
TDB − NLA

Numerical Linear Algebra
Self reading: Sparse matrices, factorization

Maya Neytcheva, TDB, Feb-March 2021

Plan of the lecture:

◮ Sparse matrices and why are those a topic of special interest?
◮ Handling sparse matrices. Sparse data formats (FYI)

◮ Solution methods for sparse matrices
◮ Direct methods

◮ Fill-ins and can we get rid of them?
◮ Reordering strategies
◮ Sparse Cholesky factorization
◮ Sparse QR, SVD

◮ Examples

Large matrices

What has been and is considered as large through the years N(t)

1970 200
1975 1000
1980 10000
1985 100000
1990 250000
1995 500000
2000 2000000

since 2005 500000000

What is a sparse matrix?

A(N × N), nnz(A) = kN, 2 ≤ k ≤ logN



Sparse matrix storage schemes

Sparse matrix storage schemes

There are more than 20 different sparse storage schemes...

Sparse matrix storage schemes

Coordinate scheme:

A =




0 1 2 0
3 4 0 0
0 0 5 0
6 0 0 0




J : 2 3 1 2 3 1

I : 1 1 2 2 3 4

V : 1 2 3 4 5 6

Advantages and disadvantages

Sparse matrix storage schemes

Diagonal-wise storage scheme:

A =




a11 a12 0 a14 0 0
a21 a22 a23 0 a25 0
0 a32 a33 a34 0 a36
0 0 a43 a44 a45 0
0 0 0 a54 a55 a56
0 0 0 0 a65 a66




V =




0 a11 a12 a14
a21 a22 a23 a25
a32 a33 a34 a36
a43 a44 a45 0
a54 a55 a56 0
a65 a66 0 0




OF : -1 0 1 3

Sparse matrix storage schemes

Sparse compressed schemes: A =




0 1 2 0
3 4 0 0
0 0 5 0
6 0 0 0




R : 1 3 5 6 7

C : 2 3 1 2 3 1

V : 1 2 3 4 5 6

(a) CSR

C : 1 3 5 7 7

R : 2 4 1 2 3 3

V : 3 6 1 4 2 5

(b) CSC



Sparse matrix storage schemes

Jagged diagonal storage: The Jagged Diagonal Storage format can be
useful for the implementation of iterative methods on parallel and vector
processors. Like the Compressed Diagonal format, it gives a vector length
essentially of the size of the matrix. It is more space-efficient than CDS at the
cost of a gather/scatter operation.




10 −3 0 −1 0 0
0 9 6 0 −2 0
3 0 8 7 0 0
0 6 0 7 5 4
0 0 0 0 9 13
0 0 0 0 5 −1



−→




10 −3 1
9 6 −2
3 8 7
6 7 5 4
9 13
5 −1




col_ind(:,1) 1 2 1 2 5 5
col_ind(:,1) 2 3 3 4 6 6
col_ind(:,1) 4 5 4 5 0 0
col_ind(:,1) 0 0 0 6 0 0

Jagged diagonals, cont.




10 −3 0 −1 0 0
0 9 6 0 −2 0
3 0 8 7 0 0
0 6 0 7 5 4
0 0 0 0 9 13
0 0 0 0 5 −1




→




0 6 0 7 5 4
0 9 6 0 −2 0
3 0 8 7 0 0
10 −3 0 −1 0 0
0 0 0 0 9 13
0 0 0 0 5 −1




→




6 7 5 4
9 6 −2
3 8 7
10 −3 −1
9 13
5 −1




vals 6 9 3 10 9 5; 7 6 8 -3 13 -1; 5 -2 7 1; 4;
cols 2 2 1 1 5 5; 4 3 3 2 6 6; 5 5 4 4; 6;
perm 4 2 3 1 5 6

jd_ptr 1 7 13 17

LU factorization for sparse matrices

Direct methods: A = LU, LUx = b, Ly = b, Ux = y

Triangular factorization for the case of sparse matrices.
Note: In general, during factorization we have to do pivoting in
order to assure numerical stability.
The computational complexity of a direct solution algorithm is as
follows.

Type of matrix A Factor LU solve Memory
general dense 2/3n3 O(n2) n(n + 1)
symmetric dense 1/3n3 O(n2) 1/2n(n + 1)
band matrix (2q + 1) O(q2n) O(qn) n(2q + 1)



The reason to consider particularly factorizations of sparse
matrices

is the effect of fill-in, namely, obtaining nonzero entries in the LU
factors in positions where Ai ,j is zero.

a(k+1)
i ,j ←− a(k)i ,j +

a(k)i,k a(k)k,j

a(k)k,k

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

nz = 8

L
A

Effect on sparsity structure on factorization:

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

nz = 22

(c) Arrow matrix

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

nz = 36

(d) The structure of the L-factor

The arrow matrix structure - the L and U factors are full.

Effect on sparsity structure on factorization

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

nz = 22

(e) Arrow matrix permuted

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

nz = 15

(f) The structure of the L-factor

We can permute the matrix A first and then factorize!

We pose now the question to · · ·

find permutation matrices P and Q, such that when we factorize
Ã = QTAPT , the fill-in in the so-obtained L and U factors will be
minimal.
The solution algorithm takes the form:

(1) Factorize QTAPT = LU
(2) Solve PLz = b and UQx = z.

How to construct P and Q in general?



The strive to achieve complexity O(n) + O(nnz(A)) entails very
complicated sparse codes.
Some important aspects when implementing the direct solution
techniques for sparse matrices in practice:
- sparse data structures and manipulations with those;
- computer platform related issues, such as handling of

indirect addressing; lack of locality;
difficulties with cache-based computers and parallel platforms;

short inner-most loops.

Straightforward implementation of matvec in CRS

% SMULV: x <-- A * y ; A is a sparse matrix
% x(l1) <-- A(l1,l2) * y(l2)
% Sizes: AR(l1+1), AC(lA), AV(lA)

function x= SMULV(AR, AC, AV, y, lA, l1, l2)

for i=1:l1
x(i) = 0;
iF = AR(i);
iL = AR(i+1) - 1;
if iL>= iF,

for j=iF:iL
X(i) = X(i) + AV(j) * y(AC(j))

end

Extra difficulties come from the fact that· · ·

we have to choose a pivot element and its proper choice may
contradict to the strive to minimize fill-in.

We are most often dealing with ’Given-the-matrix’ case

I.e., the only source of information is the matrix itself and we will
try to reorder the entries so that the resulting structure will limit
the possible fill-in.

What is the matrix structure to aim at?



Given-the-matrix strategy

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

nz = 8

(g) Diagonal matrix

◮ diagonal
◮ block-diagonal
◮ block-tridiagonal
◮ arrow matrix
◮ band matrix
◮ block-triangular

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

nz = 21

(h) block-diagonal matrix

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

nz = 18

(i) The structure of the L-factor

0 2 4 6 8 10 12 14 16 18

0

2

4

6

8

10

12

14

16

18

nz = 112

(j) Block-tridiagonal matrix

0 2 4 6 8 10 12 14 16 18

0

2

4

6

8

10

12

14

16

18

nz = 54

(k) The structure of the L-factor

Consider the case of symmetric matrices (P = Q) and three
popular methods based on manipulations on the graph
representation of the matrix.
- (generalized) reverse Cuthill-McKee algorithm (1969);
- nested dissection method (1973);
- minimum degree ordering (George and Liu, 1981) and variants.



A matrix from somewhere

0 20 40 60 80 100 120

0

20

40

60

80

100

120

nz = 4355

0 20 40 60 80 100 120

0

20

40

60

80

100

120

nz = 5574

Generalized Reverse Cuthill-McKee (RCM)

Aim: minimize the envelope (in other words a band of variable
width) of the permuted matrix.

1. Initialization. Choose a starting (root) vertex r and set v1 = r .

2. Main loop. For i = 1, ..., n find all non-numbered neighbours of vi and
number them in the increasing order of their degrees.

3. Reverse order. The reverse Cuthill-McKee ordering is w1, ...,wn, where
wi = vn+1−i .

Generalized Reverse Cuthill-McKee (RCM)

One can see that GenRCM tends to number first the vertices
adjoint to the already ordered ones, i.e., it gathers matrix entries
along the main diagonal.

The choice of a root vertex is of a special interest.

The complexity of the algorithm is bounded from above by
O(m nnz(A)), where m is a maximum degree of vertices, nnz(A) -
number of nonzero entries of matrix A.

Generalized Reverse Cuthill-McKee (RCM)

0 20 40 60 80 100 120

0

20

40

60

80

100

120

p
r
cm = symrcm(A1); A2 = A1(p

r
cm,p

r
cm);

Symmetric reverse Cuthill−McKee permutation

0 20 40 60 80 100 120

0

20

40

60

80

100

120

nz = 3375



The Quotient Minimum Degree (QMD)

Aims to minimize a local fill-in taking a vertex of minimum degree
at each elimination step. The straightforward implementation of
the algorithm is time consuming since the degree of numerous
vertices adjoint to the eliminated one must be recomputed at each
step. Many important modifications have been made in order to
improve the performance of the MD algorithm and this research
remains still active .
In many references the MD algorithm is recommended as a general
purpose fill-reducing reordering scheme. Its wide acceptance is
largely due to its effectiveness in reducing fill and its efficient
implementation.

The Quotient Minimum Degree (QMD)

0 20 40 60 80 100 120

0

20

40

60

80

100

120

nz = 4355

Symmetric minimum degree permutation

0 20 40 60 80 100 120

0

20

40

60

80

100

120

nz = 3090

IBD (Identity By Descent) matrix

0 100 200 300 400 500 600 700

0

100

200

300

400

500

600

700

nz = 101027
0 100 200 300 400 500 600 700

0

100

200

300

400

500

600

700

nz = 195744

IBD matrix: MMD

0 100 200 300 400 500 600 700

0

100

200

300

400

500

600

700

nz = 101050
0 100 200 300 400 500 600 700

0

100

200

300

400

500

600

700

nz = 119470



The Nested Dissection algorithm

A recursive algorithm which on each step finds a separator of each
connected graph component. A separator is a subset of vertices
whose removal subdivides the graph into two or more components.
Several strategies how to determine a separator in a graph are
known. Numbering the vertices of the separator last results in the
following structure of the permuted matrix with prescribed zero
blocks in positions (2, 1) and (1, 2)




A11 0 A13
0 A22 A23

A31 A32 A33


 .

The Nested Dissection algorithm

Under the assumption that subdivided components are of equal size
the algorithm requires no more than log2 n steps to terminate.

ND is optimal (up to a constant factor) for some class of model 2D
problems originating from discretized PDEs. The Cholesky factor
contains O(m2log2m) nonzero entries. This is the
best low order bounds derived for direct elimination methods.

When we are dealing with ’Given-the-problem’ case

I.e., we know more - the mesh, the discretization method, the
element matrices (the discretization stencils).

What can we do then?

In the PDE world and not only...

12 14 15 16 17 18 20

22 23 24 25 26 27 28 30

32 33 34 35 36 37 38 39

45 47 50

2 3 4 5 6 7 8 10

40

42 43 44 46 48 4941

31

21

11

1

13

9

19

29

(l) Column-wise ordering

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

30

35

40

45

50

nz = 220

(m) The structure of the ma-
trix A



In the PDE world and not only...

1

2

3

4

5

6

7

8

9

11

12

13

14

16

17

18

19

21

22

23

24

27

29

32

33

34

36

37

38

39

41

42

44

46

47

49

15 20 25 30 35 40 45

4843

3126

28

10 50

(n) Column-wise ordering

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

30

35

40

45

50

nz = 220

(o) The structure of the matrix
A

In the PDE world and not only...

Ω1 Ω2 Ω3

2

4 5 6

7 8 9

10 11 12

13 14 15

17

18 19

20 21

22 23

24 25

27 28

39 30 31

32 33 34

35 36 37

38 39 40

41

42

43

45

47

48

1

44

16 46

49

50

263

(p) Column-wise ordering

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

30

35

40

45

50

nz = 220

(q) The structure of the matrix
A

In the PDE world and not only...

2

9 12

14

18 19

22 23

31 32

37

42 43 44

45

3 4

8765

1

13

10

17 33 34 35 48 49 50

36

3926

27

30

21

11

15

2928

2524 40

46 47

41

38

20

16
Ω1 Ω2 Ω3

(r) Column-wise ordering

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

30

35

40

45

50

nz = 220

(s) The structure of the matrix
A

Summary:

◮ There is no one good buy.
◮ The best code in any situation will depend on

- the solution environment;
- the computing platform;
- the structure of the matrix.



An appetizer to iterative methods

n=10000;
tic,x=A\b;toc
Elapsed time is 1.881219 seconds.
tic,x=AF\b;toc
Elapsed time is 12.504630 seconds.

n=50000;
R=sprand(n,n,1/n);I=speye(n);b=rand(n,1);A=10*I+0.5*(R+R’);
tic,x=A\b;toc
Elapsed time is TOO MANY seconds.

tic,[x,flag,relres,iter,resvec]=pcg(A,b,1e-6,1000);toc
Elapsed time is 0.015673 seconds.
iter = 5
relres = 4.67 e-07


