Numerical Linear Algebra
VT 2021

Assignment 3
 Numerical methods for eigenproblems

1. Implement the Implicitly Restarted Arnoldi method

The task is to write a MatLab function that implements a simplified version of the Implicitly Restarted Arnoldi (IRA) method (see, e.g. Jan Brandts, Lecture Notes).

Part 1

Recall that an Arnoldi factorization is an orthonormal basis of the Krylov subspace $\mathcal{K}^{k+1}(A, v)$ represented as the columns of a matrix V_{k+1} together with the upper Hessenberg representation $H_{k+1, k}$ of $A V_{k}$ on this basis. They are related as follows,

$$
\begin{equation*}
A V_{k}=V_{k+1} H_{k+1, k} . \tag{1}
\end{equation*}
$$

To compute such a factorization, A, \boldsymbol{v}, and k should be given. Then firstly, \boldsymbol{v} needs to be scaled to norm one. The resulting vector will be the first column \boldsymbol{v}_{1} of V_{k+1}. Then apply A to find $\boldsymbol{w}=A v_{1}$. Orthogonalize \boldsymbol{w} to \boldsymbol{v}_{1} and normalize the result. This gives the second column \boldsymbol{v}_{2} of V_{k+1}. By construction, $A \boldsymbol{v}_{1}$ is a linear combination of \boldsymbol{v}_{1} and \boldsymbol{v}_{2}, and the coefficients that determine which linear combination it is, are the coefficients h_{11} and h_{21} of the matrix $H_{k+1, k}=\left(h_{i j}\right)$. The next step is to compute $A \boldsymbol{v}_{2}$, and to orthogonalize it to \boldsymbol{v}_{1} and \boldsymbol{v}_{2}, to normalize the result, and so on.

Part 2

Write a MatLab function

```
[V,H] = ArnoldiInit(A,V)
```

that computes the Arnoldi factorization for given A and v with $k=1$. Thus, v has two columns and H is two by one only.

Part 3

Next, write a function that extends a given factorization:

```
[V,H] = ArnoldiPlus(A,V,H,m)
```

In this function, you may assume that the inputs V and H represent a valid Arnoldi factorization for some $k \geq 1$. This assures that V has at least two columns, and H at least one. The function should extend the factorization by computing m more basis vectors to be added to V . The returned matrix V should therefore have $n \times(k+m)$ mutually orthonormal columns. The matrix H must be $(k+m) \times k+m-1$.

Part 4

Test your routine on an example. Compute the input factorization of ArnoldiPlus using ArnoldiInit. In your test, use a small matrix, and check whether

- V and H are indeed orthogonal and upper Hessenberg, and
- relation (1) should hold.

Part 5

Test the routine on a symmetric matrix A having the distinct and single eigenvalues $1,2, \ldots, 20$ and compute the eigenvalue approximations for A in each expansion by one more dimension. This way you should be able to reproduce a triangle of eigenvalue approximations like in (5-7) in Jan Brandts, Lecture Notes 7-8.

Part 6

Given any value μ in the complex plane, and an Arnoldi factorization of length $k \geq 2$, we have seen that it is possible to compute the Arnoldi factorization of length $k-1$ for the start vector $\hat{\boldsymbol{v}}_{1}=\tilde{\boldsymbol{v}}_{1} /\left\|\tilde{\boldsymbol{v}}_{1}\right\|$ with $\tilde{\boldsymbol{v}}_{1}=(A-\mu I) \boldsymbol{v}$ without using any additional matrix vector multiplication with the matrix A again. Write a function for this:

```
[V,H] = ArnoldiMinus(V,H,mu)
```

Again, test this routine on a simple example.

Part 7

Test your program on the matrices A and B and a starting vector \boldsymbol{v}, provided by the function arnoldi_test_matrices.m.

Part 8

Finally, write a program that combines the routines above and that implements the Implicitly Restarted Arnoldi Method as follows:

- At each iteration, list the eigenvalue approximations
- Prompt for the choice between expanding further, or removing an eigenvalue
- If you like GUIs: One could implement this idea graphically: show the approximate eigenvalues in the complex plane. A mouseclick on an eigenvalue should remove it. A mouseclick on an expand button should expand the space further.

2. Theoretical exercises

Answer the following questions and prove your answers.
Let n be a positive integer, A is a real matrix of size $n, \boldsymbol{v} \in \mathbb{C}^{n}$ with $\|\boldsymbol{v}\|=1$ and $\mu \in \mathbb{C}$. Let $\boldsymbol{r}=A \boldsymbol{v}-\mu \boldsymbol{v}$ and assume $\boldsymbol{r} \neq \mathbf{0}$.

1. Is it true that if $\boldsymbol{v}^{*} A \boldsymbol{v}=\mu$ then (μ, \boldsymbol{v}) is an eigenpair of A ?
2. Is (μ, \boldsymbol{v}) an eigenpair of $A-\boldsymbol{v} \boldsymbol{r}^{*}$?
3. Is $A-\mu I$ nonsingular?
4. Is (μ, \boldsymbol{v}) an eigenpair of $\mu \boldsymbol{v} \boldsymbol{v}^{*}$?
5. If $\|A-B\|=\|\boldsymbol{r}\|$, is then (μ, \boldsymbol{v}) an eigenpair of B ?
6. Consider an upper-triangular matrix T. Suppose we want to switch the first and the k th diagonal elements. Thus, we are interested in a unitary matrix Q, such that $\widetilde{T}=Q T Q^{*}$ and $\widetilde{T}(1,1)=T(k, k), \widetilde{T}(k, k)=T(1, k)$. Show that this can be achieved with Givens rotations. How many Givens rotations are required?

Success!

Deadline: as on the course webpage.

Any comments on the assignment will be highly appreciated and will be considered for further improvements. Thank you!

