
TDB − NLA

Numerical Linear Algebra
Self reading: Introduction, dense matrices

Maya Neytcheva, TDB, Feb-March 2021

When talking about the solution of a linear system of equations:
- computational complexity - computer demands (computing

time and memory consumption)
- robustness wrt to (problem, discretization and method)

parameters

- numerical efficiency (later, for iterative methods - number of
iterations)

- parallelization aspects, HPC flavour

Before discussing sparse matrices...
we are going to look first at dense matrices...

because these are easier.

Large dense matrices

GOAL: get a global overview of issues related to
direct solution methods:

◮ Gauss elimination
◮ LU factorization, Cholesky factorization
◮ stability, pivoting, errors;
◮ complexity
◮ effect of the dense/sparse structure on the performance



Large dense matrices

An idea what matrix dimensions might have been considered very
large for a dense, direct matrix computation through the years:

n Year Source
20 1950 Wilkinson

200 1965 Forsythe&Moler
2000 1980 LINPACK

20000 1995 LAPACK
> 200 000 some years ago (Umeå)

J. Wilkinson, The algebraic eigenvalue problem, 1965
G. Forsythe& C. Moler, Computer solutions of linear algebraic
systems, 1967.

Computational complexity issues: Cramer’s rule

Ax = b, A(n × n), det(A) 6= 0



a11 · · · a1,i−1 a1,i a1,i+1 · · · a1,n
· · · · · · · · · · · · · · · · · · · · ·
ai1 · · · ai ,i−1 ai ,i ai ,i+1 · · · ai ,n
· · · · · · · · · · · · · · · · · · · · ·
an1 · · · an,i−1 an,i an,i+1 · · · an,n







x1
· · ·
xi
· · ·
xn



=




b1
· · ·
bi
· · ·
bn




Computational complexity issues: Cramer’s rule

xi =
1

det(A)







a11 · · · a1,i−1 b1 a1,i+1 · · · a1,n
· · · · · · · · · · · · · · · · · · · · ·
ai1 · · · ai ,i−1 bi ai ,i+1 · · · ai ,n
· · · · · · · · · · · · · · · · · · · · ·
an1 · · · an,i−1 bn an,i+1 · · · an,n







Computational complexity issues

Consider products of n elements of A,

a1,α1 , a2,α2 , · · · , an,αn ,

where α1, α2, · · · , αn is a permutation of 1, 2, · · · , n.
The number of all these products is n! .

det(A) =
∑

i=1

n!
n∏

j=1

(−1)γ aj ,αj ,

thus, the computational complexity to solve the system is n!.
To be more precise: (n + 1)(n!) = (n + 1)! multiplications and
(n + 1)(n!) = (n + 1)! additions.



Gauss elimination/LU factorization: A(m, n)

for k = 1, 2 · · ·m − 1

d = 1/a(k)kk
for i = k + 1, · · ·m

ℓ
(k)
ik = −a(k)ik d

for j = k + 1, · · · n
a(k)ij = a(k)ij + ℓika(k)kj

end
end

end

The operational count for the LU factorization can be obtained by integrating the loops:

FlopsLU =

m−1∫

1

m∫

k

n∫

k

dj di dk ≈ n3
/3 (m = n)

Computational complexity issues: computing det(A)

Method Multiplications Additions

Gaussian Elimination 1
3n3 + n2 − 1

3n 1
3n3 + 1

2n2 − 5
6n

Gauss-Jordan Elimination 1
3n3 + n2 − 5

2n + 2 1
3n3 − 3

2n2 + 1

Cramer’s Rule n! n!

Computational complexity issues: Cramer against Gauss

A comparison of the amount of time to solve Ax = b on a Cray J90. The Cray J90 performs one trillion
operations per second (one teraflop).

n Gaussian Elimination Cramer’s Rule
2 6 x 10−12 secs 6 x 10−12 secs
3 1.7 x 10−11 secs 2.4 x 10−11 secs
4 3.6 x 10−11 secs 1.2 x 10−10 secs
5 6.5 x 10−11 secs 7.2 x 10−10 secs
6 1.06 x 10−10 secs 5.04 x 10−09 secs

10 4.3 x 10−10 secs 3.99168 x 10−05 secs
20 3.06 x 10−9 secs 1.622 years

100 3.433 x 10−7 secs 2.9889 x 10138 centuries
1000 3.3433 x 10−4 secs

Computational complexity issues: hardware development

Top500, November 2021, no 1:
Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C
2.2GHz, Fujitsu
RIKEN Center for Computational Science
- performance of 537.212 petaflops on High Performance Linpack,
- Tofu interconnect D
- 7,630,848 cores
- 5,087,232 GB memory



Factorials...

In 2001, the value of 1000! was currently too large to be stored as
a single number in the memory of a computer.
(Computational Science: Tools for a Changing World by R.A.
Tapia, C. Lanius, 2001, Rice.)

The scientific calculator in Windows XP is able to calculate
factorials up to at least 100000!.
(look-up tables)

Dense LU remains an active field of research:

"Dense Matrix Factorization of Linear Complexity
for Impedance Extraction of Large-Scale 3-D Integrated Circuits"
Wenwen Chai, Dan Jiao School of Electrical and Computer Engineering,
Purdue University, IEEE Xplore, July 2010

Abstract: A fast LU factorization of linear complexity is developed to
directly solve a dense system of linear equations for the interconnect
extraction of any arbitrary shaped 3-D structure embedded in
inhomogeneous materials. The proposed solver successfully factorizes
dense matrices that involve more than one million unknowns in fast CPU
run time and modest memory consumption. Comparisons with
state-of-the-art integral equation- based interconnect extraction tools
have demonstrated its clear advantages.

Dense LU remains an active field of research:

Programming parallel dense matrix factorizations with look-ahead
and OpenMP
Sandra Catalán, Adrián Castelló, Francisco D. Igual, Rafael
Rodríguez-Sánchez Enrique S. Quintana-Ortí
Cluster Computing, 23, 359–375(2020)
We investigate a parallelization strategy for dense matrix
factorization (DMF) algorithms, using OpenMP, that departs from
the legacy (or conventional) solution ...

Stability of Gauss elimination

... is unstable !



Factorizing symmetric positive definite matrices

Factorize A = LLT , L – lower-triangular
Cholesky factorization

Factorizing symmetric marices

The mathematician after whom the Cholesky factorisation is
named.

Major Andre-Louis Cholesky (1875-1918)

Born in France, worked in the Geodesic section of the Geographic
service to the French army’s artillery branch.
At this time the system of triangulation used in France, and based
on the meridian line of Paris, was being revised; new methods were
needed in order to facilitate what was not yet a quick or convenient
process.
Cholesky invented computation procedures based on the method of
least squares, for the solution of certain data-fitting problems in
geodesy, to be put into practice in his triangulation of the French
and British parts of Crete, and in his work in Algeria and Tunisia.
His mathematical work was posthumously published on his behalf in
1924 by a fellow officer, Benoit.

Cholesky factorization ...

% Maya’s version of Cholesky - to compare execution time
% ---------------------------------------------------------------
function [U]=my_chol(A)
A = triu(A);
n = size(A,1);
for k=1:n,

A(1:k-1,k) = A(1:k-1,1:k-1)’\A(1:k-1,k);
A(k,k) = sqrt(A(k,k) - A(1:k-1,k)’*A(1:k-1,k));

end
U = triu(A);
return



Cholesky factorization ...

size(A) chol chol Ratio
Matlab mine

10 0.000292 0.004360 14.9315
50 0.000183 0.6267 0.002697 0.6186 14.7377

100 0.000327 1.7869 0.002305 0.8547 7.0489
500 0.002132 6.5199 0.264100 114.5770 123.8724

1000 0.008465 3.9705 0.970080 3.6732 114.5987
5000 0.583840 68.9711 161.698800 166.6860 276.9573

Outer Product Cholesky

for k = 1 : n
A(k, k) =

√
A(k, k)

A(k + 1 : n, k) = A(k + 1 : n, k)− A(n : k, k − 1)/A(k, k)
for j = k + 1 : n

A(j : n, j) = A(j : n, j)− A(j : n, j)A(j , k)
end

end

Example of implementing Cholesky factorization

for k=1:n
xeuitb(A(1:k-1,k),A(1:k-1,1:k-1),A(1:k-1,k))
A(k,k) = sqrt(A(k,k) - A(1:k-1,k)^T*A(1:k-1,k))

end

Computes U (which overwrites A).

BLAS xeuitb(X,U,B) computes X = U−1B


