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Numerical Linear Algebra

Maya Neytcheva, TDB, February-March 2021
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A little bit of repetition...

The major task of this course is to learn

how to solve Ax = b and Ax = λx when A is of large size.

Why? Where do these systems arise?
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Linear systems arise in numerical simulations.
Numerical simulations should be seen as a cross-disciplinary task
because conducting a numerical simulation incorporates:

I Modelling
I Discretization
I Choice of a solution method
I Computer implementation
I Postprocessing
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I Modelling: modelling error
I Discretization: discretization error (space, time,stability...)
I Choice of a solution method: iteration error (robustness wrt

discretization parameters, )
I Implementation, computer platform, suitability (memory or

computation-bound), data structures, communication layout
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Course contents:

Ü Introduction, NLA, basic iterative schemes
Ü Projection methods
Ü Speeding up the convergence - preconditioning
Ü Multilevel/multigrid preconditioners
Ü Structured matrices, properties, preconditioning
Ü Num. Solution methods for eigenvalue problems
Ü Possibly: Matrix factorizations, LS, SVD
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Learning Goals

At the end of the course, the participant should be able to
I be aware of, understand, and be able to make arguments

about central issues regarding numerical solution methods for
linear systems, concerning numerical efficiency, computational
efficiency (complexity of the numerical algorithm), robustness
with respect to problem, discretization and method
parameters, possible parallelization;

I given a problem, have a clear guiding criteria how to choose
suitable solution technique and can reason what could be
advantageous and disadvantageous;

I demonstrate how the algorithms can be applied (on some test
problems).
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Course moments:

I Lectures - very highly recommended!
I Hands-on sessions - must do; come up with some comments

and at least two questions, to be discussed in the beginning
of the next lecture.
Currently - 5 such planned.

I Assignments - three such!
– Written report as a scientific paper in English.
– Structure, language, derivations, algorithms, figures,
conclusions, references
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Assumed that you are familiar with/can:

I vector subspaces
I full (column/row) rank
I positive definite matrices
I matrix/vector norms and condition numbers
I (strictly) diagonally dominant matrix
I spectral radius
I Z -matrices, M-matrices
I Schur’s lemma
I dense/sparse matrices
I direct solvers/sparse direct solvers/pivoting/complexity
I fill-in, ordering (Minimal degree, Reverse Cuthill-McKee,

nested dissection)
I derive the eigenvalues of the 1D and 2D discrete Laplacian
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Partial list of application fields

Stiff ODEs
BDF
Linear programming (simplex, interior point methods)
Optimization
Nonlinear equations
Elliptic PDEs
Eigensolutions
Two-point boundary value problems
Least Squares calculations
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More application fields

acoustic scattering demography network flow
air traffic control economics oceanography
astrophysics electrical eng. petroleum eng.
biochemical electric nets reactor modelling
chemical eng. climate/pollution studies statistics
chemical kinetics fluid flow structural eng
circuit physics laser optics survey data
computer simulations linear programming signal processing
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Some notions from matrix theory

I Revision: Vectors and matrices. Range, null space, rank of a
matrix.
Vector and matrix norms. Norm equivalence

I Matrix eigenvalues, minimal polynomial, similarity and
congruent transformations, Schur’s lemma. Gershgorin’s
theorem, Courant-Fischer lemma

I Condition number, spectral condition number,
Spectral radius ρ(A) = max

λ∈S(A)
(|λ|), ‖A‖2 =

√
ρ(A)

I Error analysis: stability of numerical algorithms

‖x̂−x‖ = ‖A−1b−x‖ = ‖A−1(b−Ax)‖ = ‖A−1r‖ ≤ ‖A−1‖‖r‖
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Matrix theory, cont.

I Some special classes of matrices and their properties. Unitary
(orthogonal), selfadjoint, Positive definite matrices,
(strict) diagonal dominance

I Schur complements
I Matrices with a special structure
I Matrix factorizations. Gaussian elimination, LU-decomposition
I Reorganizing the Gauss elimination process. Direct solution

methods for sparse matrices. Ordering strategies.
Sparse matrices (some issues touched, such as (re)ordering)

I Factorization of spd systems (Cholesky factorization)
I Computational cost
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Some implementation-related issues
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ijk

for i = 1 : n
for j = 1 : n

for k = 1 : n
c(i , j) = c(i , j) + a(i , k) ∗ b(k , j)

end
end

end

for i = 1 : n
for j = 1 : n

c(i , j) = c(i , j) + a(i , :) ∗ b(:, j) scalar product form
end

end
end
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jki

for j = 1 : n
for k = 1 : n

for i = 1 : n
c(i , j) = c(i , j) + a(i , k) ∗ b(k , j)

end
end

for j = 1 : n
for k = 1 : n

c(:, j) = c(:, j) + a(:, k) ∗ b(k , j) vector update form
end

end
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jik

for k = 1 : n
for j = 1 : n

for i = 1 : n
c(i , j) = c(i , j) + a(i , k) ∗ b(k , j)

end
end

end

for k = 1 : n
c(:, :) = c(:, :) + a(:, k) ∗ b(k , :) outer product form

end
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Matrix factorizations

I Schur’s form: A = UTRU
I LU
I LLT or UTU
I LDU
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The LDU factorization

Theorem:

If all leading principal minors of A are nonsingular, then there exist
unique lower-triangular matrix L, diagonal matrix D and
upper-triangular matrix U, such that A = LDU.
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How do we compute A = LDU?

Note: If ej is the jth unit vector, then Mej = M(:, j).
Assume that the first j − 1 columns of L, j − 1 elements of D and
j − 1 rows of U are computed.
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How do we compute A = LDU?

We equate the jth column of A = LDU:
Denote v = DUej . Then Aej = Lv

I v(1 : j) = L(1 : j , 1 : j)−1A(1 : j , j) - known data
I d(j) = v(j)
I U(i , j) = v(i)/d(i), i = 1 : j − 1
I L(j + 1 : n, j)v(1 : j) = A(j + 1, j)
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Example of implementing Cholesky
factorization

for k=1:n
xeuitb(A(1:k-1,k),A(1:k-1,1:k-1),A(1:k-1,k))
A(k,k) = sqrt(A(k,k) - A(1:k-1,k)^T*A(1:k-1,k))

end

Computes U (which overwrites A).

BLAS xeuitb(X,U,B) computes X = U−1B


