

$$AV_k = V_{k+1}H_{k+1,k}.$$
 (1)

To compute such a factorization, A, v, and k should be given. Then firstly, v needs to be scaled to norm one. The resulting vector will be the first column v_1 of V_{k+1} . Then apply A to find $w = Av_1$. Orthogonalize w to v_1 and normalize the result. This gives the second column v_2 of V_{k+1} . By construction, Av_1 is a linear combination of v_1 and v_2 , and the coefficients that determine which linear combination it is, are the coefficients h_{11} and h_{21} of the matrix $H_{k+1,k} = (h_{ij})$. The next step is to compute Av_2 , and to orthogonalize it to v_1 and v_2 , to normalize the result, and so on.

Part 2

Write a MatLab function

[V,H] = ArnoldiInit(A,v)

that computes the Arnoldi factorization for given A and v with k = 1. Thus, V has two columns and H is two by one only.

Part 3

Next, write a function that extends a given factorization:

[V,H] = ArnoldiPlus(A,V,H,m)

In this function, you may assume that the inputs \vee and \mathbb{H} represent a valid Arnoldi factorization for some $k \geq 1$. This assures that \vee has at least two columns, and \mathbb{H} at least one. The function should extend the factorization by computing \mathbb{m} more basis vectors to be added to \vee . The returned matrix \vee should therefore have $n \times (k + m)$ mutually orthonormal columns. The matrix \mathbb{H} must be $(k + m) \times k + m - 1$.

Part 4

Test your routine on an example. Compute the input factorization of ArnoldiPlus using Arnoldi-Init. In your test, use a small matrix, and check whether

- V and H are indeed orthogonal and upper Hessenberg, and
- relation (1) should hold.

Part 5

Test the routine on a symmetric matrix A having the distinct and single eigenvalues $1, 2, \ldots, 20$ and compute the eigenvalue approximations for A in each expansion by one more dimension. This way you should be able to reproduce a triangle of eigenvalue approximations like in (5-7) in Jan Brandts, Lecture Notes 7-8.

Part 6

Given any value μ in the complex plane, and an Arnoldi factorization of length $k \ge 2$, we have seen that it is possible to compute the Arnoldi factorization of length k - 1 for the start vector $\hat{v}_1 = \tilde{v}_1 / \|\tilde{v}_1\|$ with $\tilde{v}_1 = (A - \mu I)v$ without using any additional matrix vector multiplication with the matrix A again. Write a function for this:

[V,H] = ArnoldiMinus(V,H,mu)

Again, test this routine on a simple example.

Part 7

Test your program on the matrices A and B and a starting vector v, provided by the function arnoldi_test_matrices.m.

Part 8

Finally, write a program that combines the routines above and that implements the Implicitly Restarted Arnoldi Method as follows:

• At each iteration, list the eigenvalue approximations

- Prompt for the choice between expanding further, or removing an eigenvalue
- If you like GUIs: One could implement this idea graphically: show the approximate eigenvalues in the complex plane. A mouseclick on an eigenvalue should remove it. A mouseclick on an *expand* button should expand the space further.

2. Theoretical exercises

Answer the following questions and prove your answers.

Let n be a positive integer, A is a real matrix of size $n, v \in \mathbb{C}^n$ with ||v|| = 1 and $\mu \in \mathbb{C}$. Let $r = Av - \mu v$ and assume $r \neq 0$.

- 1. Is it true that if $v^*Av = \mu$ then (μ, v) is an eigenpair of A?
- 2. Is (μ, \boldsymbol{v}) an eigenpair of $A \boldsymbol{v}\boldsymbol{r}^*$?
- 3. Is $A \mu I$ nonsingular?
- 4. Is (μ, \boldsymbol{v}) an eigenpair of $\mu \boldsymbol{v} \boldsymbol{v}^*$?
- 5. If $||A B|| = ||\mathbf{r}||$, is then (μ, \mathbf{v}) an eigenpair of B?
- 6. Consider an upper-triangular matrix T. Suppose we want to switch the first and the kth diagonal elements. Thus, we are interested in a unitary matrix Q, such that $\tilde{T} = QTQ^*$ and $\tilde{T}(1,1) = T(k,k), \tilde{T}(k,k) = T(1,k)$. Show that this can be achieved with Givens rotations. How many Givens rotations are required?

Success!

Deadline: as on the course webpage.

Any comments on the assignment will be highly appreciated and will be considered for further improvements. Thank you!