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Numerical Linear Algebra

Maya Neytcheva, TDB, February-March 2021
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Plan of the lecture

I Singular value decomposition - brief recollection
I Pseudoinverses
I Least Squares problems - brief recollection
I Solution methods for LS problems - CGLS
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Singular value decomposition

Let A(m,n), n ≤ m or n ≥ m, rank(A) = rank(A∗)k .

Definition
If there exist µ 6= 0 and vectors u and v, such that

Av = µu and A∗u = µv

then µ is called a singular value of A, and u,v are a pair of
singular vectors, corresponding to µ.
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The existence of singular values and vectors is
shown...

via the following construction:

Av = µu, A∗u = µv

can be written as

Ã
[

v
u

]
=

[
0 A

A∗ 0

] [
v
u

]
= µ

[
v
u

]

The matrix Ã is selfadjoint, has real eigenvalues and a complete eigenvector
space.
Furthermore, µ2 is an eigenvalue of A∗A with eigenvector u and of AA∗ with
eigenvector v, because

Av = µu, → A∗Av = µA∗u = µ2v
A∗u = µv, → AA∗u = µAv = µ2u
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Singular Value Decomposition

Theorem (SVD)

Any m × n matrix A with dimensions, say, m ≥ n, can be
factorized as

A = U
(

Σ
0

)
V T ,

where U ∈ Rm×m and V ∈ Rn×n are orthogonal, and Σ ∈ Rm×n

is diagonal,

Σ = diag(σ1, σ2, . . . , σn),

σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.
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SVD

A = U 0

V T@
@@
Σ

m × n m ×m m × n

n × n
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SVD
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Thin SVD

Partition U = (U1 U2), where U1 ∈ Rm×n,

A = U1ΣV T ,

A = U1

V T@
@@
0Σ

0

m × n m × n

n × n n × n
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Thin SVD
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Fundamental Subspaces I

The range of the matrix A:

R(A) = {y | y = Ax , for arbitrary x}.

Assume that A has rank r :

σ1 ≥ · · · ≥ σr > σr+1 = · · · = σn = 0.

Outer product form:

y = Ax =
r∑

i=1

σiuivT
i x =

r∑

i=1

(σivT
i x)ui =

r∑

i=1

αiui .
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Fundamental Subspaces II

The null-space of the matrix A:

N (A) = {x | Ax = 0}.

Ax =
r∑

i=1

σiuivT
i x

Any vector z =
∑n

i=r+1 βivi is in the null-space:

Az = (
r∑

i=1

σiuivT
i )(

n∑

i=r+1

βivi) = 0.
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Fundamental Subspaces

Theorem (Fundamental subspaces)

1. The singular vectors u1,u2, . . . ,ur are an orthonormal
basis in R(A) and

rank(A) = dim(R(A)) = r .

2. The singular vectors vr+1, vr+2, . . . , vn are an orthonormal
basis in N (A) and

dim(N (A)) = n − r .

3. The singular vectors v1, v2, . . . , vr are an orthonormal basis
in R(AT ).

4. The singular vectors ur+1,ur+2, . . . ,um are an orthonormal
basis in N (AT ).
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SVD matrix expansion

A = UΣV T

A =
n∑

i=1

σiuivT
i = + + · · ·
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SVD of a matrix with full column rank I

A = 1 1
1 2
1 3
1 4

>> [U,S,V]=svd(A)

U = 0.2195 -0.8073 0.0236 0.5472
0.3833 -0.3912 -0.4393 -0.7120
0.5472 0.0249 0.8079 -0.2176
0.7110 0.4410 -0.3921 0.3824

S = 5.7794 0 V = 0.3220 -0.9467
0 0.7738 0.9467 0.3220
0 0
0 0
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Thin SVD

>> [U,S,V]=svd(A,0)

U = 0.2195 -0.8073
0.3833 -0.3912
0.5472 0.0249
0.7110 0.4410

S = 5.7794 0
0 0.7738

V = 0.3220 -0.9467
0.9467 0.3220
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Rank deficient matrix I

>> A(:,3)=A(:,1)+0.5*A(:,2)

A = 1.0000 1.0000 1.5000
1.0000 2.0000 2.0000
1.0000 3.0000 2.5000
1.0000 4.0000 3.0000

>> [U,S,V]=svd(A,0)

U = 0.2612 -0.7948 -0.5000
0.4032 -0.3708 0.8333
0.5451 0.0533 -0.1667
0.6871 0.4774 -0.1667

S = 7.3944 0 0
0 0.9072 0
0 0 0
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Rank deficient matrix II

V = 0.2565 -0.6998 0.6667
0.7372 0.5877 0.3333
0.6251 -0.4060 -0.6667

SVD is rank-revealing!
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Null Space

The third column of V is a basis vector in N(A):

>> A*V(:,3)

ans =
1.0e-15 *

0
-0.2220
-0.2220

0
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Historical notes

SVD has many different names:
I First derivation of the SVD by Eugenio Beltrami (1873)
I Full proof by Camille Jordan (1874)
I James Joseph Sylvester (1889), independently discovers

SVD
I Erhard Schmidt (1907), first to derive an optimal, low-rank

approximation of a larger problem
I Hermann Weyl (1912) - determination of the rank in the

presence of errors
I Eckart-Young decomposition and optimality properties of

SVD (1936), psychometrics
I Numerically efficient algorithms to compute the SVD -

works by Gene Golub 1970 (Golub-Kahan)
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Best approximation / Eckart-Young Property I

Theorem
Assume that the matrix A ∈ Rm×n has rank r and choose k,
such that r > k. The Frobenius norm matrix approximation
problem

min
rank(Z )=k

‖A− Z‖F

has the solution
Z = Ak = Uk ΣkV T

k ,

where Uk = (u1, . . . ,uk ), Vk = (v1, . . . , vk ), and
Σk = diag(σ1, . . . , σk ).

Recall: ‖A‖F =
(∑

i,j a2
ij

)1/2
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Best approximation / Eckart-Young Property II

Proof:

(1) Observe: if Ak =
k∑

j=1
σjujv∗j , then ‖A− Ak‖2 = σk+1.

(2) Observe: Consider the subspace, spanned by the first k + 1
singular vectors of A, W . Then, ‖Aw‖2 ≥ σk+1‖w‖2,w ∈W .
(3) Assume that there exists a matrix B of rank k , such that
‖A− B‖2 < σk+1. Then, there exists a subspace Ŵ of size
n − k , such that Bw = 0,w ∈ Ŵ .
‖Aw‖2 = ‖(A− B)w‖2 ≤ ‖A− B‖2‖w‖2 ≤ σk+1‖w‖2. From
dimension arguments W ∩ Ŵ 6= ∅.
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Singular vectors, another view

Consider the rows of A(m,n)
as points in an n-dimensional
space and find the best
linear fit through the origin.

v1 = arg max
‖v‖=1

‖Av‖22, σ1 = ‖Av1‖2

v2 = arg max
‖v‖=1,v⊥v1

‖Av‖22
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SVD, geometric view

A = UΣV ∗ AV = UΣ
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Solving Least Squares problems by SVD

Ax = b,A(m,n)
A = UΣV
UΣVx = b → x = V (Σ−1(UT b))
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Least Squares by SVD I

A = 1 1 b = 7.9700
1 2 10.2000
1 3 14.2000
1 4 16.0000
1 5 21.2000

>> [U1,S,V]=svd(A,0)

U1 =0.1600 -0.7579
0.2853 -0.4675
0.4106 -0.1772
0.5359 0.1131
0.6612 0.4035
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Least Squares by SVD II

S = 7.6912 0 V = 0.2669 -0.9637
0 0.9194 0.9637 0.2669

>> x=V*(S\(U1’*b))

x = 4.2360
3.2260
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Linear dependence – SVD

Theorem
Let the singular values of A satisfy

σ1 ≥ · · · ≥ σr > σr+1 = · · · = σn = 0.

Then the rank of A is equal to r .

Rank = the number of linearly independent columns of A.

28/65

Linear dependence I

A=[1 1; 1 2; 1 3; 1 4]
singval=svd(A)

% Third col=linear combination of first two
A1=[A A(:,1)+0.5*A(:,2)]
singval1=svd(A1)
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Linear dependence II

Result:

A = 1 1 singval = 5.7794
1 2 0.7738
1 3
1 4

A1 = 1.0000 1.0000 1.5000
1.0000 2.0000 2.0000
1.0000 3.0000 2.5000
1.0000 4.0000 3.0000

singval1 = 7.3944
0.9072

0
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Almost linear dependence I

A2=[A A(:,1)+0.5*A(:,2)+0.0001*randn(4,1)]
singval2=svd(A2)

--------------------------------------

A2 = 1.0000 1.0000 1.4999
1.0000 2.0000 2.0001
1.0000 3.0000 2.5000
1.0000 4.0000 3.0001

singval2 = 7.3944
0.9072
0.0001

31/65

Computing the SVD in a numerically efficient way
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Computing the SVD

1. Transform A to bidiagonal form by unitary transformations

QLAQR = B =




∗ ∗
∗ ∗

. . . . . .
∗




2. Diagonalize B by two orthogonal transformations

Q̃LBQ̃R = Q̃LQLAQRQ̃R = Σ

The cost for the bidiagonalization is 4mn2 − 4/3n3.
The cost for SVD: 4m2n + 8mn2 + 9n3.
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Before defining a pseudoinverse: the inverse of a nonsingular
matrix

Nothing easier:
If A is a square nonsingular matrix, then A−1 is a matrix of the
same size as A, such that

A−1A = AA−1 = I.

Properties:
I1 (A−1)−1 = A
I2 (AT )−1 = (A−1)T

I3 (A∗)−1 = (−1)∗

I4 (AB)−1 = B−1A−1

I5 If Av = λv and A−1w = µw then µ = 1/λ.
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A definition of a generalized inverse

Any matrix, satisfying
AXA = A.

Example: Solvability of a linear system Ax = b.
Let b be in the range of A, i.e., there exist a vector h, such that
b = Ah.
If X is a generalized inverse of A, then x = Xb.
If AXA = A, then Ax = AXb = AXAh = Ah = b
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Generalized / Pseudo- inverses

I The Moore-Penrose pseudoinverse
I The Drazin inverse
I Weighted generalized inverses, group inverses
I The Bott-Duffin inverse (for constrained problems)
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Moore-Penrose pseudoinverse I

The Moore-Penrose pseudoinverse A+ is defined for any matrix
and is unique.
Moreover, it brings notational and conceptual clarity to the
study of solutions to arbitrary systems of linear equations and
linear Least Squares problems.
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Moore-Penrose pseudoinverse II

Consider A ∈ Rm,n
r . The subscript r denotes the rank of A.

Theorem (Penrose, 1956)

Let A ∈ Rm,n
r . Then G = A+ if and only if

P1 AGA = A
P2 GAG = G
P3 (AG)∗ = AG
P4 (GA)∗ = GA
Furthermore, A+ always exists and is unique.

The theorem is not constructive but gives criteria that can be
checked.
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Moore-Penrose pseudoinverse III

Example:
Let A ∈ Rm,n

r .
Then, from the SVD decomposition of A = UΣV T we find

A+ = V Σ+UT , where Σ+ =

[
S−1 0

0 0

]
.
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Moore-Penrose pseudoinverse IV

Properties:
I A+ = (AT A)+AT = AT (AAT )+

I (AT )+ = (A+)T

I (A+)+ = A
I (AT A)+ = A+(AT )+ = (AT )+A+

I R(A+) = R(AT ) = R(A+A) = R(AT A)

I N (A)+ = N (AA+) = N ((AAT )+) = N (AAT ) = N (AT )
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Moore-Penrose pseudoinverse V

For linear systems Ax = b with non-unique solutions (such as
under-determined systems), the pseudoinverse may be used to
construct the solution of minimum Euclidean norm ‖x‖2 among
all solutions.
If Ax = b is consistent, the vector x = A+b is a solution, and
satisfies ‖x‖2 ≤ ‖z‖2 for all possible solutions z.
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Uniqueness of the Moor-Penrose pseudoinverse I

Let A ∈ Rm,n
r . Assume that there are two matrices that satisfy the

conditions:
AA+A = A ABA = A
A+AA+ = A+ BAB = B
(AA+)∗ = AA+ (AB)∗ = AB
(A+A)∗ = A+A (BA)∗ = BA

Let M1 = AB − AA+ = A(B − A+). By the hypothesis, M1 is
self-adjoint (since it is the difference of two self-adjoint matrices) and

(M1)2 = (AB − AA+)A(B − A+)

= (ABA︸︷︷︸
A

−AA+A︸ ︷︷ ︸
A

)(B − A+) = (A− A)(B − A+)A = 0.
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Uniqueness of the Moor-Penrose pseudoinverse II

Since M1 is self-adjoint, the fact that M2
1 = 0 implies that M1 = 0:

since for all x one has ‖M1x‖2 = (M1x ,M1x) = (x , (M1)2x) = 0,
implying M1 = 0. This showed that AB = AA+ .

Following the same steps we can prove that BA = A+A (consider the
self-adjoint matrix M2 := BAA + A and proceed as above). Thus,
A+ = A+AA+ = A+(AA+) = A+AB = (A+A)B = BAB = B, thus A+ is
unique.
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The Drazin Inverse

Defined for a square matrix.
Let A be a square matrix. The index k of A is the least
nonnegative integer k such that rank(Ak+1) = rank(Ak ).
The Drazin inverse of A is the unique matrix AD which satisfies

Ak+1AD = Ak , ADAAD = AD, AAD = ADA.

If A is invertible with inverse A−1, then AD = A−1.
Example: Solving systems with a singular matrix by CG.
I. Ipsen, C. Meyer, The idea behind Krylov methods, The
American Mathematical Monthly, 105 (1998)
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Theoretical result

The following statements are equivalent:
I Ax = b has a Krylov solution.
I b ∈ R(Ai), where i is the index of the zero eigenvalue of A

(the index i of an eigenvalue is the maximum size of a
block, containing the eivenvalue in the Jordan canonical
form).

I ADb is a solution of Ax = b and it is unique.



45/65

Computing the pseudoinverse from SVD

A = UΣV T → A† = V Σ†UT ,

where A = U
[

Σ1
0

]
V T and Σ† =

[
Σ−1

1
0

]
.
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Bott-Duffin inverse

Constrained generalized inverse of a square matrix: We want to
solve Ax = b, A(n,n), where x should belong to a certain
subspace L of Rn.
Denote PL to be the orthogonal projection on L. Then the
constrained problem Ax = b, x ∈ L has a solution if

APLx = b

is solvable.
The generalized Bott-Duffin inverse is defined as

A(+) = PL(APL + PL⊥)−1

if the inverse on the right exists.
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Least square problems

Given A(m,n) with full column rank, b(n,1), consistent with A.
We want to solve

Ax = b

in the Least Squares sense, thus, x = (AT A)−1AT b.

We do not want to form AT A because
– it is usually badly conditioned
– it is in general full even if A is sparse.

AT A is symmetric positive definite and we have a method for
such systems.
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An example

Task: find a circle which best fits the points xi , yi , lying in a
place, as shown in the figure

Thus, seek the best fir circle with radius R and center with
coordinates a ad b. The task reduces to minimizing the
algebraic distance

d(a,b,R) =
n∑

i=1

((xi − a)2 + (yi − b)2 − R2)2 = ‖r‖2
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An example, cont

d(a,b,R) =
n∑

i=1

((xi − a)2 + (yi − b)2 − R2)2 = ‖r‖2

Here r is a residual vector and is nonlinear in a, b and R.
However, we notice that

ri = R2 − a2 − b2 + 2axi + 2byi

=
[
2xi 2yi 1

]



a
b

R2 − a2 − b2


− (xi + yi)

2

Thus, the residual is linear wrt z = (a,b,R2 − a2 − b2).
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An example, cont.

Formulate as LS problem:

A =




2x1 2y1 1
...

...
...

2xn 2yn 1


 b =




x+
1 y2

1
...

x2
n + y2

n


 d(a,b,R) = ‖Az− b‖2

A=[2*x 2*y ones(n,1)]:
b=x.^2+y.^2;
z=A\z; <---- Solving LS is a linear algebra problem
a=z(1);
b=z(2);
R=sqrt(z(3)+a^2+b^2);
t=linspace(0,2*pi,100);
plot(x,y,’o’,a+R*cos(t),b+R*sin(t),’r’);
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An example, cont.
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Solving LS via QR and SVD

Via SVD:
Ax = b,A(m,n)
A = UΣV
UΣVx = b → x = V (Σ−1(UT b))

Via QR: A = QR, QRx = b,Rx = QT b
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CGLS - Conjugate Gradient for Least Square problems
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CGLS: solve the normal equation for A ∈ Rn×m

History:
CG has appeared in a paper by Hestenes and Stiefel (1952). In
that paper and in a followup paper by Stiefel (1952), a version
of CG for solving the normal equation has peen presented.
First result for using a preconditioned CG for solving Least
Square problems appears in a paper by Lächli (1959).
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CGLS

Recall the definition of a Krylov subspace, based on a vector
v ∈ Rn and a matrix B ∈ Rn×n,

Kk (B,v) = span{v ,Bv ,B2v , · · · ,Bk−1v}.

Let A be rectangular and denote A† be its pseudoinverse.
Denote x̂ = A†b - the pseudoinverse solution and the
corresponding residual r̂ = Ax̂ . Then, in the CG framework, x̂k

minimizes the following error functional:

Eµ(x̂k
) = (x̂ − xk )T (AT A)µ(x̂ + xk )

where x̂k
= (x)0 +Kk (AT A, (s)0), s0 = AT (b − Ax0).
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CGLS I

Eµ(xk ) = (x̂ − xk )T (AT A)µ(x̂ + xk )

Values of µ of practical interest:
µ = 0 minimizes ‖x̂ − xk‖22
µ = 1 minimizes ‖r̂ − rk‖22 = ‖r̂‖22 − ‖rk‖22

(due to the orthogonality relation r̂ ⊥ r̂ − rk )
µ = 2 minimizes ‖AT (r̂ − rk )‖22
µ = 0 - feasible only for consistent systems.
µ = 1 - CGLS
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CGLS II

Properties of CGSL:
I Eµ(xk ) decreases monotonically.
I For µ = 1,2, Eν(xk ) decreases monotonically for all ν ≤ µ.
I for µ = 1 also rk decreases monotonically.
I The rate of convergence is estimated as follows:

Eµ(xk ) < 2
(√

κ − 1√
κ + 1

)k

Eµ(x0),

where κ = κ(AT A).
I For µ = 1, both ‖r̂ − rk‖ and ‖x̂ − xk‖ decrease

monotonically, however ‖AT rk‖ does oscillate (not due to
roundoff errors).
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Algorithm CGLS

Unpreconditioned CG Unreconditioned CGLS
x = x0 x = x0,
r = b -A*x r = b-A*x; „
delta0 = (r,r) g = s = AT *r
g = r delta0 = (s,s)
Repeat: h = A*g Repeat: h = A*s

tau = delta0/(g,h) tau = delta0/(h,h)
x = x + tau*g x = x + tau*s
r = r + tau*h r = r - tau*h
delta1 = (r,r) s = AT *r
if delta1 <= eps, stop delta1 = (s,s)
beta = delta1/delta0 if delta1 <= eps, stop
g = r + beta*g beta = delta1/delta0

g = s + beta*g

59/65

CGSL I

Note: x ,g ∈ Rn, r ,h ∈ Rm, (A ∈ Rn×m)
On the convergence of CGLS

With s = AT (b − Ax), by construction, x minimizes

s(AT A)−1s

over the space Kk (AT A,AT b).
Thus, sk ∈ Tk , Tk = {AT (b −Ax) |x ∈ Kk (AT A,AT b)} and any
vector from Tk can be expressed as

sk = (I − AT APk−1(AT A))AT b = Rk (AT A)AT b,

where Pk−1 is a polynomial of degree k − 1 and Rk is a
residual polynomial of degree less than or equal k and is
normalized at zero, thus Rk (0) = 1.
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CGSL II

‖sk‖(AT A)−1 = min
R∈Πk

‖Rk (AT A)AT bk‖(AT A)−1

Consider the singular value decomposition of A, A = UΣV .
Then

b =
m∑

i=1

biui , AT b =
n∑

i=1

biσiv i

and

‖sk‖(AT A)−1 min
R∈Πk

n∑

i=1

b2
i R2

k (σi).
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CGSL III

‖sk‖(AT A)−1 min
R∈Πk

n∑

i=1

b2
i R2

k (σi).

Any polynomial from Πk will give an upper bound. For the
choise

Rn(σ2) =

(
1− σ2

σ2
1

)(
1− σ2

σ2
2

)
· · ·
(

1− σ2

σ2
n

)

we get ‖sn‖(AT A)−1 = 0, which shows the final termination
property of CGLS.
If A has only q distinkt singular values, then CGLS will
converge in at most q iterations.
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Algorithm: Preconditioned CGLS

A good preconditioner for CGLS: the distinkt singular values of
the preconditioned matrix should be very few!
The normal equations for the preconditioned problem in
factored form:

C−T AT (AC−1y − b) = C−T AT (Ax − b) = 0.

The convergence now depends on the condition number
κ(AC−1).
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Algorithm: Preconditioned CGLS

Unpreconditioned CGLS Preconditioned CGLS
x = x0, x = x0,
r = b-A*x; r = b-A*x;
g = s = AT *r g = s =C−1 AT *r
delta0 = (s,s) delta0 = (s,s)
Repeat: h = A*s Repeat: t=C−1s; h = A*s

tau = delta0/(h,h) tau = delta0/(h,h)
x = x + tau*s x = x + tau*t
r = r - tau*h r = r - tau*h
s = AT *r s = C−1AT *r
delta1 = (s,s) delta1 = (s,s)
if delta1 <= eps, stop if delta1 <= eps, stop
beta = delta1/delta0 beta = delta1/delta0
g = s + beta*g g = s + beta*g
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Demo


