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1. Consider the following PDE and initial condition:

Cut = Bux + F, x ∈ (0, L), t > 0,
u = f , x ∈ [0, L], t = 0,

(1)

where F = F(x, t) is a forcing function, f = f(x) is initial data, and

C(x) =

[
c1(x)

c2(x)

]
, B =

[
i

−i

]
, u =

[
u1

u2

]
,

where c1,2 are real-valued, strictly positive functions.

(a) Use the energy method to prove that (1) is well-posed with periodic boundary
conditions. That is, you may disregard any boundary terms. (2p)

(b) For the non-periodic initial-boundary-value problem (IBVP) to be well posed,
how many boundary conditions are required at x = 0 and at x = L? Motivate
your answer. (1p)

(c) Derive a set of well-posed boundary conditions. (1p)
(d) State an SBP-SAT discretization of the PDE combined with the set of boundary

conditions that you derived in the previous problem. You may here assume that
F = 0 and c1 and c2 are constant. You do not need to prove stability. You may
use up to 4 unspecified scalar penalty parameters in your SATs. (2p)

(a) Observations: The PDE is first-order in time so we expect one initial condition,
which is what we have. Further, C is independent of t and

C = C∗ > 0, B = B∗.

Since C = C∗ > 0, C defines an inner product and norm. For well-posedness it
is sufficient to study the homogeneous problem, so we set F = 0. We proceed
with the energy method. Multiplying by u∗ and integrating yields

(u,ut)C = (u, Bux) = u∗Bu|L0 − (ux, Bu) .

Taking the complex conjugate yields

(ut,u)C = (Bux,u) = (ux, B
∗u) = (ux, Bu) .

Adding the two relations above leads to
d

dt
‖u‖2

C = u∗Bu|L0 .

For the periodic problem, the boundary terms vanish and we obtain
d

dt
‖u‖2

C = 0,

which shows that ‖u‖2
C does not increase with t, and thus the periodic problem

is well posed.
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(b) The number of BC required at each boundary depends on the eigenvalues of B.
The eigenvalues are given by

λ2 + i2 = 0⇔ λ = ±1.

For every positive eigenvalue we need one BC at the right boundary and for
every negative eigenvalue we need one BC at the left boundary. Here, we need
one BC at each boundary.
Alternatively, you can argue that the boundary terms are such that one BC at
each boundary is required to bound the growth of the solution. See the solution
to (c).

(c) The boundary terms are

u∗Bu|L0 = u∗1iu2 − u∗2iu1|L0 .

We can ensure that the boundary terms corresponding to the left boundary
vanish by setting either u1 = 0 or u2 = 0. The same holds for the right boundary.
This leads to the following 4 combinations (there are other possibilities too):{

u1 = 0, x = 0
u1 = 0, x = L

{
u1 = 0, x = 0
u2 = 0, x = L{

u2 = 0, x = 0
u1 = 0, x = L

{
u2 = 0, x = 0
u2 = 0, x = L

These sets all lead to energy conservation:

d

dt
‖u‖2

C = 0,

and thus well-posedness.

(d) Let us choose the boundary conditions{
u1 = 0, x = 0
u1 = 0, x = L

.

Define a grid of m+ 1 points with grid spacing h = L
m
:

xj = jh, j = 0, 1 . . . ,m.

Let D1 be a corresponding SBP operator for the first derivative (see attached
formulae sheet).

Alternative 1:
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On component form, the PDE reads

c1u1,t = iu2,x

c2u2,t = −iu1,x

Let v1 and v2 be the two discrete solution vectors that approximate u1 and u2.
An SBP-SAT discretization is

c1v1,t = iD1v2 + τ1`H
−1e`(e

T
` v1 − 0) + τ1rH

−1er(e
T
r v1 − 0)

c2v2,t = −iD1v2 + τ2`H
−1e`(e

T
` v1 − 0) + τ2rH

−1er(e
T
r v1 − 0)

where the four scalar parameters τ1`, τ1r, τ2`, and τ2r would need to be selected
such that the discretization is stable.

Alternative 2:
Equivalently, we may write the discretization on matrix-vector form by extend-
ing all operators to a system of equations. Let In denote the n × n identity
matrix. Let v be the discrete solution vector:

v =

[
v1

v2

]
∈ C2m+2.

We extend the SBP-related operators to a 2-component system:

D̄1 = I2 ⊗D1, H̄ = I2 ⊗H, ē`,r = I2 ⊗ e`,r

and extend the coefficient matrices to m+ 1 grid points:

C̄ = C ⊗ Im+1, B̄ = B ⊗ Im+1.

The SBP-SAT discretization can be written

C̄vt = B̄D̄1v + H̄−1

[
τ1`e`
τ2`e`

]
(eT` v1 − 0) + H̄−1

[
τ1rer
τ2rer

]
(eTr v1 − 0)

2. The second-order wave equation in a bounded 2D domain Ω ⊂ R2 is given by

φtt = c2∇ · ∇φ, ~x ∈ Ω, t > 0,

∂φ

∂n̂
+ αφt = 0, ~x ∈ ∂Ω, t > 0,

φ = φ0, ~x ∈ Ω, t = 0,

φt = ϕ0, ~x ∈ Ω, t = 0,

(2)

where c = c(~x) > 0, α ∈ R, ∂Ω denotes the boundary of Ω, and n̂ denotes the
outward unit normal. We assume that the solution is real.
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(a) Consider the case α = 0. Prove that the IBVP (2) conserves energy. (2p)
(b) For α > 0, prove that the IBVP (2) dissipates energy. (1p)

(a) We divide by c2 and then apply the energy method, which amounts to multi-
plying the PDE by φt and integrating.(

φt, c
−2φtt

)
= (φt,∇ · ∇φ) =

∮
∂Ω

φt
∂φ

∂n̂
dS − (∇φt,∇φ) ,

where we used the integration-by-parts formula for multiple dimensions (see
attached collection of formulae). Since the inner product is symmetric:(

φt, c
−2φtt

)
=

1

2

d

dt

(
φt, c

−2φt

)
, (∇φt,∇φ) =

1

2

d

dt
(∇φ,∇φ) .

We have derived
d

dt

(
1

2

(
φt, c

−2φt

)
+

1

2
(∇φ,∇φ)

)
=

∮
∂Ω

φt
∂φ

∂n̂
dS.

Recognizing the left-hand side as the rate of change of energy, we define

E =
1

2

(
φt, c

−2φt

)
+

1

2
(∇φ,∇φ) .

We have derived the energy rate

dE

dt
=

∮
∂Ω

φt
∂φ

∂n̂
dS.

With α = 0, the boundary condition reads

∂φ

∂n̂
= 0,

which yields
dE

dt
= 0,

which shows that energy is conserved.
(b) With α > 0, the boundary condition reads

∂φ

∂n̂
= −αφt,

which yields the energy rate

dE

dt
= −

∮
∂Ω

αφ2
t dS ≤ 0,

which shows that energy is dissipated.
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3. A 1D version of the second-order wave equation with constant wave speed is

φtt = c2φxx, x ∈ (0, L) t > 0,
αφt − φx = 0, x = 0, t > 0,
αφt + φx = 0, x = L, t > 0,
φ = φ0, x ∈ [0, L], t = 0,
φt = ϕ0, x ∈ [0, L], t = 0,

(3)

where c > 0 is constant, L > 0, and α ∈ R. We assume that the solution is real.

(a) State an SBP-SAT discretization of the PDE and boundary conditions. You
do not need to prove stability. You may use one unspecified scalar penalty
parameter per boundary. You may solve the problem with α = 0 for 1 point
out of 2. (2p)

(b) Select appropriate penalty parameters and prove that your SBP-SAT scheme is
stable for α ≥ 0. You may solve the problem with α = 0 for 2 points out of 3. (3p)

(a) Define a grid of m+ 1 points with grid spacing h = L
m
:

xj = jh, j = 0, 1 . . . ,m.

Let D2 be a corresponding SBP operator for the first derivative (see attached
formulae sheet) and let φ be the discrete solution vector. An SBP-SAT dis-
cretization reads

c−2φtt = D2φ + τ`H
−1e`(d

T
` φ− αeT` φt) + τrH

−1er(d
T
r φ + αeTr φt),

where τ` and τr are scalar penalty parameters that will need to be selected such
that the discretization is stable.

(b) The discrete energy method: multiply by φT
t H.(

φt, c
−2φtt

)
H

= (φt, D2φ)H+τ`(e
T
` φt)

(
dT
` φ− αeT` φt

)
+τr(e

T
r φt)

(
dT
r φ + αeTr φt

)
By the SBP properties of D2, we have

(φt, D2φ)H = (eTr φt)(d
T
r φ)− (eT` φt)(d

T
` φ)− φT

t Mφ.

Gather terms to obtain(
φt, c

−2φtt

)
H

=− φT
t Mφ + (eT` φt)(d

T
` φ)(−1 + τ`) + (eTr φt)(d

T
r φ)(1 + τr)

− ατ`(eT` φ)2 + ατr(e
T
r φ)2.

We can make the indefinite boundary terms vanish by setting

τ` = 1, τr = −1.
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Noting that (
φt, c

−2φtt

)
H

=
1

2

d

dt

(
φt, c

−2φt

)
H
,

φT
t Mφ =

1

2

d

dt
φTMφ,

we then have the energy rate

d

dt

(
1

2

(
φt, c

−2φt

)
H

+
1

2
φTMφ

)
= −α(eT` φ)2 − α(eTr φ)2,

where
1

2

(
φt, c

−2φt

)
H

+
1

2
φTMφ =: Eh

is a discrete energy. The discrete energy rate mimics the energy rate for the
continuum problem (see the previous problem). Energy is dissipated for α > 0
and conserved for α = 0. This shows that the SBP-SAT scheme with τ` = 1,
τr = −1 is stable for α ≥ 0.

4. Consider the heat equation with constant coefficients in the interval I = (0, L):

ut = auxx, x ∈ I, t > 0,
u = g, x = 0, t > 0,
ux = 0, x = L, t > 0,
u = f, x ∈ I, t = 0,

(4)

where g, a > 0 and L > 0 are real constants. We assume that the solution is real.

(a) Derive the weak form of (4) with appropriate spaces. (2p)

(b) State the finite element approximation of the weak form, using appropriate
spaces of piecewise linear functions on a uniform mesh of n intervals. (2p)

(c) Derive the system of ODE corresponding to the finite element approximation.
You do not need to evaluate any nonzero integrals, but you should indicate the
structure of all matrices and vectors and show where they have nonzero entries.

(3p)

(a) Let V be the space of functions v(x, t) such that v and vx are square-integrable
over I for any t:

V = {v(x, t) : ‖v(·, t)‖+ ‖vx(·, t)‖ <∞} .

Further define two spaces of functions that additionally satisfy Dirichlet bound-
ary conditions at x = 0:

V0 = {v ∈ V : v(0, t) = 0}
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Vg = {v ∈ V : v(0, t) = g} .

We seek a solution u ∈ Vg. To derive the weak form, we multiply the PDE by
a test function v ∈ V0 and integrate. We obtain

(v, ut) = a (v, uxx) = avux|L0 − a (vx, ux) .

Using the boundary conditions, we obtain

(v, ut) = −a (vx, ux) .

The weak form reads: Find u ∈ Vg such that

(v, ut) = −a (vx, ux) ∀v ∈ V0.

(b) Let Vh denote the set of functions v(x, t) that are piecewise linear functions of
x on a uniform mesh of n intervals. Further define two spaces of functions that
additionally satisfy Dirichlet boundary conditions at x = 0:

Vh,0 = {v ∈ Vh : v(0, t) = 0}

Vh,g = {v ∈ Vh : v(0, t) = g} .

The finite element approximation reads: Find uh ∈ Vh,g such that

(v, uh,t) = −a (vx, uh,x) ∀v ∈ Vh,0.

(c) Any v ∈ Vh,0 can be represented as a linear combination of the hat functions ϕi:

v(x, t) =
n∑

i=1

αi(t)ϕi(x).

We may satisfy the weak form for one hat function at a time,

(ϕi, uh,t) = −a (ϕ′i, uh,x) , i = 1, . . . , n.

Any uh ∈ Vh,g satisfies

uh(x, t) = gϕ0(x) +
n∑

j=1

ξj(t)ϕj(x).

for some unknown, time-dependent coefficients ξj. The derivatives of uh are

uh,x = gϕ′0 +
n∑

j=1

ξjϕ
′
j
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uh,t =
n∑

j=1

ξ′jϕj

Inserting this ansatz leads to
n∑

j=1

(ϕi, ϕj) ξ
′
j = −ag (ϕ′i, ϕ

′
0)−

n∑
j=1

a
(
ϕ′i, ϕ

′
j

)
ξj, i = 1, . . . , n.

This is an n× n system of ODE:

Mξ′ = Aξ + r

where M (mass matrix) and A (stiffness matrix) are tri-diagonal matrices, with
elements

Mij = (ϕi, ϕj) , Aij = −a
(
ϕ′i, ϕ

′
j

)
, i = 1, . . . , n, j = 1, . . . , n,

and r is an n× 1 vector, with elements

ri = −ag (ϕ′i, ϕ
′
0) , i = 1, . . . , n.

Since (ϕ′i, ϕ
′
0) equals 0 for i > 1, r only has one nonzero element, at the top.

5. Consider the linear system Ax = b, where

A =

2 0 4
0 −32 4
1 0 4

 , b =

8
0
4

 .
(a) Perform one iteration using the Gauss-Seidel method. Use the starting guess

x0 = [1, 1, 8]T . (1p)
(2p)(b) Do you expect the Gauss-Seidel method to converge for this linear system?

Motivate your answer.

(a) The Gauss-Seidel iteration is

A1xk+1 = −A2xk + b,

where

A1 = L+D =

2 0 0
0 −32 0
1 0 4


A2 = U =

0 0 4
0 0 4
0 0 0

 .
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Setting k = 0, inserting all values and solving for x1 yields

x1 =

−12
1
4

 .
(b) The Gauss-Seidel method can be written as:

xk+1 = Rxk + c, k = 0, 1, . . . ,

where

R = −A−1
1 A2 =


0 0 −2

0 0
1

8

0 0
1

2

 .
The 1-norm and ∞-norm of R are

‖R‖1 = max
j

3∑
i=1

|Rij| = 2.6250.

‖R‖∞ = max
i

3∑
j=1

|Rij| = 2.

Both norms are greater than 1, so the iteration might not converge. To know for
sure, we need to compute the spectral radius of R. We find that the eigenvalues
are

λ1 = λ2 = 0, λ3 = 0.5,

so the spectral radius (largest magnitude eigenvalue) is

ρ(R) = 0.5,

which shows that the iteration will actually converge!
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Collection of formulae

Summation-by-parts operators
Consider a uniform grid of m + 1 points, with grid spacing h = L

m
. Let e` and er denote

the following vectors in Rm+1:

e` =


1
0
...
0

 , er =


0
0
...
1

 .

Definition of D1

A difference operator D1 approximating ∂/∂x is a first-derivative SBP operator with
quadrature matrix H if H = HT > 0 and

HD1 = ere
T
r − e`e

T
` −DT

1 H.

Definition of D2

A difference operator D2 approximating ∂2/∂x2 is a second-derivative SBP operator with
quadrature matrix H if H = HT > 0 and

HD2 = erd
T
r − e`d

T
` −M,

where M = MT ≥ 0, and dT
` v ' ux|x=0, dT

r v ' ux|x=L are finite difference approximations
of the first derivatives at the left and right boundary points.

Discrete inner product

Let (·, ·)H denote the discrete inner product, defined by

(u,v)H = u∗Hv.

In the discrete inner product, the SBP operators satisfy

(u, D1v)H = (eTr u)∗(eTr v)− (eT` u)∗(eT` v)− (D1u,v)H

and
(u, D2v)H = (eTr u)∗(dT

r v)− (eT` u)∗(dT
` v)− u∗Mv.
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Integration by parts in multiple dimensions
Let Ω denote a bounded domain in Rn, with boundary ∂Ω and outward unit normal n̂.
For (sufficiently smooth) scalar functions u, v, α ∈ L2(Ω),∫

Ω

u∇ · α∇v dΩ =

∮
∂Ω

uα
∂v

∂n̂
dS −

∫
Ω

∇u · α∇v dΩ.

This relation follows from the divergence theorem.

Finite element methods
Given a mesh of n intervals

x0 < x1 < . . . < xn,

the usual basis functions (the hat functions) in the corresponding space of piecewise linear
functions satisfy, for i = 1, . . . , n− 1,

(ϕ′i, ϕ
′
j) =



1

hi
+

1

hi+1

, i = j

− 1

hi+1

, j = i+ 1

− 1

hi
, j = i− 1

0, |i− j| > 1

where hi = xi − xi−1. Further, for i = 1, . . . , n− 1:

(ϕi, ϕj) =



hi
3

+
hi+1

3
, i = j

hi+1

6
, j = i+ 1

hi
6
, j = i− 1

0, |i− j| > 1
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