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Unless otherwise specified, all solutions must include detailed reasoning and complete cal-
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Grade requirements:
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Grade 4: At least 17/24 points.
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1. Consider the following PDE and initial condition:

Cut = Bux + F, x ∈ (0, L), t > 0,
u = f , x ∈ [0, L], t = 0,

(1)

where F = F(x, t) is a forcing function, f = f(x) is initial data, and

C(x) =

[
c1(x)

c2(x)

]
, B =

[
i

−i

]
, u =

[
u1

u2

]
,

where c1,2 are real-valued, strictly positive functions.

(a) Use the energy method to prove that (1) is well-posed with periodic boundary
conditions. That is, you may disregard any boundary terms. (2p)

(b) For the non-periodic initial-boundary-value problem (IBVP) to be well posed,
how many boundary conditions are required at x = 0 and at x = L? Motivate
your answer. (1p)

(c) Derive a set of well-posed boundary conditions. (1p)

(d) State an SBP-SAT discretization of the PDE combined with the set of boundary
conditions that you derived in the previous problem. You may here assume that
F = 0 and c1 and c2 are constant. You do not need to prove stability. You may
use up to 4 unspecified scalar penalty parameters in your SATs. (2p)

2. The second-order wave equation in a bounded 2D domain Ω ⊂ R2 is given by

φtt = c2∇ · ∇φ, ~x ∈ Ω, t > 0,

∂φ

∂n̂
+ αφt = 0, ~x ∈ ∂Ω, t > 0,

φ = φ0, ~x ∈ Ω, t = 0,

φt = ϕ0, ~x ∈ Ω, t = 0,

(2)

where c = c(~x) > 0, α ∈ R, ∂Ω denotes the boundary of Ω, and n̂ denotes the
outward unit normal. We assume that the solution is real.

(a) Consider the case α = 0. Prove that the IBVP (2) conserves energy. (2p)

(b) For α > 0, prove that the IBVP (2) dissipates energy. (1p)
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3. A 1D version of the second-order wave equation with constant wave speed is

φtt = c2φxx, x ∈ (0, L) t > 0,
αφt − φx = 0, x = 0, t > 0,
αφt + φx = 0, x = L, t > 0,
φ = φ0, x ∈ [0, L], t = 0,
φt = ϕ0, x ∈ [0, L], t = 0,

(3)

where c > 0 is constant, L > 0, and α ∈ R. We assume that the solution is real.

(a) State an SBP-SAT discretization of the PDE and boundary conditions. You
do not need to prove stability. You may use one unspecified scalar penalty
parameter per boundary. You may solve the problem with α = 0 for 1 point
out of 2. (2p)

(b) Select appropriate penalty parameters and prove that your SBP-SAT scheme is
stable for α ≥ 0. You may solve the problem with α = 0 for 2 points out of 3. (3p)

4. Consider the heat equation with constant coefficients in the interval I = (0, L):

ut = auxx, x ∈ I, t > 0,
u = g, x = 0, t > 0,
ux = 0, x = L, t > 0,
u = f, x ∈ I, t = 0,

(4)

where g, a > 0 and L > 0 are real constants. We assume that the solution is real.

(a) Derive the weak form of (4) with appropriate spaces. (2p)
(b) State the finite element approximation of the weak form, using appropriate

spaces of piecewise linear functions on a uniform mesh of n intervals. (2p)
(c) Derive the system of ODE corresponding to the finite element approximation.

You do not need to evaluate any nonzero integrals, but you should indicate the
structure of all matrices and vectors and show where they have nonzero entries.

(3p)

5. Consider the linear system Ax = b, where

A =

2 0 4
0 −32 4
1 0 4

 , b =

8
0
4

 .
(a) Perform one iteration using the Gauss-Seidel method. Use the starting guess

x0 = [1, 1, 8]T . (1p)
(2p)(b) Do you expect the Gauss-Seidel method to converge for this linear system?

Motivate your answer.
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Collection of formulae

Summation-by-parts operators
Consider a uniform grid of m + 1 points, with grid spacing h = L

m
. Let e` and er denote

the following vectors in Rm+1:

e` =


1
0
...
0

 , er =


0
0
...
1

 .

Definition of D1

A difference operator D1 approximating ∂/∂x is a first-derivative SBP operator with
quadrature matrix H if H = HT > 0 and

HD1 = ere
T
r − e`e

T
` −DT

1 H.

Definition of D2

A difference operator D2 approximating ∂2/∂x2 is a second-derivative SBP operator with
quadrature matrix H if H = HT > 0 and

HD2 = erd
T
r − e`d

T
` −M,

where M = MT ≥ 0, and dT
` v ' ux|x=0, dT

r v ' ux|x=L are finite difference approximations
of the first derivatives at the left and right boundary points.

Discrete inner product

Let (·, ·)H denote the discrete inner product, defined by

(u,v)H = u∗Hv.

In the discrete inner product, the SBP operators satisfy

(u, D1v)H = (eTr u)∗(eTr v)− (eT` u)∗(eT` v)− (D1u,v)H

and
(u, D2v)H = (eTr u)∗(dT

r v)− (eT` u)∗(dT
` v)− u∗Mv.
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Integration by parts in multiple dimensions
Let Ω denote a bounded domain in Rn, with boundary ∂Ω and outward unit normal n̂.
For (sufficiently smooth) scalar functions u, v, α ∈ L2(Ω),∫

Ω

u∇ · α∇v dΩ =

∮
∂Ω

uα
∂v

∂n̂
dS −

∫
Ω

∇u · α∇v dΩ.

This relation follows from the divergence theorem.

Finite element methods
Given a mesh of n intervals

x0 < x1 < . . . < xn,

the usual basis functions (the hat functions) in the corresponding space of piecewise linear
functions satisfy, for i = 1, . . . , n− 1,

(ϕ′i, ϕ
′
j) =



1

hi
+

1

hi+1

, i = j

− 1

hi+1

, j = i+ 1

− 1

hi
, j = i− 1

0, |i− j| > 1

where hi = xi − xi−1. Further, for i = 1, . . . , n− 1:

(ϕi, ϕj) =



hi
3

+
hi+1

3
, i = j

hi+1

6
, j = i+ 1

hi
6
, j = i− 1

0, |i− j| > 1
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