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Chapter 1

Preliminaries

An important concept in numerical analysis is projection on a finite dimensional subspace
of a given vector space. Here we only consider orthogonal projection. A simple example of
this is to consider R2 and its subspace V = {(x, y) ∈ R2 | y = 0}, the x-axis. Intuitively,
it is clear what is meant by orthogonal projection on V: given a vector x = (x1, x2)∗ ∈ R2,
we think of the vector P (x) = (x1, 0)∗ ∈ V as its orthogonal projection on V, because the
difference x− P (x) is perpendicular to V.

x

P(x)
Figure 1: A vector x and its orthogonal projection on the horizontal axis.

An important fact is that P (x) is the vector from V closest to x, when their mutual distance
x− P (x) is measured in the standard norm. We say that P (x) is the best approximation of
x in V with respect to this norm. This has interesting consequences in numerical analysis.

In this chapter we will show how to compute projections on subspaces of Rn, but also on (finite
dimensional) subspaces of function spaces such as C0(I). For this, we need to know what
mutually orthogonal functions are. The abstract notion of inner product and its so-called
derived or associated norm are hereby central concepts. They further lead to the definition of
orthogonal transformations, which are important in the QR-decomposition and in the theory
of canonical forms of matrices.

1.1 Norms and inner products on a vector space

Well-known examples of norms on Rn are the Euclidean (or standard) norm ‖ · ‖2 on Rn, and
the supremum (or maximum) norm ‖ · ‖∞ on Rn, defined by

‖x‖2 =
√

x∗x =

√√√√ n∑
j=1

x2
j and ‖x‖∞ = sup{|xj | | j ∈ {1, . . . , n}}. (1.1)
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6 CHAPTER 1. PRELIMINARIES

Norms can be considered as measuring the magnitude of an element of the vector space,
and since the meaning of magnitude can be different in different situations, there exist many
different norms. The norm axioms below express which properties any norm should have to
be rightfully called a norm in the mathematical sense.

Definition 1.1.1 A mapping ‖ · ‖ : V → R is a norm on V if and only if:

• ∀x ∈ V : ‖x‖ ≥ 0, and ‖x‖ = 0 ⇔ x = 0,

• ∀α ∈ R,∀x ∈ V : ‖αx‖ = |α|‖x‖,

• ∀x, y ∈ V : ‖x + y‖ ≤ ‖x‖+ ‖y‖ (”triangle inequality”)

Also on other vector spaces, such as the space Ck(I) of k times continuously differentiable
functions on an interval I, norms and inner products exist. For example, the standard norm
and the supremum norm on C0(I) are defined by

‖f‖2 =

√∫
I
f(x)2dx and ‖f‖∞ = sup{|f(x)| | x ∈ I}.

As we will show below, norms can be (but do not necessarily need to be) defined by means of
inner products. Inner products additionally equip the vector space at hand with the concept
of orthogonality. Inner products, like norms, are supposed to satisfy certain axioms.

Definition 1.1.2 A mapping (·, ·) : V × V → R is an inner product on V if and only if

• ∀x, y ∈ V : (x, y) = (y, x)

• ∀x, y, z ∈ V : (x + y, z) = (x, z) + (y, z)

• ∀α ∈ R,∀x, y ∈ V : (αx, y) = α(x, y)

• ∀x ∈ V : (x, x) ≥ 0, and (x, x) = 0 ⇔ x = 0

The most important example of an inner product on Rn is the standard inner product defined
by

(x, y)Rn =
n∑

j=1

xjyj . (1.2)

This inner product is so standard that it is usually simply written as (·, ·). Recall that
this inner product allows a nice and compact notation that makes use of the matrix-vector
multiplication on Rn, and which is

(x, y) = x∗y = (x1, · · · , xn)

 y1
...

yn

 . (1.3)

On C0(I), the standard inner product is the following:

(f, g)C0(I) =
∫

I
f(x)g(x)dx.
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Here too, the subscript is usually suppressed and we simply write (·, ·). It is no coincidence
that the standard norms on Rn and C0(I) can be computed by means of the standard inner
products on these spaces. Indeed, we have that

‖x‖2 =
√

(x, x) and ‖f‖2 =
√

(f, f) (1.4)

for all x ∈ Rn and all f ∈ C0(I). Such a relation is valid more generally. Suppose that (·, ·)V

satisfies the inner product axioms on some vector space V . Define

‖x‖V :=
√

(x, x)V . (1.5)

Then it can be verified that ‖ · ‖V satisfies the norm axioms on V . This norm is called the
associated norm (also called induced norm, derived norm, corresponding norm). As we saw
above, the standard norm ‖ · ‖2 on Rn is associated to the standard inner product on Rn, and
the same holds for the standard norm and inner product on C0(I).

Remark 1.1.3 There also exist norms that are not associated to any inner product. An
example is the supremum norm ‖ · ‖∞, both on Rn and on C0(I).

An important result on both inner products and their induced norms is the following inequal-
ity. It is frequently used in numerous applications.

Theorem 1.1.4 (Cauchy-Schwarz inequality) Let (·, ·)V be an inner product on V to-
gether with its induced norm ‖ · ‖V . Then for each v, w ∈ V ,

|(v, w)V | ≤ ‖v‖V ‖w‖V . (1.6)

Equality holds if and only if v and w are linearly dependent.

Proof. Since the inequality if trivially true if either v or w is zero, let non-zero v and w be
given. Also, let λ ∈ R be any scalar. Then, by definition of the induced norm and using the
inner product axioms, we find that

0 ≤ ‖v − λw‖2
V = (v − λw, v − λw)V = (v, v)V − 2λ(v, w)V + λ2(w,w) (1.7)

for all λ ∈ R. In particular, it holds for

λ =
(v, w)V

(w,w)V
. (1.8)

Substituting this in (1.7) shows that

0 ≤ (v, v)V − 2
(v, w)V

(w,w)V
(v, w)V +

(v, w)2V
(w,w)2V

(w,w)V = (v, v)V −
(v, w)2

(w,w)
. (1.9)

From this we find immediately that

(v, w)2 ≤ (v, v)V (w,w)V hence |(v, w)V | ≤
√

(v, v)V

√
(w,w) = ‖v‖V ‖w‖V . (1.10)

This proves the statement. �

Remark 1.1.5 The Cauchy-Schwarz inequality shows in particular that for all non-zero
v, w ∈ V we have that

−1 ≤ (v, w)V

‖v‖V ‖w‖V
≤ 1. (1.11)

The expression in the middle is usually interpreted as the cosine of the angle between v and
w, just as this is done in Rn.
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1.2 Orthogonal projection on a finite dimensional subspace

Inner products define what it means for two elements from the vector space to be orthogonal
to each other. Notice that the following definition is consistent with Remark 1.1.5.

Definition 1.2.1 Two elements v, w of a vector space V are said to be orthogonal to each
other with respect to the inner product (·, ·)V if and only if (v, w)V = 0.

For the standard inner product, this corresponds to our intuition of what orthogonality should
be. Indeed, vectors x and y in R3 are orthogonal if and only if they are perpendicular to each
other. But there exist other inner products on R3 for which this intuition is no longer valid.
It may be that x and y are orthogonal even though they are not perpendicular to each other
in the usual sense.

Definition 1.2.2 Let W be a finite dimensional subspace of V . A vector r ∈ V is orthogonal
to W with respect to the inner product (·, ·)V if and only if

∀w ∈ W : (r, w)V = 0. (1.12)

Since inner products are bilinear, it is not very hard to verify that this is equivalent to
demanding that r is orthogonal to each of the basis vectors of a given basis for W , as depicted
below.

r

W
w1

w2

Figure 2: Orthogonality of r to W is the same as r ⊥ w1 and r ⊥ w2.

As a result, orthogonality of v to W can be verified by evaluation of a finite number of inner
products only. Lemma 1.3.4 contains a special case of this statement.

The concept of orthogonality to a subspace is central in the definition of the orthogonal
projection on a subspace.

Definition 1.2.3 Let W be a finite dimensional subspace of V and let v ∈ V . The orthogonal
projection PW (v) of v on W with respect to (·, ·)V is the element from W such that

∀w ∈ W : (v − PW (v), w)V = 0. (1.13)

This definition is graphically illustrated in the left picture in Figure 3. At this point though,
it is not yet clear if such an element exists, nor that it is unique. We will show this further
on. First, we prove that the projection PW (v) of v on W with respect to (·, ·)V is the best
approximation of v in W measured in the associated norm ‖ · ‖V , as depicted in the right
picture in Figure 3.
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V
P(x)

x

x − P(x)

w

x−wx−P(x)

P(x)

x

V

Figure 3: Illustration of Definition 1.2.3 and Theorem 1.2.4.

Theorem 1.2.4 Let V be a vector space with subspace W and with inner product (·, ·)V

and induced norm ‖ · ‖V . Denote the orthogonal projection of v ∈ V with respect to (·, ·)V

on W by PW (v). Then for all w ∈ W we have

‖v − PW (v)‖V ≤ ‖v − w‖V , (1.14)

and PW (v) is called the best approximation of v within W measured in the induced norm.

Proof. Let w ∈ W be given. Then also w − PW (v) ∈ W , because W is a subspace of V .
By definition, we find therefore,

(v − PW (v), w − PW (v))V = 0 (1.15)

Using this, we find, using the inner product axioms, that

‖v − PW (v)‖2
V = (v − PW (v), v − PW (v))V = (v − PW (v), v − w + w − PW (v))V

= (v − PW (v), v − w)V . (1.16)

Now, apply the Cauchy-Schwarz inequality (1.6) to the right-hand side. This gives

‖v − PW (v)‖2
V ≤ ‖v − PW (v)‖V ‖v − w‖V .

Division by ‖v − PW (v)‖V finishes the proof. �

We will illustrate the actual computation of the projection on a subspace in four explicit
situations. The simplest example is projection on a one-dimensional subspace of Rn.

1.3 Projection on subspaces of Rn

Since projection in Rn is intuitively the most clear, we first give two examples related to Rn.
The first example involves projection on a line in R2, the second projection on a k-dimensional
subspace of Rn.
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1.3.1 Projection on a line in R2

As a simple example, we will compute the projection Pv(x) of a given non-zero vector x ∈ R2

on the line ` spanned by a non-zero vector v ∈ R2, with respect to the standard inner product.
Notice that B = {v} is a basis for `. Now, two properties fully characterize Pv(x):

• (A) Pv(x) = αv for some α ∈ R,

• (B) x− Pv(x) ⊥ v.

Property (A) expresses that the projection of x on ` is an element from that subspace, and
thus it can be written as a yet unknown coordinate α times the basis vector v. Property (B)
says that the difference between a vector and its projection is orthogonal to the space upon
which is being projected. This reflects Definition 1.2.3.

We will use the compact matrix-vector notation (1.3). Especially in the upcoming section its
convenience will become clear. Substituting (A) into (B) gives:

x− αv ⊥ v ⇔ (x− αv, v) = 0 ⇔ v∗(x− αv) = 0 ⇔ α =
v∗x

v∗v
. (1.17)

Substituting this back into (A) gives that

Pv(x) = v
v∗x

v∗v
and hence Pv =

vv∗

v∗v
(1.18)

is the 2× 2 matrix that represents the projection on v.

Remark 1.3.1 Notice a subtlety in the above derivation. The expression αv with α ∈ R is
well-defined. But substituting for α the expression computed in (1.17) makes αv an impossible
matrix-vector multiplication. However, vα does not suffer from this. Reason is, that if α is
interpreted as a 1× 1 matrix, only vα is a valid matrix-matrix multiplication.

Proposition 1.3.2 For all w ∈ ` we have that

‖x− Pv(x)‖2 ≤ ‖x− w‖2. (1.19)

In other words, Pv(x) is the vector in the line ` that is closest to x in the standard norm.

Proof. This is a special case of Theorem 1.2.4. �

1.3.2 Projection on a k-dimensional subspace V ⊂ Rn

Consider a subspace V ⊂ R3 of dimension two. This subspace is a plane through the origin.
Suppose that v1 and v2 are vectors in R3 that form a basis for V. This means that for all
v ∈ V there exist coordinates α1 and α2 such that v = α1v1 + α2v2. In fact, it holds that

V = {v | v = α1v1 + α2v2 for some α1, α2 ∈ R}. (1.20)

Another way of writing this same expression is to make use of the matrix V , which has two
columns, being v1 and v2. We will write V = (v1|v2) for this matrix, which has 3 rows. Write
α = (α1, α2)∗, and verify that

v = α1v1 + α2v2 = (v1|v2)
(

α1

α2

)
= V α. (1.21)

The expression above makes use of a very important interpretation of the concept of matrix-
vector multiplication. This interpretation is the first one of two, given below.
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Observation 1.3.3 (Matrix-vector multiplication) Let V be a matrix with n rows and
k columns. Denote the columns by v1, . . . , vk ∈ Rn. Let y ∈ Rk, then

V y = (v1| . . . |vk)

 y1
...

yn

 = y1v1 + · · ·+ ykvk. (1.22)

This expresses that V y is the specific linear combination of the columns of V with as coeffi-
cients the entries of the vector y. Alternatively, denoting the rows of V by v1, . . . , vn, we see
that

V y =

 v1

...
vn

 y =

 v1y
...

vny

 (1.23)

showing that V y can also be seen as a collection of inner products.

Using the first interpretation of matrix-vector multiplication from the observation above, we
see that V can alternatively be characterized as

V = {v | v = V α, α ∈ R2}. (1.24)

With this characterization at our disposal we return to orthogonal projections. First we
prove a lemma that arises from Definition 1.2.2 of orthogonality to a subspace. The lemma
is formulated for the general case of a k dimensional subspace V ⊂ Rn.

Lemma 1.3.4 Let V ⊂ Rn be a k-dimensional subspace, and V a k × n matrix with the
property that its columns v1, . . . , vk are a basis for V. Then

r ⊥ V ⇔ V ∗r = 0. (1.25)

Proof. By definition (1.2.2) we have that

r ⊥ V ⇔ (∀v ∈ V : r ⊥ v) ⇔ (∀α ∈ Rk : r ⊥ V α)

⇔ (∀α ∈ Rk : (V α)∗r = 0) ⇔ (∀α ∈ Rk : α∗V ∗r = 0) ⇔ V ∗r = 0. (1.26)

The last equivalence follows from choosing α = V ∗r and the inner product axiom that states
that only the zero vector is orthogonal to itself. �

The above lemma shows the convenience of the compact format notation x∗y for the inner
product between x and y. It explicitly uses the equivalences

(∀j ∈ {1, . . . , n} : v∗j r = 0) ⇔

 v∗1
...

v∗n

 r = 0 ⇔ V ∗r = 0. (1.27)

It is now just a matter of following the same lines as in the one-dimensional example to see
how the orthogonal projection PV(x) of a vector x ∈ Rn on V can actually be computed in
practice. We only need to have a matrix V available whose columns are a basis for V. Then
we combine the two characterizing properties:
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• (A) PV(x) = V α for some α ∈ Rk,

• (B) x− PV(x) ⊥ V,

by substituting (A) into (B), which leads, using the Lemma 1.3.4, to:

x− V α ⊥ V ⇔ V ∗(x− V α) = 0 ⇔ V ∗V α = V ∗x ⇔ α = (V ∗V )−1V ∗x. (1.28)

Substituting this back into (A) gives that

PV(x) = V (V ∗V )−1V ∗x. (1.29)

Proposition 1.3.5 For all v ∈ V we have that

‖x− PV(x)‖2 ≤ ‖x− v‖2, (1.30)

No other element from V is closer to x than PV(x) when measured in the standard norm.

Proof. This is a special case of Theorem 1.2.4. �

1.4 Projection onto finite dimensional subspaces of C0(I)

Since also the space C0(I) has been equipped with an inner product, we are formally also able
to compute projections on finite dimensional subspaces of C0(I). To keep things as simple as
possible, here we will project on subspaces of dimension one and two only.

1.4.1 Projection on the one-dimensional subspace P0(I) of C0(I)

Consider the subspace P0(I) of C0(I) consisting of all constant functions on I = [a, b]. The
projection P 0(f) of an arbitrary function f ∈ C(I) on P0(I) satisfies:

• (A) P 0(f) is constant on I,

• (B) f − P 0(f) is orthogonal to all constant functions.

It can be computed by using a basis B = {φ0} for the one-dimensional subspace P0(I). Thus,
P 0(f) = αφ0 for some yet unknown coordinate α ∈ R. Substituting this information into (B)
results in

f − P 0(f) ⊥ P0(I) ⇔ f − αφ0 ⊥ φ0 ⇔ α =
(f, φ0)
(φ0, φ0)

, (1.31)

and hence,

P 0(f) =
(f, φ0)
(φ0, φ0)

φ0.

If we choose an explicit basis, we can compute some of the quantities involved. For example,
choose φ0 : I → R : x 7→ 1, then we find

P 0(f) =
1

b− a

∫ b

a
f(x)dx, (1.32)

which is the mean value of f over I.

Proposition 1.4.1 For all q ∈ P0(I) we have that

‖f − P 0(f)‖2 ≤ ‖f − q‖2. (1.33)

No q ∈ P0(I) approximates f better than P 0(f) when measured in the standard norm.

Proof. This is a special case of Theorem 1.2.4. �
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1.4.2 Projection onto P1(I)

To make things slightly more complicated, we will now project on the two-dimensional sub-
space P1(I) ⊂ C0(I). The projection P 1(f) of a function f ∈ C0(I) is fully characterized by:

• (A) P 1(f) ∈ P1(I),

• (B) f − P 1(f) ⊥ P1(I).

To compute P 1(f) explicitly, we need a basis for the two-dimensional linear vector space
P1(I). Let φ1 and φ2 form a basis of P1(I), then each p ∈ P1(I), and P 1(f) in particular,
can be written as

P 1(f) = α1φ1 + α2φ2.

The unknown coordinates α1, α2 with respect to the basis φ1, φ2 can be computed by substi-
tution of this expression into (B). This gives that

f − α1φ1 − α2φ2 ⊥ P1(I). (1.34)

This is equivalent (by linearity) to demanding orthogonality to both basis functions only:

f − α1φ1 − α2φ2 ⊥ φ1 and f − α1φ1 − α2φ2 ⊥ φ2. (1.35)

This, in turn, is equivalent to

(f, φ1) = α1(φ1, φ1) + α2(φ2, φ1) and (f, φ2) = α1(φ1, φ2) + α2(φ2, φ2), (1.36)

and this can be written in the compact format[
(φ1, φ1) (φ2, φ1)
(φ1, φ2) (φ2, φ2)

] [
α1

α2

]
=
[

(f, φ1)
(f, φ2)

]
. (1.37)

This two-by-two linear system can be solved, after which the result can be plugged into
P 1(f) = α1φ1 + α2φ2.

Again, we can compute some of the quantities involved explicitly. Choose as a basis the
functions

φ1(x) = 1 and φ2(x) = x−m, where m =
b + a

2
. (1.38)

This choice has as advantage that we immediately see that (φ1, φ2) = (φ2, φ1) = 0, because
the product φ1(x)φ2(x) = φ2(x) is odd around m and hence its integral vanishes. This gives
that

α1 =
(f, φ1)
(φ1, φ1)

=
1

b− a

∫ b

a
f(x)dx and α2 =

(f, φ2)
(φ2, φ2)

=
12

(b− a)3

∫ b

a
(x−m)f(x)dx, (1.39)

and hence,

P 1(f) =
1

b− a

∫ b

a
f(x)dx · 1 +

12
(b− a)3

∫ b

a
(x−m)f(x)dx · (x−m). (1.40)

Proposition 1.4.2 For all ` ∈ P1(I) we have that

‖f − P 1(f)‖2 ≤ ‖f − `‖2. (1.41)

No other linear function is closer to f than P 1(f) when measured in the standard norm.

Proof. This is a special case of Theorem 1.2.4. �
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1.5 QR-decomposition and applications

QR-decompositions of an matrix form an important concept in numerical linear algebra. They
serve as a tool to solve linear systems, least-squares problems, and is an essential building
block in the QR-iteration for eigenvalues. First we consider orthogonal transformations.

1.5.1 Orthogonal transformations

Here we consider the orthogonal transformations. Usually, the orthogonality to which is re-
ferred, is the orthogonality with respect to the standard inner product, although in particular
situations, this may be different. For the time being, we restrict ourselves to the standard
inner product.

Definition 1.5.1 (Orthogonal matrix) A real n × k matrix Q for which the k columns
are mutually orthogonal vectors of length one will be called orthogonal. �

Recall the two interpretations of matrix-vector multiplication given in section 1.3.2. Using
the second of these interpretations, we find that the orthonormality of the columns of Q is
equivalent with Q∗Q = I. Indeed, denoting the columns of Q by q1, . . . , qk we see that

Q∗Q =

 q∗1
...
q∗k

 [ q1 . . . qk

]
=

 q∗1q1 . . . q∗1qk
...

...
q∗kq1 . . . q∗kqk

 =

 1 0
. . .

0 1

 . (1.42)

Notice that only in case n = k, or, in other words, only if Q is square, this implies that
Q∗ = Q−1. In that case we have, apart from Q∗Q = I also that QQ∗ = I.

The first interpretation of matrix-vector multiplication allows us to prove the following lemma,
which is characteristic for orthogonal transformations.

Proposition 1.5.2 Let Q be an n× k orthogonal matrix. Then for all y ∈ Rk we have that

‖y‖ = ‖Qy‖. (1.43)

Proof. Denoting the columns of Q by q1, . . . , qk we see that

Qy = (q1| . . . |qk)

 y1
...

yk

 = y1q1 + · · ·+ ykqk. (1.44)

Since q1 is orthogonal to q2, . . . , qk, also y1q1 is orthogonal to y2q2+ · · ·+ykqk, and Pythagoras
Theorem tells us that

‖Qy‖2 = ‖y1q1‖2 + ‖y2q2 + · · ·+ ykqk‖2 = y2
1 + ‖y2q2 + · · ·+ ykqk‖2. (1.45)

This argument can be repeated for y2q2 and the sum y3q3 + · · · + ykqk and so on, until we
reach the conclusion that

‖Qy‖2 = y2
1 + · · ·+ y2

k = ‖y‖2, (1.46)

which proves the statement. �

A much shorter and simpler looking proof of Proposition 1.5.2 is contained as a special case of
the following, stronger result, which implies that not only lengths are preserved by orthogonal
transformations, but also angles.
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Proposition 1.5.3 For all y, z ∈ Rk we have that (y, z) = (Qy,Qz), where on the left we
have the standard inner product on Rk, and on the right the standard inner product on Rn.

Proof. By definition of the adjoint Q∗ and using that Q∗Q = I we find,

(Qy,Qz) = (Qy)∗(Qz) = y∗Q∗Qz = y∗z = (y, z), (1.47)

where we have used that (AB)∗ = B∗A∗ together with Q∗Q = I. �

1.5.2 QR-decomposition

One of the corner stones of linear algebra is the following result. Recall that a matrix R is
called upper triangular if all its entries rij with i > j are zero.

Theorem 1.5.4 (QR-decomposition) Let A be a real n× k matrix. Then there exists an
orthogonal matrix Q and an upper triangular matrix R such that A = QR.

Proof. We use induction with respect to the number k of columns of A. If A has one column
a1 then if ‖a1‖ 6= 0 a QR-decomposition is given by

a1 = q1r11 where q1 =
a1

‖a1‖
and r11 = ‖a1‖. (1.48)

In case ‖a1‖ = 0 a QR-decomposition is given by q1 · 0 where q1 with ‖q1‖ = 1 is arbitrary.

Suppose now that A has k columns a1, . . . , ak and that

[
a1 . . . ak−1

]
=
[

q1 . . . qk−1

]  r1,1 · · · r1,k−1

0
. . .

...
0 0 rk−1,k−1

 (1.49)

is the QR-decomposition of the first k − 1 columns of A. Define vk as

vk = (a∗kq1)q1 + · · ·+ (a∗kqk−1)qk−1. (1.50)

If ak = vk then with qk an arbitrary vector of unit length orthogonal to q1, . . . , qk−1 we have
that

[
a1 . . . ak

]
=
[

q1 . . . qk

]


r1,1 · · · r1,k−1 (a∗kq1)

0
. . .

...
...

0 0 rk−1,k−1 (a∗kqk−1)
0 . . . 0 0

 , (1.51)

and this is clearly a QR-decomposition of A. In case ak 6= vk, let wk = ak − vk and qk =
wk/‖wk‖. Then wk ⊥ qj for j < k because

q∗j wk = q∗j (ak − (a∗kq1)q1 + · · ·+ (a∗kqk−1)qk−1) = q∗j ak − q∗j (a
∗
kqj)qj = 0.

Moreover, since ak = vk + wk = vk + qk‖wk‖ we find that

[
a1 . . . ak

]
=
[

q1 . . . qk

]


r1,1 · · · r1,k−1 (a∗kq1)

0
. . .

...
...

0 0 rk−1,k−1 (a∗kqk−1)
0 . . . 0 ‖wk‖

 (1.52)

is a QR-decomposition of A. This completes the proof. �
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Remark 1.5.5 QR-decomposition is not unique. Let D be diagonal with entries djj = ±1.
Then D2 = I and A = (QD)(DR), and QD is orthogonal and DR is upper triangular. �

Remark 1.5.6 Basically, the QR-decomposition is the result of the Gram-Schmidt orthonor-
malization process applied to the columns of A from left to right. If such a column is linearly
dependent from the previous, this shows as a zero on the diagonal of R. �

Notice that if k < n and A = QR is a QR-decomposition of A, we can do the following. Let
q ∈ Rn be a unit vector orthogonal to all columns of Q. Such a vector exists because if k < n,
the columns of Q cannot form an orthonormal basis for Rn. Write 0∗k for the horizontal vector
of k zero entries. Then we have that

[Q|q]
[

R

0∗k

]
= QR + q0∗k = QR, (1.53)

and the product at the left consists of an orthogonal and an upper triangular matrix. There-
fore, we conclude the following.

Observation 1.5.7 If A is n × k with k < n, then for each j = k, . . . , n there exists a
QR-decomposition of A such that Q is n× j and R is j × k. �

There are two formats for the QR-decomposition that have particular interest:

• Q is n× k and R is k × k, the thin QR-decomposition,

• Q is n× n and R is n× k, the full QR-decomposition.

Clearly, the computation of the thin QR-decomposition is the most economical, but in the-
oretical considerations it is often convenient to consider the full QR-decomposition, since it
involves the square and invertible orthogonal transformation Q.

1.5.3 Example: Gram-Schmidt process for two vectors

First, we present an example of how to compute a QR-decomposition in practice. Or in other
words, we illustrate the Gram-Schmidt orthogonalization process applied to two vectors.

Let A be an n× 2 matrix consisting of columns a1 and a2. For convenience we assume that
a1 and a2 are non-zero and linearly independent. We distinguish the following steps.

Normalization of the first column. Since a1 6= 0 we can define

q1 =
a1

‖a1‖
. (1.54)

This results in the QR-decomposition of the first column of A:

a1 = q1‖a1‖. (1.55)

Orthogonormalization of a2 to q1. The vector a2 can be decomposed in a vector in the
direction of q1 and a vector q̃2 orthogonal to q1. Indeed, define

q̃2 = a2 − q1(q∗1a2), (1.56)
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then q∗1 q̃2 = q∗1(a2 − q1(q∗1a2)) = 0. Now define q2 = q̃2/‖q2‖, which gives q2‖q̃2‖ = q̃2.
Substitution in (1.56) gives a2 = q1(q∗1a2) + q2‖q̃2‖. This latter equality can be retraced by
comparing the second columns in

[a1|a2] = (q1|q2)
[
‖a1‖ a∗2q1

0 ‖q̃2‖

]
. (1.57)

This is a QR-decomposition of A.

1.5.4 Application: direct solution of linear systems

A square and non-singular linear system Ax = b can be solved quite efficiently if a QR-
decomposition of A is available. The efficiency comes from the fact that Q−1 = Q∗ and from
the comfortable way in which systems with upper triangular matrices can be solved. Indeed,
multiplying both sides of QRx = b by Q∗ gives

Rx = Q∗b, or

 ∗ · · · ∗

0
. . .

...
0 0 ∗


 x1

...
xk

 = Q∗

 b1
...
bk

 . (1.58)

Then, xk can be solved from the last equation, and one can proceed upwards by substitu-
tion. This process, called backward substitution, costs only in the order of n2 arithmetical
operations. For lower triangular matrices, the solution process is called forward substitution.

1.5.5 Application: solving least-squares problems

Let k ≤ n and let A be an n×k matrix with linearly independent columns (or, in other words,
A has column rank k, or is of full rank). Let b ∈ Rn be given. The least-squares problem is
the problem of finding the vector x ∈ Rk for which the difference Ax−b has minimal euclidean
norm:

Find x ∈ Rk such that for all y ∈ Rk, ‖Ax− b‖ ≤ ‖Ay − b‖. (1.59)

Now, let A = QR be the full QR-decomposition of A, then Q is square and Q∗Q = QQ∗ = I,
so we can write

Ay − b = QRy −QQ∗b = Q(Ry −Q∗b). (1.60)

Therefore, Proposition 1.5.2 shows that that we only need to solve the easier problem

Find x ∈ Rk such that for all y ∈ Rk, ‖Rx−Q∗b‖ ≤ ‖Ry −Q∗b‖. (1.61)

Since R is zero below the k-th row, the last n − k entries of Ry − Q∗b are equal to the last
n− k entries of Q∗b regardless of the choice of y. By choosing y such that the first k entries
of Ry − Q∗b are zero, we minimize the norm of Ry − Q∗b. This is equivalent to solving the
square linear system Ry = Q∗b where Q and R form a thin QR-decomposition of A.

Therefore, in order to solve the least-squares problem, we only need to solve the first k
equations of the n equations Ry = Q∗b. For this we only need the thin QR-decomposition of
A. This nicely illustrates that the full decomposition is handy in theoretical considerations
(the derivation above) while in practice, you only need to compute the thin one.
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1.6 Canonical forms of matrices

Important properties of a matrix A depend strongly on whether A is real and symmetric, or
complex Hermitian, possibly positive definite, normal or non-normal. The orthogonal and
unitary transformations play an important role in the theory of canonical forms of matrices.

1.6.1 The Schur decomposition

For an arbitrary matrix we recall the following important classical result.

Theorem 1.6.1 (Schur decomposition) Any n×n matrix A can be written as A = U∗RU ,
or in other words,

AU = UR, (1.62)

where U is a unitary matrix, i.e., U∗U = I, and R an upper triangular matrix.

Proof. By induction. For n = 1 the statement is trivially true. Now, suppose that for all
(n− 1)× (n− 1) matrices the statement is true. Let λ ∈ C be an eigenvalue of A and v ∈ Cn

a unit length eigenvector belonging to λ. Let W be unitary of dimensions n × (n − 1) and
such that W ∗v = 0. Then

A(v|W ) = (v|W )
(

λ w∗

0 B

)
. (1.63)

By the induction hypothesis, there exists unitary Q and upper triangular R such that BQ =
QR. Using this, we find

A(v|W )
(

1 0
0 Q

)
= (v|W )

(
1 0
0 Q

)(
λ w∗

0 R

)
. (1.64)

Since the product of unitary matrices is unitary, this proves the statement. �

Remark 1.6.2 Notice that R has the same eigenvalues as A. Since R is upper triangular,
the eigenvalues of R are on its diagonal. Therefore, the Schur decomposition is an eigenvalue
revealing decomposition: it shows the eigenvalues of A.�

Corollary 1.6.3 Suppose that A = A∗. Then there exists a diagonal matrix Λ and a unitary
matrix U such that

AU = UΛ. (1.65)

As a result, the columns of U are the eigenvectors of A, and the diagonal elements of Λ are
the eigenvalues of A. Those eigenvalues are real numbers.

Proof. Let U∗AU = R be the Schur decomposition of A. Taking the complex conjugate
transpose gives that U∗A∗U = R∗. Since A = A∗, this means that R∗ = R. Therefore, R
must be diagonal, and the diagonal entries must be real. �

A matrix A for which A∗ = A is called Hermitian. The above corollary states that there
exists an orthonormal basis of eigenvectors v1, . . . , vn of A of Cn. With respect to this basis,
A becomes real and diagonal. Real matrices A for which A∗ = A are called symmetric, and
have the same properties as a Hermitian matrix. Additionally, the eigenvectors of a symmetric
matrix are real. In both cases, if all eigenvalues are positive, A is called positive definite.
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1.6.2 Normal and diagonalizable matrices

The real symmetric and complex Hermitian matrices are not the only matrices for which there
exists an orthonormal basis of eigenvectors. Such matrices A are called normal.

Definition 1.6.4 (Normal matrices) If there exists an orthonormal basis of the whole
space consisting of eigenvectors of A, then A is called a normal matrix.�

Remark 1.6.5 A matrix A is normal if and only if A∗A = AA∗. The latter characterization
is usually much easier to check. We leave it as an exercise to the reader to verify that those
two properties are equivalent.�

A matrix is called non-normal if there does not exist an orthonormal basis of eigenvectors of
A. If nonetheless there still exists a basis of eigenvectors of A, then A is called diagonalizable.

Definition 1.6.6 (Diagonalizable matrices) A matrix A is called diagonalizable if there
exists a diagonal matrix Λ and a non-singular matrix V such that

AV = V Λ. (1.66)

Thus, A is diagonalizable if and only if there exists a basis of the whole space consisting of
eigenvectors of A only. Matrices that cannot be diagonalized are called defective.�

Here we summarize the most important implications of the properties just defined.

• A is real symmetric ⇒ A is Hermitian ⇒ A is normal ⇒ A is diagonalizable,

• A is defective ⇒ A is non-normal ⇒ A is non-Hermitian.

None of the above implications are an equivalence. The properties of being normal and
diagonalizable are the ones to remember.

Proposition 1.6.7 Let A be normal. Then for each ε > 0 there exists a non-normal matrix
Aε such that

‖A−Aε‖ ≤ ε. (1.67)

In other words, the set of non-normal matrices is dense in the set of all matrices.

Proof. First of all, since all norms on finite dimensional spaces are equivalent, we need not
specify the topology implied by the word dense. Now, let A be normal and AU = UD with
U∗U = I and Λ diagonal. Define matrices Aε by

Aε = UεΛU∗
ε , where Uε = U

 cos(ε) 0 0
sin(ε) 1 0

0 0 I

 . (1.68)

Then U0 = U and A0 = A, and for all ε with 0 < ε < π, we have that Uε is non-unitary. But
(1.68) is a diagonalization of Aε. Therefore, Aε with ε → 0 consists of non-normal matrices
converging to A. This proves the statement. �

Proposition 1.6.8 Let A be defective. Then for each ε > 0 there exists a diagonalizable
matrix Aε such that

‖A−Aε‖ ≤ ε. (1.69)

In other words, the set of diagonalizable matrices is dense in the set of all matrices.
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Proof. Since A is defective, it has an eigenvalue λ for which the dimension k of the
eigenspace Vλ is strictly less than the multiplicity ` of λ, the latter being the number of times
that λ occurs on the diagonal of the upper triangular factor of the Schur decomposition. It is
possible to construct a parameter dependent matrix Aε such that for all ε > 0, the matrix Aε

has ` different eigenvalues that all converge to λ for ε → 0, with corresponding eigenvectors
that are linearly independent but all converge to elements in Vλ. We omit the explicit form
of such a matrix. �

These density results are of interest if we consider the numerical approximation problem of
eigenvalues of a matrix. Thinking about the effects of finite precision arithmetic, we may be
tempted to state

• Every matrix A can be diagonalized numerically,

• Normal matrices have no numerical interest at all.

but both statements are not true. It turns out that it pays off to stay as closely as possible
to a normal matrix, and also to stay away as far as possible from defective matrices.

1.6.3 The Singular Value Decomposition

In what follows we need the notion of singular values. First we recall the definition of the
Singular Value Decomposition and its existence proof, together with its significance.

Theorem 1.6.9 (Singular Value Decomposition) For each n × k matrix A there exist
two unitary matrices U and V and a diagonal matrix Σ with non-negative entries such that

AV = UΣ. (1.70)

In the so-called thin decomposition, U is n× k, and both V and Σ and k× k, whereas in the
full decomposition U is n× n, V is k × k and Σ is n× k.

Proof. We sketch a proof by induction. Assume that for all (n− 1)× (k− 1) matrices, the
decomposition exists. Let v and u be such that Av = ‖A‖u, and V,U such that (v|V ) and
(u|U) are unitary, then

A(v|V ) = (u|U)
(
‖A‖ w∗

0 B

)
.

Since

A(v|V )
(
‖A‖
w

)
= (u|U)

(
‖A‖ w∗

0 B

)(
‖A‖
w

)
=
(
‖A‖2 + ‖w‖2

Bw

)
is a vector of size at least ‖A‖2 + ‖w‖2. If w 6= 0, the norm of A would be strictly larger than
‖A‖, which is a contradiction. Hence w = 0. By the induction hypothesis, this proves the
statement. �

As an application of the Singular Value Decomposition we mention the following. If AV = UΣ
and V = (v1| . . . |vk), U = (u1| . . . |un), then A = UΣV ∗ can be rewritten as

A =
k∑

j=1

σjujv
∗
j = σ1(u1v

∗
1) + · · ·+ σk(ukv

∗
k),
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showing that A can be written as the sum of rank-one matrices, each of the factors having
norm one. It can be shown that if σk ≤ · · · ≤ σ1, then each truncated expansion Ap consisting
of the first p terms only, satisfies

for all n× k rank p matrices Bp: ‖A−Ap‖ ≤ ‖A−Bp‖, (1.71)

showing that Ap is the best rank p approximation of A.

Proposition 1.6.10 Let A be an n × k matrix and AV = UΣ a full SVD. Then we have
that

A∗AV = V Σ∗Σ, (1.72)

diagonalizes A∗A, showing that the singular values of A are the square roots of the eigenvalues
of A∗A.

Proof. Since the SVD is full, both U and V are square and their inverses equal to their
complex conjugate transposed. Since AV = UΣ, we find

V ∗A∗ = Σ∗U∗ and thus A∗U = V Σ∗. (1.73)

Therefore, A∗AV = A∗UΣ = V Σ∗Σ, and Σ∗Σ is a k × k matrix with the squares of the
singular values on the diagonal. �
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Chapter 2

The Eigenproblem

The algebraic eigenvalue problem is one of the most challenging computational problems in
the field of Numerical Linear Algebra. Given a square matrix A, it asks to find all complex
numbers λ ∈ C for which there exists a nonzero solution v ∈ C to the equation

Av = vλ. (2.1)

The scalars λ for which such v exists are called the eigenvalues of A, and the corresponding
v the eigenvectors belonging to λ. We will often interpret λ as a one by one matrix. Clearly,
if 0 6= v ∈ C is a solution of (2.1), then so are all multiples of v. So alternatively, we may
look for λ ∈ C such that A− λI vanishes on a non-trivial subspace Vλ ⊂ Cn. Notice that Vλ

may have a dimension that is even larger than one. Notice also that if v is an eigenvector
belonging to λ ∈ C, then λ can be computed by the following expression,

v∗Av = v∗vλ. (2.2)

This shows that the eigenvalue problem can be formulated purely as an eigenvector problem,
in the sense that the nonzero roots of the function

f : Cn → Cn : v 7→ Avv∗v − vv∗Av (2.3)

are all eigenvectors of A.1 Indeed, if f(v) = 0 for v 6= 0, then defining λ by (2.2) yields
an eigenpair. Conversely, if Av = vλ for v 6= 0 then obviously f(v) = 0 because of (2.2).
Therefore, in spite of the fact that the eigenvalue problem is classified as a problem from
Linear Algebra, the problem itself is non-linear; the function f is a quadratic matrix function.
Finding its roots can, in principle, be attempted by using for instance Newton’s Method, and
in fact, there exists a wide range of literature on this topic. However, as it will turn out here,
there are other attractive alternatives.

2.1 Perturbation theory

Before we turn to computational methods for eigenvalue problems, it is important to know
more about the specific properties of the problem that we aim to deal with. For instance, it
is of interest to know what happens to the eigendata of A if we slightly change its entries.
This will be the topic of this section on perturbation theory. First we motivate its relevance.

1Notice that under the assumption that ‖v‖ = 1, the function f slightly simplifies to f(v) = (I − vv∗)Av.

23
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2.1.1 Motivation to study perturbation theory

The following beautiful but nonetheless trivial observation is at the heart of many important
results in eigenvalue approximation.

Definition 2.1.1 (Eigenvalue residual) Let A be an n× n matrix, v an arbitrary vector
of unit length, and µ a given scalar. The residual r for the pair (v, µ) is defined as

r = Av − vµ. (2.4)

Proposition 2.1.2 Let A be an n× n matrix, v an arbitrary vector of unit length, and µ a
given scalar. Then (v, µ) is an eigenpair of a Â = A + E where E = −rv∗.

Proof. We have that

Âv = (A + E)v = (A− rv∗)v = Av − r = Av − (Av − vµ) = vµ, (2.5)

showing that (v, µ) is an eigenpair of Â. �

Notice that the perturbation E = −rv∗ in Proposition 2.1.2 has a very special structure, with
corresponding special properties. It is a so-called rank-one matrix, satisfying:

• Ew is a multiple of r, the scalar factor being the inner product v∗w.

• The norm ‖E‖ equals ‖r‖. This is because ‖Ev‖ = ‖r‖‖v‖ and,

∀w, ‖Ew‖ = ‖rv∗w‖ = ‖r‖|v∗w| ≤ ‖r‖‖v‖‖w‖ = ‖r‖‖w‖. (2.6)

Therefore,

‖E‖ = sup
w 6=0

‖Ew‖
‖w‖

= ‖r‖. (2.7)

This motivates the study of the differences between the eigendata of A and matrices A + E,
where ‖E‖ ≤ ε for some small ε > 0. This is because eigenvalue algorithms usually terminate
as soon as the residual is smaller than some given tolerance ε. The computed eigenvalues are
then eigenvalues of A− rv∗ instead of A.

A motivation to study in particular the eigenvalues of A + E where E = −rv∗ is given in
the following proposition. It states that there exists no perturbation F of A smaller than
E = −rv∗ having (µ, v) as an eigenpair.

Proposition 2.1.3 There exists no matrix F with ‖F‖ < ‖r‖ such that (A + F )v = vµ.

Proof. Clearly, (A + F )v = vµ implies

‖Fv‖ = ‖Av − µv‖ = ‖r‖, hence ‖F‖ = sup
w 6=0

‖Fw‖
‖w‖

≥ ‖Fv‖
‖v‖

= ‖r‖. (2.8)

In fact, E = −rv∗ is the smallest perturbation of A having (v, µ) as eigenpair. �

With the above in mind, it can be seen that there exist two relevant but very different
questions in eigenvalue approximation. The first one is to develop algorithms that make sure
that they produce approximations with small residuals. If this is done, it depends on the
properties of the matrix A whether this results in accurate eigenvalues.
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2.1.2 Classical perturbation bounds

The perturbation properties of a matrix A depends strongly on whether A is real and sym-
metric, or complex Hermitian, possibly positive definite, normal or non-normal. The diago-
nalizable and non-normal matrices are the subject of two classical theorems in perturbation
theory. In these theorems, the change in the eigenvalues of A in the complex plane under
perturbations E is measured in terms of the distance of A to being normal or defective.

Theorem 2.1.4 (Bauer-Fike) Suppose that AV = V Λ with V nonsingular and Λ diagonal.
Let µ be an eigenvalue of A + E. Then there exists an eigenvalue λ of A such that

|λ− µ| ≤ κ(V )‖E‖, where κ(V ) = ‖V ‖‖V −1‖. (2.9)

Proof. We may assume that µ is not an eigenvalue of A. Since (A + E − µI) is singular, so
are V −1(A−µI +E)V and (Λ−µI)(I +(Λ−µI)−1V −1EV ) and I +(Λ−µI)−1V −1EV . Each
singular matrix I + F satisfies ‖F‖ ≥ 1 because there exists an x with Fx = x. Therefore,
by multiplicativity of ‖ · ‖ we find,

1 ≤ ‖(Λ− µI)−1V −1EV ‖ ≤ κ(V )‖(Λ− µI)−1‖‖E‖, (2.10)

and the norm of a diagonal matrix equals its entry furthest away from zero. �

Corollary 2.1.5 Let A be a normal matrix, and µ an eigenvalue of A + E with ‖E‖ ≤ ε.
Then there exists an eigenvalue λ of A such that

|λ− µ| ≤ ε. (2.11)

Proof. Follows immediately since κ(V ) = 1. �

In order to prove the counterpart of the Bauer-Fike theorem for non-normal matrices, we first
formulate a technical though useful lemma.

Lemma 2.1.6 Let D and N be n× n matrices. Suppose D is nonsingular and diagonal and
N strictly upper triangular. Let p be such that Np = 0 but Np−1 6= 0. Then (DN)p = 0 and

(D −N)−1 =
p−1∑
j=0

(D−1N)jD−1. (2.12)

Proof. Recall the formula (I + F + · · · + F k)(I − F ) = I − F k+1, valid for arbitrary F .
Applying this with F = D−1N and k = p− 1 proves the statement. �

Theorem 2.1.7 (Henrici) Let AQ = QR be a Schur decomposition of A. Write R = Λ+N ,
with Λ diagonal and N strictly upper triangular, and let p be the smallest integer such that
Np = 0. Then for each eigenvalue µ of A + E there exists an eigenvalue λ of A such that

|λ− µ| ≤ max(θ, θ
1
p ), where θ = ‖E‖

p−1∑
k=0

‖N‖k. (2.13)

The number ν(A) = ‖N‖ is called A’s departure from normality.
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Proof. Since A + E − µI is singular, and assuming that µ is not an eigenvalue of A we find
that (R− µI)(I + (R− µI)−1Q∗EQ) and I + (R− µI)−1Q∗EQ are singular. Therefore,

1 ≤ ‖(R− µI)−1Q∗EQ‖ ≤ ‖(R− µI)−1‖‖Q∗EQ‖ = ‖(Λ− µI + N)−1‖‖E‖. (2.14)

Apply Lemma 2.1.6 to the term (Λ− µI + N)−1. This results in

‖(Λ− µI + N)−1‖ ≤
p−1∑
k=0

‖N‖k‖(Λ− µI)−1‖k+1 ≤ θ max(‖(Λ− µI)−1‖, ‖(Λ− µI)−1‖p).

Using (2.14), and distinguishing the cases ‖(Λ − µI)−1‖ being either smaller or larger than
one, we find the statement. �

The Bauer-Fike and the Henrici Theorems show that if a matrix A is non-normal or close to
defective, the eigenvalues A+E can differ significantly from the ones of A, even if ‖E‖is small.
Therefore, a small eigenvalue residual does not guarantee a good eigenvalue approximations.

2.2 Pseudo-eigenvalues

The perturbation theorems in the previous section produce upper bounds for the distance
that eigenvalues may differ from their perturbed counterparts. Here we consider the exact
subset Λε(A) of the complex plane around eigenvalues of A that eigenvalues can reach under
perturbations of a given size ε > 0. Such a subset is called the ε-pseudospectrum of A.

2.2.1 Pseudo-eigenvalues and elementary properties

The eigenvalues of a matrix are points z in the complex plane where A−zI is singular. It may
be interesting to consider particular sections in the complex plane close to these singularities,
which inspires the following definition.

Definition 2.2.1 The ε-pseudospectrum Λε(A) of a A is the set of points z in the complex
plane such that z is an eigenvalue of A + E for some perturbation E with ‖E‖ ≤ ε.

This defines the exact bounds for how far an eigenvalue of A can go under perturbations E.
It turns out that there are two useful equivalent characterizations of the ε-pseudospectrum.
Both do not involve perturbations.

Proposition 2.2.2 Λε(A) is the set of points z ∈ C for which

• σ ≤ ε, where σ is the smallest singular value of A− zI,

• ‖(A− zI)−1‖ ≥ ε−1.

Proof. Assuming that z is not an eigenvalue of A, we get that A+E− zI is singular, hence
(A− zI)(I + (A− zI)−1E) and (I + (A− zI)−1E) are singular. Therefore,

1 ≤ ‖(A− zI)−1E‖ ≤ ‖(A− zI)−1‖‖E‖ ≤ ε‖(A− zI)−1‖, (2.15)

which shows that the definition implies ‖(A − zI)−1‖ ≥ ε−1. Conversely, assume the latter,
then there exists a vector v for which

‖(A− zI)−1v‖ ≥ ε−1‖v‖. (2.16)
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Writing v as v = (A−zI)w and multiplying both sides of the inequality by ε shows that there
exists a vector w such that

‖(A− zI)w‖ ≤ ε‖w‖. (2.17)

Hence, the pair (u = w/‖w‖, z) approximates an eigenpair of A with residual r and ‖r‖ ≤ ε.
According to Proposition 2.1.2 we find that z is an eigenvalue of A + E with E = −ru∗ and
‖E‖ = ‖r‖ ≤ ε. This proves the equivalence of Definition 2.2.1 with the second characteriza-
tion above. The equivalence between the first and the second is standard. �

A fairly trivial observation on the appearance of the set Λε(A) is formulated as follows. For
this purpose we write Bε(z) for the closed disc in the complex plane around z with radius ε.

Proposition 2.2.3 For all A and ε ≥ 0 we have that⋃
λ∈Λ0(A)

Bε(λ) ⊂ Λε(A), (2.18)

whereas equality holds if A is normal.

Proof. Let z ∈ Bε(λ) be given, then with E = (z−λ)I we have that ‖E‖ = |z−λ| ≤ ε and
A + E has eigenvalue z. If A is normal, Corollary 2.1.5 proves the reverse inclusion. �

Therefore, if A is normal, the pseudo-spectrum of a matrix is not interesting, for the simple
reason that every set Λε(A) is completely determined by the magnitude of ε and λ0(A). For
non-normal matrices however, the pseudospectrum Λε(A) need not be the union of discs.

Theorem 2.2.4 Let (v, µ) be an approximate eigenpair of A, and assume that ‖v‖ = 1.
Then µ ∈ Λε(A) with ε = ‖r‖.

Proof. According to Proposition 2.1.2 we have that µ is an eigenvalue of A + E with
E = −rv∗, where r = Av − vµ. Since ‖E‖ = ‖r‖, we find that µ ∈ Λε(A) with ε = ‖r‖. �

This theorem, simple as it is, shows us relevant information on eigenvalue approximations
obtained by some numerical method, regardless of the method employed. We end with a last
observation, which involves optimization of the approximate eigenvalue once the approximate
eigenvector has been fixed.

Theorem 2.2.5 Let (v, µ) be an approximate eigenpair of A, and assume that ‖v‖ = 1. Let
θ be the positive acute angle between r and v, then

µ̂ = v∗Av ∈ Λsin(θ)‖r‖(A). (2.19)

Proof. By definition, µ̂ is such that Av− vµ̂ ⊥ v, which means that r̂ = Av− vµ̂ is strictly
smaller in size than ‖r‖. Closer inspection shows that

‖r̂‖ = sin(θ)‖r‖. (2.20)

The statement is now a simple corollary from Theorem 2.2.4. �
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Chapter 3

Small Eigenproblems

We will discuss methods to compute eigenvalues of a moderately sized matrix by means of
the QR-iteration. The Power Method will be derived as a by-product of the QR-iteration.
This method computes only a single eigenpair of a given matrix, and is usually only employed
if A is too large to apply the QR-iteration efficiently. Its convergence properties give much
insight in the convergence of the QR-iteration, which will not be proved here.

3.1 The QR-iteration

The solution of small and medium size eigenvalue problems can be done using the QR-
decomposition in an iterative fashion, which will result in the QR-iteration. First however we
consider QR-decomposition of upper Hessenberg matrices.

3.1.1 QR-factorization of an upper Hessenberg matrix

There exists an important class of matrices that is almost upper triangular in the following
sense, and for which the costs of computing a QR-decomposition is relatively low: upper
Hessenberg matrices.

Definition 3.1.1 A matrix H is called upper Hessenberg if it is zero below the diagonal that
is directly below the main diagonal.

For n × n upper Hessenberg matrices H = (hij), the QR-factorization can be computed far
more cheaply then for general matrices. This is done by the following iterative procedure:

• Set j = 1, and repeat until j = n− 1,

• Let QR be the QR-factorization of the 2× n matrix H(j : j + 1, :),

• Store the 2× 2 matrix Qj = Q and overwrite H(j : j + 1, :) by R(j : j + 1, :).

To be precise, suppose that T is j × j and upper triangular, that E is j × (n− j), and K is
(n− j)× (n− j) upper Hessenberg. Consider the n× n matrices

H =
[

T E

0 K

]
, and Qj =

 Ij 0 0
0 Q∗ 0
0 0 In−j−2

 (3.1)

29
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where Ik is the k × k identity matrix. The 2 × 2 diagonal block Q∗ of Qj is the adjoint of
the orthogonal factor Q of the QR-factorization of the top two rows of K. Notice that Q is
already almost determined by the top 2× 1 part of K, because it should be valid that

Q

[
k11

k21

]
=
[
±
√

k2
11 + k2

21

0

]
. (3.2)

With this definition of Qj , the product QjH has the same block structure as H, but the
upper triangular part has become one row and column larger in size.

Remark 3.1.2 Each of the matrices Q can be chosen as a rotation in the plane and therefore
be represented by a single real number: the angle of rotation.

Proposition 3.1.3 The computation of a QR-decomposition of an n× n upper Hessenberg
matrix H can be done in O(n2) flops.

Proof. The computation of each 2 × 2 matrix Q costs only O(1) flops. Application of Qj

costs O(n− j) operations, since it acts on two rows with each only n− j non-zero elements.
Summing from j = 1 to n− 1 gives the statement �

Exercise 3.1.4 Write a Matlab code that takes a possibly non-square upper Hessenberg
matrix H as input, and that computes its QR-factorization according to the above strategy.
The output should solely consist of the angles of rotation.

Exercise 3.1.5 Prove that the QR-factorization of a Hermitian tridiagonal matrix can be
performed in O(n) flops. Write a Matlab code that implements this.

3.1.2 The basic QR-iteration

A very simple idea to compute approximation of eigenvalues of a matrix would be to do a
fixed point iteration on the Schur factorization AQ = QR as follows:

Start with Q0 = I, and iterate AQn = Qn+1Rn+1, (3.3)

where the right-hand side Qn+1Rn+1 is obtained by computing a QR-decomposition of the
left-hand side AQn.

Notice that each fixed point of this iteration generates a Schur decomposition. This simple
fact forms the heart of one of the most successful eigenvalue algorithms to compute the Schur
decomposition matrix, the QR-iteration, which is a more advanced and efficient implementa-
tion of this idea.

Definition 3.1.6 (Basic QR-iteration) The basic QR-iteration is a fixed point iteration
applied to the Schur decomposition, using QR-decomposition at every iteration step.

To be more precise, the QR-algorithm is usually presented as follows:

Start with A = Q̂1R̂1, iterate Q̂n+1R̂n+1 = R̂nQ̂n. (3.4)

In this form, the intuition behind it is less clear, but the algorithm is more robust and cheaper.
Some manipulations give that (3.4) actually produces Q̂n+1 and R̂n+1 such that

AQ̂1 · · · Q̂n = Q̂1 · · · Q̂nQ̂n+1R̂n+1, (3.5)

which shows that the transformation Qn+1 from (3.3) is generated as a product of transfor-
mations Q̂j , and that the upper triangular matrices are in principle equal for both iterations.
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Exercise 3.1.7 Show that this is true, by comparing the first few iterates of both sequences.
What is meant by ”in principle”?

Another favourable aspect of formulation (3.4) is that the right hand side R̂nQ̂n is spectrally
equivalent to the original matrix A, which follows immediately from R̂1Q̂1 = Q̂∗

1AQ̂1 and
an induction argument. Moreover, if the algorithm converges, we have that Q̂j → I, so
R̂jQ̂j → R, the triangular QR-factor of A.

Exercise 3.1.8 Apply the basic QR iteration (in either form) to a real matrix having complex
conjugate eigenvalues and study the orthogonal and upper triangular matrices during the
iteration.

3.1.3 Computational considerations

Last, but surely not least, we have the following properties, which are of great practical
importance.

Proposition 3.1.9 If H is an upper Hessenberg matrix, and H = QR a QR-decomposition,
then both Q and the reversed product RQ are also upper Hessenberg. The statement also
holds with upper Hessenberg replaced by Hermitian tridiagonal.

Therefore, if A is upper Hessenberg, each iteration step of (3.4) costs only O(n2) flops instead
of the usual O(n3) for general matrices. In case A is Hermitian tridiagonal, each iteration
costs even less, only O(n) flops. This is a considerable difference compared to the general case.
However, notice that if at the end of the iteration the matrix Q is explicitly needed, it will cost
O(n2) flops to compute it from the rotation angles, even in the Hermitian setting. This can
be explained by the fact that Q is a full matrix: it contains the eigenvector approximations
as columns.

Remark 3.1.10 Consider iteration (3.3). If A is upper Hessenberg, then so is Q1. However,
AQn is not upper Hessenberg anymore, it has one more non-trivial subdiagonal. This becomes
worse in every step. For theoretical analysis, this is of course not relevant.

The bottom line is that it always pays off to transform A to Hermitian tridiagonal form before
starting the QR-iteration, or if this is not possible, to upper Hessenberg form.

Proposition 3.1.11 For each square matrix A, there exists a matrix V such that V −1AV =
H is upper Hessenberg. If A = A∗, the result H is tridiagonal. V can even be chosen
orthogonal, and can be computed in O(n3) flops by a direct (non-iterative) method.

Proof. Compute the Arnoldi factorization AVk = Vk+1Hk+1,k until k = n. This produces
an orthonormal basis Vn for Kn(A, v0) = Rn. By construction, A is upper Hessenberg with
respect to this basis, and even tridiagonal is A = A∗. �.

We will now study the convergence of the QR iteration. We start doing this by considering
only the first column of the orthogonal matrices Qj .
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3.2 The Power iteration

The Power iteration, or Power method, is a well-known method to compute the dominant
eigenvector and its corresponding eigenvalue of a matrix for which it is computationally
unattractive to perform the QR-iteration. The iteration is often explained and analyzed
without any reference to the QR-iteration, because for some simple though instructive cases,
convergence can easily be proved. Here, alternatively, we choose to emphasize this connection.

Proposition 3.2.1 Consider the basic QR-iteration (3.3). The first j columns Q
(j)
k+1 of Qk+1

can be alternatively computed from partial iteration

Start with the first j columns of I =: Q
(j)
0 , and iterate AQ(j)

n = Q
(j)
n+1R

(j)
n+1, (3.6)

where the right-hand side is computed by QR-factorization. Then also R
(j)
n+1 is the top left

j × j part of Rn+1.

Proof. This follows from the simple fact that the first j columns of Qk+1 can be computed
from the first j columns of AQk, and to compute the first j columns of AQk we only need
the first j columns of Qk. The statement now follows by induction. �

Even though this statement was not so difficult to prove, another directly related question
is more difficult: if it converges, then whereto does it converge? Obviously, we then have an
n× j orthogonal matrix Q(j) and a j × j upper triangular R(j) for which

AQ(j) = Q(j)R(j). (3.7)

From this we see that the column span V of Q(j) is an invariant subspace for A, since it is
mapped into itself by A. Consequently, the eigenvalues of R(j) must be eigenvalues of A. But
which ones? We will answer this question for the simple case j = 1. The resulting iteration
is called the Power iteration, and can be written as

Start with a unit vector q0, and iterate Aqk = qk+1rk+1, (3.8)

in which the QR-decomposition is nothing more than scaling Aqk to unit length. We will now
prove convergence of the Power method in the most simple case, that of a real symmetric
matrix A.

Theorem 3.2.2 Let A be real symmetric and suppose that AQ = QΛ, where Q = (v1| . . . |vn)
is orthogonal and Λ diagonal with diagonal entries λ1, . . . , λn. Assume that |λ1| > |λ2| ≥
· · · ≥ |λn|. Then, if q∗0v1 6= 0 we get

|sin(θk)| ≤ |tan(θ0)|
∣∣∣∣λ2

λ1

∣∣∣∣k , (3.9)

where θk ∈ [0, π/2[ is the angle between qk and v1, and

||rk+1| − |λ1|| ≤ ||λ1| − |λn|| tan2(θ0)
(

λ2

λ1

)2k

, (3.10)

showing convergence of the Power iteration to the dominant eigenpair (v1, λ1).
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Proof. By definition, qk is a multiple of Akq0,which implies that

qk =
Akq0

‖Akq0‖
. (3.11)

Using this, it is not hard to see that

sin2(θk) = 1− cos2(θk) = 1−
(
vT
1 qk

)2
= 1−

(
v∗1A

kq0

‖Akq0‖

)2

. (3.12)

Since q0 = QQ∗q0 we have that q0 = Qy with y = Q∗q0 and ‖y‖ = 1. This is nothing else
than writing q0 as a linear combination of the eigenvectors of A, as

q0 = Qy = (v1| . . . |vn)

 y1
...

yn

 = y1v1 + · · ·+ ynvn. (3.13)

The eigendecomposition AQ = QΛ helps us find Akq0 = QΛky, which implies that v∗1A
kq0 =

y1λ
k
1, and substituting this in(3.12) we conclude that

sin2(θk) = 1−
(

y1λ
k
1

‖Λky‖

)2

. (3.14)

The following facts hold:

‖Λky‖2 = y2
1λ

2k
1 +

n∑
j=2

yjλ
2k
j and 0 < y2

1λ
2k
1 ≤ ‖Λky‖2 and

∣∣∣∣λj

λ1

∣∣∣∣ ≤ ∣∣∣∣λ2

λ1

∣∣∣∣ for j ≥ 2.

These can be employed to bound

sin2(θk) ≤
1
y2
1

n∑
j=2

y2
j

(
λj

λ1

)2k

≤ 1
y2
1

n∑
j=2

y2
j

(
λ2

λ1

)2k

=
1− y2

1

y2
1

(
λ2

λ1

)2k

. (3.15)

Since cos2(θ0) = y2
1, this proves the first statement. To prove the second statement we first

observe that

r2
k+1 = ‖Aqk‖2 =

(
‖Ak+1q0‖
‖Akq0‖

)
, (3.16)

where we made use of (3.11). Substituting Ajq0 = Λjy gives that∣∣λ2
1 − r2

k+1

∣∣ = ∣∣∣∣λ2
1y
∗Λ2ky − y∗Λ2k+2y

y∗Λ2ky

∣∣∣∣ = ∣∣∣∣y∗Λ2k(λ2
1I − Λ2)y

y∗Λ2ky

∣∣∣∣ ≤ ‖Λ2k(λ2
1I − Λ2)‖

y2
1λ

2k
1

. (3.17)

Since Λ2k(λ2
1I − Λ2) is diagonal we can easily compute its norm as the maximum over the

entries λ2k
j (λ2

1 − λ2
j ), which is bounded by λ2k

2 (λ2
1 − λ2

n), and hence,

∣∣λ2
1 − r2

k+1

∣∣ ≤ tan2(θ0)
∣∣∣∣λ2

λ1

∣∣∣∣2k

(λ2
1 − λ2

n). (3.18)

Dividing left and right hand sides by |λ1|+ |rk| results in

||λ1| − |rk+1|| ≤ tan2(θ0)
∣∣∣∣λ2

λ1

∣∣∣∣2k

(|λ1| − |λn|), (3.19)

since |λ1|+ |rk+1| ≥ |λ1|+ |λn|. This finishes the proof. �



34 CHAPTER 3. SMALL EIGENPROBLEMS

Remark 3.2.3 Instead of studying the convergence of |rk| it is also possible to consider
µk = q∗kAqk as approximation of the eigenvalue. This has as advantage that its sign will be
correct.

Exercise 3.2.4 With µk = q∗kAqk, prove along the lines of Theorem 3.2.2 that

|µk − λ1| ≤ |λ1 − λn| tan2(θ0)
(

λ2

λ1

)2k

. (3.20)

From the proof above, it becomes clear that symmetry of A is merely handy and not relevant
for the proof. A closer analysis shows that for each diagonalizable matrix having an eigenvalue
that is strictly separated from the others in magnitude, convergence to this eigenvalue takes
place. So generically, the Power iteration produces approximations of the eigenvalue that is
largest in size, and the speed of convergence depends on the relative magnitude of the second
largest eigenvalue. This results immediately in the following corollary.

Corollary 3.2.5 Let A be real symmetric. If the Power iteration (3.8) is applied to the
matrix (A − µI)−1 for some shift µ ∈ R, then the convergence takes place to the eigenvalue
of A that is closest to the µ.

Heuristically, it becomes also clear how the convergence of the QR-iteration can be explained.
Consider for example the partial iteration (3.6) with j = 2. The first column of Q

(2)
k converges

to the eigenvector of A belonging to the dominant eigenvalue. The second column is kept
orthogonal to this eigenvector approximation at all times. In the limit, it is the matrix A
restricted to the orthogonal complement of v1 that is being iteratively applied to the second
column. The dominant eigenvalue of this restricted matrix is λ2, hence convergence takes
place to the eigenvector v2 of A. Continuing like this, we would expect that the columns of
Qk in the full QR-iteration converge to the eigenvectors v1, . . . , vn respectively, at least, in
case all eigenvalues are strictly separated in magnitude.

3.2.1 The QR-iteration with shifts

It would go to far to prove the convergence of the QR-algorithm it its most general form, but
we will give some more intuition.

Proposition 3.2.6 Let H be unreduced upper Hessenberg, which means that there are no
zero elements on the first subdiagonal. If H is singular, and H = QR is a QR-deomposition
of H, then the bottom row of Q∗HQ is zero.

Proof. Since H is unreduced, its singularity can only be caused by the last column being a
linear combination of the others. This means that the column span of H is the column span
if its first n− 1 columns. Hence, if H = QR is a QR-decomposition, then the last column of
Q is not in the column span of H and with R = (rij) we must have that rkk = 0. Therefore,
RQ = Q∗HQ has bottom row zero. �

Exercise 3.2.7 Show that all eigenvalues of an unreduced upper Hessenberg matrix have
eigenspaces of dimension one.

The QR-algorithm with shifts exploits this idea to accelerate the original QR-algorithm.
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Definition 3.2.8 (QR-iteration with shifts) Let A be given. Transform A to upper Hes-
senberg form H1. Then,

Start with Q̂1R̂1 = H1 − µ1I, iterate
{

Hn+1 := R̂nQ̂n + µnI

Q̂n+1R̂n+1 := Hn+1 − µn+1I
, (3.21)

where the µj ∈ C can be chosen arbitrarily in each iteration step.

The intuition is, that each upper Hessenberg matrix Hn has the same eigenvalues as the
original matrix H. If Hn − µnI is singular, then the last row of Hn equals µe∗n, showing
explicitly that H has an eigenvalue equal to µ. We could then proceed the QR-iteration with
the (n− 1)× (n− 1) upper-left block of H, which is again an upper Hessenberg matrix, and
which contains the remaining eigenvalues of H.

Based on a continuity argument, we might expect that if we use a shift that is close to an
eigenvalue, then for the bottom row e∗nHn of Hn we have

e∗nHn = µe∗n + h∗, (3.22)

where h = αen−1+βen has a relative small norm compared to |µ|. This would make µ̂ = µ+β
an approximation of an eigenvalue, whereas based on the Gershgorin circle theorem, the size
of α would indicate how good this approximation is. It may be a better approximation than
µ is, in which case we could continue the QR-algorithm with next shift equal to µ̂.

Remark 3.2.9 As soon as a sub-diagonal element at some position (j + 1, j) of Hn is very
small, the problem may be split in two by replacing this small element by zero, and applying
separate QR-iterations the j × j and (k − j − 1)× (k − j − 1) diagonal blocks of Hn.

3.2.2 Real Schur Decomposition

If A is a real matrix with complex eigenvalues, then it is clearly impossible to iterate towards
a Schur decomposition. Every matrix Hn that is encountered, will have real entries as long
as real shifts are used. In that case, convergence will take place to the so-called Real Schur
Decomposition

Theorem 3.2.10 (Real Schur Decomposition) Each real n×n matrix A can be written
as A = QRQ∗, where Q is real orthogonal and R is real quasi upper triangular, by which we
mean that it is the sum of a real upper triangular matrix and a block diagonal matrix with
block size at most two by two.

Proof. Similar to the proof of the Schur Decomposition, with some extra technicalities. �

Remark 3.2.11 The eigenvalues of the two-by-two blocks of a quasi upper triangular matrix
are exactly the complex conjugate eigenpairs of A. Writing λ = γ+µi for one of the conjugates
and v = y + iz for a corresponding eigenvector, the real invariant subspace belonging to the
conjugate pair is spanned by y and z and

A(y|z) = (y|z)
[

γ µ
−µ γ

]
. (3.23)

Like the complex Schur form, the real Schur form is not unique, in the sense that the diagonal
elements and blocks can appear in any prescribed order.
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Chapter 4

Subspace Methods

4.1 Selection

Let A be a non-singular n × n matrix, and V ⊂ Cn a subspace with dim(V) = k < n. Let
W = AV. Given a full rank matrix V with column span V, set W = AV . We will investigate
systematic approaches to find approximate eigenpairs of the eigenvalue problem Az = zλ
using nothing but the information contained in V and W . Notice that this information costs
k matrix-vector multiplications with the matrix A.

We will discuss two strategies. The first one is demanding orthogonality of the eigenvalue
residual to V, whereas the second demands orthogonality to W.

4.1.1 V-orthogonal residuals: Ritz values and Ritz vectors

The first strategy is to find v ∈ V and θ ∈ C such that the eigenvalue residual r = Av − vθ is
orthogonal to V. Recall that each v ∈ V can be written as v = V y for some y ∈ Ck, in fact,

V y = (v1| . . . |vk)

 y1
...

yk

 = y1v1 + . . . ykvk.

Hence, demanding that r ⊥ V is equivalent to r ⊥ V y for all y ∈ Ck, which can also be
expressed as r∗V y = y∗V ∗r = 0 for all y ∈ Ck. Since V ∗r ∈ Ck, this shows that

r ⊥ V ⇔ V ∗r = 0.

Combining the above, our strategy boils down to solving (y, θ) from V ∗(AV y − yθ) = 0, or,
using the notation W = AV , from

V ∗Wy = V ∗V yθ (4.1)

The pairs (V y, θ) that result from the generalized eigenvalue problem (4.1) can be interpreted
as approximate eigenpairs.

Definition 4.1.1 (Ritz data) The approximate eigenpairs (V y, θ) are called Ritz pairs of
A in V, consisting of Ritz values and Ritz vectors.

37
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Notice that the problem to solve in (4.1) is a generalized eigenvalue problem of size k × k,
and that in accordance with our aims, only the matrices V and W are needed to produce the
approximations. In case k << n, the computational costs are low compared to those for the
original problem.

4.1.2 W-orthogonal residuals: Harmonic Ritz values and vectors

A second strategy is given in by the following symmetry-argument. If A is invertible, then
the eigenvalue problem Az = λz can be formulated equivalently as A−1z = zλ−1. Since
V = A−1W , we may as well look for w ∈ W and scalars µ ∈ C such that A−1w − wµ ⊥ W.
Since w can be written as Wy for some y ∈ Ck, the orthogonality constraint can be rewritten
as follows,

W ∗V y = W ∗Wyµ. (4.2)

The pairs (Wy, µ) that result from the generalized eigenvalue problem (4.2) clearly are Ritz
pairs for A−1 in W.

Interestingly, the above is equivalent to the following strategy: find v ∈ V and µ ∈ C such
that Av − vµ−1 ⊥ W. Indeed, substituting v = V y and writing I = A−1A this transforms to
AV y−A−1AV yµ−1 ⊥ W. Multiplying by µ, substituting W = AV and writing w = Wy, this
leads us back to wµ−A−1w ⊥ W. This shows that there are two equivalent interpretations:

• replace A, λ,W = AV from the previous section by A−1, λ−1, V = A−1W ,

• instead of finding v ∈ V with r ⊥ V, we look for v ∈ V with r ⊥ W.

In the latter case however, it is the pair (V y, µ) that is considered as an approximation of an
eigenpair of A.

Definition 4.1.2 (Harmonic Ritz data) The approximate eigenpairs (V y, µ−1) are called
Harmonic Ritz pairs, consisting of Harmonic Ritz values and Harmonic Ritz vectors.

The above does not depend on the basis V that is chosen for V and as long as W = AV , the
approximations remain unchanged. Now, notice that:

• If W ∗W = I, then (4.2) reduces to W ∗V y = yµ.

• If V ∗V = I, then (4.1) reduces to V ∗Wy = yθ.

It seems that µ and θ are each others complex conjugates, but this is due to a hidden abuse
of notation. This abuse is the result of the fact that due to W = AV , it is not possible to
assume that both V and W are orthogonal matrices.

4.1.3 Optimality properties for eigenvalue approximation

In case A∗ = A is positive definite, there are some optimality properties that we can prove.
They are based on the following result.

Lemma 4.1.3 Let A = A∗ be positive definite, with eigenvalues λn ≤ · · · ≤ λ1. If for all
0 6= v ∈ V ⊂ Rn we have ‖Av‖ > λk‖v‖, then dim(V) < k.

Proof. Let p be the largest subscript with λk < λp. Denote the span of the eigenvectors
corresponding to λ1, . . . , λp by Up. Since dim(Up) = p < k, each V ⊂ Rn with dim(V) ≥ k
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contains a vector 0 6= v ⊥ Up. For this vector v we clearly have ‖Av‖ ≤ λk‖v‖. This proves
the statement. �

Consider the V-orthogonal residual selection principle. Assume that V ∗V = I. Then the
eigenpairs (yi, θi) of V ∗AV induce the V-orthogonal residual approximations (V yi, θi) of the
eigenpairs of A and

AV yj = θjV yj + rj and rj ⊥ V. (4.3)

Theorem 4.1.4 The approximate eigenvalues θk ≤ · · · ≤ θ1 obtained by the V-orthogonal
residual approach satisfy θi ≤ λi for all i = 1, . . . , k.

Proof. If j ≥ 1 is such that θj > λj , then λj < θj ≤ · · · ≤ θ1 and the span Vj of V y1, . . . , V yj

is a j-dimensional subspace of Rn. Using (4.3), we have for all v ∈ Vj that

Av = A

j∑
i=1

V yiαi =
j∑

i=1

(θiV yi + ri)αi =
j∑

i=1

θiV yiαi +
j∑

i=1

riαi. (4.4)

The summands at the right are mutually orthogonal, hence by Pythagoras’ theorem we find

‖Av‖2 ≥
j∑

i=1

θ2
i α

2
i ≥ θ2

j

j∑
i=1

α2
i = θ2

j‖v‖2 > λ2
j‖v‖2. (4.5)

Lemma 4.1.3 shows that dim(Vj) < j which is a contradiction. Hence, there exists no j ≥ 1
with θj > λj . �

In words, Theorem 4.1.4 states that it is not possible to have j approximate eigenvalues that
are all strictly larger than λj . We will now prove, by means of a trick that is not unusual in
settings like this, that it is also not possible to have j approximate eigenvalues that are all
strictly smaller than λn−j+1.

Lemma 4.1.5 If AV yj = θjV yj + rj with rj ⊥ V arise from V-orthogonal aproximation of
the eigendata of A, then the eigendata of αI −A give the V-orthogonal approximations

(αI −A)V yj = (αI − θj)V yj − rj and rj ⊥ V. (4.6)

Proof. By inspection. �

Theorem 4.1.6 The approximate eigenvalues θk ≤ · · · ≤ θ1 obtained by the V-orthogonal
residual approach satisfy λn+1−i ≤ θk+1−i for all i = 1, . . . , k.

Proof. Let α > λ1 and define H = αI − A. Then H is positive definite with eigenvalues
α−λ1 ≤ · · · ≤ α−λn. Applying the V-orthogonal residual selection strategy gives, according
to Lemma 4.1.5 approximate eigenvalues α−θ1 ≤ · · · ≤ α−θk. Theorem 4.1.4 can be applied,
which shows that

∀j = 1, . . . , k, α− θk+1−j ≤ α− λn+1−j , (4.7)

from which the statement follows immediately. �

The reason for introducing this little trick is, that even though Lemma 4.1.3 can be adjusted
in a straightforward way, the proof of Theorem 4.1.4 cannot. It uses that Av is larger than
its projection on V, and here the word larger cannot be replaced by smaller in the reversed
setting.
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Corollary 4.1.7 The approximate eigenvalue θj lies in [λn+1−j , λj ]. In particular, if dim(V) =
n− 1, we have λk ≤ θk−1 ≤ λk−1 for all k = 1, . . . , k − 1.

To conclude this section, we notice that for the W-orthogonal selection principle, the similar
statements can be derived for the inverses of the eigenvalues of A, using the interpretation of
this method given in Section 4.1.2.

4.2 Expansion

We have now arrived at the second ingredient of subspace methods, which is expansion of
the subspace. In the Section 5.2 we have investigated two selection principles from a given
subspace of fixed dimension, and it seems reasonable to consider the situation that we are
not satisfied with the approximations at hand, and we wish to improve them.

4.2.1 Arbitrary expansion

The most general setting is the one in which we expand the space V in the direction given
by a unit vector v. Assuming that V has a basis for V as columns, the matrix V+ = (V |v)
then spans the expanded space, which we will call V+. To be able to apply either of the
methods from Section 5.2, we also need to compute w = Av, after which W+ = (W |w) spans
the expanded space W+.

The matrices that are needed to select approximations from V+ according to either V+-
orthogonal or W+-orthogonal residuals, are

V ∗
+V+ = (V |v)∗(V |v) =

(
V ∗V V ∗v

v∗V v∗v

)
, (4.8)

which can be computed from V ∗V by evaluating only V ∗v and v∗v, itsW+ counterpart (which
we will not write out) and the matrix V ∗

+W+ given by

V ∗
+W+ = (V |v)∗(W |w) =

(
V ∗W V ∗w

v∗W v∗w

)
, (4.9)

which can be formed from V ∗W by computing additionally the vectors V ∗w, v∗W and the
scalar v∗w.

Proposition 4.2.1 Let A = A∗ be positive definite, and let θk ≤ · · · ≤ θ1 be the V-
orthogonal residual approximations of the eigenvalues λn ≤ · · · ≤ λ1 of A, and θ+

k+1 ≤ · · · ≤ θ+
1

the ones in V+. Then
θ+
k+1 ≤ θk ≤ θ+

k ≤ · · · ≤ θ+
2 ≤ θ1 ≤ θ+

1 . (4.10)

Proof. Assume that V ∗
+V+ = I. Write M+ = V ∗

+AV+, and let U be the k-dimensional
subspace of Rk+1 of all vectors having last component equal to zero. Let U be the first k
columns of the (k + 1) × (k + 1) identity matrix, then U has column span the subspace U .
Applying the U-orthogonal residual selection to the matrix M gives

U∗MU = U∗V ∗
+AV+U = V ∗AV, (4.11)

showing that the eigenvalues θj of V ∗AV are the U-orthogonal residual approximations of the
eigenvalues θ+

j of M . Corollary 4.1.7 now proves the statement. �
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Theorem 4.2.2 Let A = A∗ be positive definite, and V1 ⊂ · · · ⊂ Vn−1 ⊂ Vn = Rn be a

nested sequence of subspaces with dim(Vj) = j. Write θ
(k)
k ≤ · · · ≤ θ

(k)
1 for the k eigenvalue

approximations from Vk. Then we have,

∀j, θ
(j)
j ≤ θ

(j+1)
j ≤ · · · ≤ θ

(n)
j = λj , (4.12)

expressing that the sequence of j-th largest approximate eigenvalue converges monotonely to
the j-th largest exact eigenvalue. Conversely,

∀j, λj = θ
(n)
j ≤ θ

(n−1)
j−1 ≤ · · · ≤ θ

(n−j+1)
1 , (4.13)

expressing that the sequence of j-th smallest approximate eigenvalue converges monotonely
to the j-th smallest exact eigenvalue.

Proof. The proof of the two statements is an immediate consequence of Proposition 4.2.1,
and can easiest be read from the following schematic expression:

θ
(1)
1 (4.14)

θ
(2)
2 θ

(2)
1

θ
(3)
3 θ

(3)
2 θ

(3)
1

θ
(4)
4 θ

(4)
3 θ

(4)
2 θ

(4)
1

θ
(5)
5 θ

(5)
4 θ

(5)
3 θ

(5)
2 θ

(5)
1

The approximate eigenvalues on line k lie between the ones on line k + 1, which expresses
Proposition 4.2.1. The convergence statements can now be formulated as

• The j-th left diagonal with positive slope decreases monotonely to λn+1−j ,

• The j-th right diagonal with negative slope increases monotonely to λj .

This clarifies the statements. �

4.2.2 Resulting algorithms for the eigenvalue problem

Consider the V-orthogonal residual approach. By symmetry of formulation, everything said
about the V-orthogonal residual method can be easily translated in corresponding statements
for the W-orthogonal method.

In the V-orthogonal residual approach, it is possible to force the approximating problem to be
a standard eigenvalue problem by making sure that the matrix V is orthogonal at all times.
This is what is sketched in the algorithm below.

In this general framework, we observe the following. The space V is expanded in some
arbitrary direction v. This vector is orthonormalized against V, and its image under A is
stored in w. The matrix M is being updated as in (4.9), which we copy here again as

M+ = (V |v)∗(W |w) =
(

M V ∗w

v∗W v∗w

)
. (4.15)
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The eigenpairs of M+ induce new eigenvalue approximations resulting from the V-orthogonal
residual approach applied to the expanded space V+. In the algorithm below, we assume
diagonalizability of M with diagonalization MY = Y Λ. The resulting approximations for the
eigenvectors are V Y , and the residuals corresponding to those are the columns of the matrix
R = AV Y − Y Λ.

Remark 4.2.3 It is also possible to work with Schur Decomposition of the matrix M . In
that case, we could replace the relevant lines by MQ = QU and R = AV Q − V QU . The
columns of R would then indicate the distance to a Schur Decomposition.

V = v, ‖v‖ = 1,W = AV,M = W ∗V, r = W − V M ;
for j = 1, . . . , n− 1 do

v = expansion vector of V into V+;
v = v − V (V ∗v);
γ =

√
v∗v;

v = γ−1v;
w = Av;
M = [M,V ∗w; v∗W, v∗w];
MY = Y Λ;
R = AV Y − V Y Λ;
V = ( V |v );
W = (W |w);

end
By definition of V orthogonal methods, each residual r is orthogonal to V. Therefore, ex-
panding V with one of the residuals r we may skip the orthogonalization. Doing so from the
beginning, this defines the sequence of subspaces uniquely once the initial vector v = v1 has
been chosen. We will prove this in the next section, and study the resulting algorithm in
detail. It is called the Arnoldi Method, and reduces to the Lanczos Method if A = A∗.

4.3 The Arnoldi Method

The Arnoldi Method arises if in the V-orthogonal residual method for the eigenvalue problem,
we choose a current residual as expansion vector for V. Since all residuals are multiples from
each other if we expand like this from the beginning, this gives a unique way to build a
sequence (Vj)j of subspaces once the initial vector v1 has been fixed.

4.3.1 Analyzing the first steps of the algorithm

In order to get a good understanding of the algorithm that results from our choice, we will
first perform a few steps of it, right from the beginning. Afterwards, we will derive some
important properties.

First step. Let an initial vector v1 with ‖v1‖ be given, then V1 is the column span of
the matrix V1 having v1 as single column. We set w1 = Av1 and define W1 as the column
span of the matrix W1 having w1 as single column. Then we compute the first V-orthogonal
residual approximation as the number θ for which r1 = w1−θv1 ⊥ V, which gives θ

(1)
1 = v∗1w1

as approximating eigenvalue, which is the one at the top (4.14) of the triangle, and v1 as
approximating eigenvector.
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Second step. By definition, r1 ⊥ V1, and according to our discussion above, we expand
V1 in the direction of r1. For this purpose, we define v2 = r1/‖r1‖, and accordingly we set
V2 = (V1|v2). Notice that due to

‖r1‖v2 = r1 = Av1 − v1θ
(1)
1 , (4.16)

we have the schematic relation

W1 = AV1 = V2

(
∗
∗

)
. (4.17)

We compute w2 = Av2 and set W2 = (W1|w2). This gives the following approximate eigen-
problem to solve:

V ∗
2 W2y = yθ, (4.18)

where V ∗
2 W2 is a 2× 2 matrix. This results in two approximate eigenvalues θ

(2)
2 and θ

(2)
1 , and

corresponding approximate eigenvectors V2(y1|y2) with residuals

R = W2(y1|y2)− V2(y1|y2)

(
θ
(2)
1 0
0 θ

(2)
1

)
. (4.19)

A important observation is now that both residuals are multiples of one vector. This is
because they are linear combinations of the columns of V2 and W2. Orthogonalization to V2

includes, according to (4.17), orthogonalization to w1. Hence, at most one direction remains
in which they can point.

Third step. The next step is to expand V2 in the direction of the residuals. As we just
argued, we can just select one, say r, and define

‖r‖v3 = r = Av2 − V2V
∗
2 Av2. (4.20)

This shows again that w2 = Av2 is a linear combination of v1, . . . , v3, and we can expand the
relation (4.17) as follows,

W2 = AV2 = V3

 ∗ ∗
∗ ∗
0 ∗

 . (4.21)

The residuals are linear combinations of the columns of V3 and W3, and orthogonal to V3

which includes, according to (4.21), the column space of W2. So again, there is only one
direction in which the residual can point.

4.3.2 Arnoldi factorization and uniqueness properties

The algorithm that we have just studied is the Arnoldi method for approximation of eigen-
values. Its characteristics are the orthonormal basis Vk for the space Vk and the fact that Wk

and Vk are related by means of multiplication with an upper Hessenberg matrix Hk+1,k as
follows,

Wk = AVk = Vk+1Hk+1,k. (4.22)

It is of importance to realize that the subspaces Vk are equal to the Krylov subspace Kk(A, v1),
which is an analogy with what happened in the linear system setting. Throughout this section
we assume that Krylov subspaces Kj(·, ·) have dimension j.
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Proposition 4.3.1 The column span Vk of the matrices Vk is uniquely defined by the initial
vector v1 and the matrix A and equal to Kk(A, v1), where

Kk(A, v1) = span{v1, Av1, . . . , A
k−1v1}.

Proof. By induction. For k = 1 the statement is trivially true. Now, suppose that Vk spans
Kk(A, v1). Then according to (4.22) we have that AKk(A, v1) ⊂ Vk+1. Since the span of v1 is
also included in the column span van Vk+1, this proves the statement �

Definition 4.3.2 (Flag) We say that an n × k matrix V is a flag for Kk(A, v1) if for all
j ∈ {1, . . . , k}, the first j columns of V span Kj(A, v1).

By our assumption that Krylov spaces have full dimension, it is clear that if V and W are
flags for the same Krylov space, then V = WR with R upper triangular and non-singular.
An immediate consequence is the following.

Corollary 4.3.3 Modulo the sign of its columns, the matrix Vk produced by the Arnoldi
method is the only n× k orthogonal flag for Kk(A, v1).

Proof. If Q and U are orthogonal flags for Kk(A, v1) then Q = UR with R upper triangular
and orthogonal. Hence, R is diagonal with entries equal to plus and minus one only. �

Definition 4.3.4 (Arnoldi factorization) The relation AV = (V |v)H, where (V |v) is an
orthogonal n× (k + 1) flag for Kk(A, V e1) is called an Arnoldi factorization.

An important result is that if AV = (V |v)H holds for orthogonal matrices V and (V |v) and H
is upper Hessenberg, then it is an Arnoldi factorization, and hence (V |v) spans Kk+1(A, V e1).
It is formulated in Theorem 4.3.6 below.

Lemma 4.3.5 If (V |v) is n× (k + 1) non-singular and AV = (V |v)H with H upper Hessen-
berg, then (V |v) is a flag for Kk+1(A, v1).

Proof. For j = 1 the statement is trivial. Assume that (v1| . . . |vj) is a flag for Kj(A, v1). By
(1) we find that vj+1 6∈ Kj(A, v1) and by (2) that vj+1 ∈ AKj(A, v1) ⊂ Kj+1(A, v1). Hence,
(v1| . . . |vj+1) is a flag for Kj+1(A, v1). Induction completes the proof. �

Theorem 4.3.6 If (V |v) is orthogonal and AV = (V |v)H with H upper Hessenberg, then
AV = (V |v)H is an Arnoldi factorization.

Proof. Follows immediately from Corollary 4.3.3 and Lemma 4.3.5. �

4.3.3 Alternative implementation of the Arnoldi method

Returning to the approximate eigenvalue problem, we find that the approximate eigenvalues,
the Ritz values, are the eigenvalues of

V ∗
k Wk = V ∗

k Vk+1Hk+1,k = Hk,k, (4.23)

where Hk,k consists of the top k rows of Hk+1,k. We recall the following facts,
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• Each matrix Hj,j−1 is the top left block of Hj+1,j ,

• Applying the QR-iteration to upper Hessenberg matrices is relatively inexpensive.

• If Hk,k is unreduced, each eigenspace has dimension one.

We can now present an updated version of the algorithm. In this version, we refrain from
storing the matrix Wk, since according to (4.22) it is sufficient to store Hk+1,k and Vk+1.
Moreover, instead of expanding with the residual, we expand by Avk. By Proposition 4.3.1,
this does not change the subspaces Vk. It requires the orthogonalization of Avk against the
columns of Vk, but it is not necessary anymore to compute the residuals.

Even if we do not compute the residuals, we can still find out for which k the matrix Hk,k

has eigenvalues with small residuals. Indeed, since

rk = AVkyk − Vkykθ = hk+1,kvk+1e
∗
kyk, (4.24)

and using that ‖yk‖ = ‖ek‖ = 1, we see that

‖rk‖ = |hk+1,ke
∗
kyk| ≤ |hk+1,k|, (4.25)

where hk+1,k the entry bottom right of Hk+1,k. Therefore, the computation of the approximate
eigenvalues can be delayed until this entry is small enough.

V = v, ‖v‖ = 1,H = [], p = ∞;
while γ > ε do

v = Av;
h = V ∗v;
v = v − V h;
γ =

√
v∗v;

H = [H,h; 0, γ];
V = (V |v/γ);

end

Finally, if A = A∗, we know on beforehand that Hk,k is tridiagonal. Hence, Avk only needs
to be orthogonalized to vk−1 and vk−2. The resulting method is the Lanczos Method

Unfortunately, in the Arnoldi method, the amount of computational work increases with the
dimension of the subspace. Moreover, it may not give approximations of the eigenvalues in
which you are interested. To cure this, we introduce the concept of the implicit restart in the
next section.

To conclude, notice the remarkable fact that the few lines of code above comprise such a
richness of mathematical ideas and algorithmic subtleties.

4.4 Implicit restart of the Arnoldi method

In the previous section, we have derived the Arnoldi method. The Arnoldi method is the
method that arises if V-orthogonal residual selection is applied to the nested sequence of
subspaces V1 ⊂ V2 ⊂ . . . , where each Vj+1 is defined by expansion of Vj with the unique
direction in which all residuals rj ⊥ Vj point. This expansion can be implemented in two
mathematically equivalent ways:
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• Compute the Ritz pairs and their residuals for every k and expand with one of the
residuals rj , j ∈ {1, . . . , k}. Orthogonalization of rj to Vk is then for free.

• Expand Vk with Avk. Then orthogonalization is not for free, but it saves the computa-
tion of the Ritz pairs. The size of the residual is bounded by |hk+1,k|.

Both implementations give, in exact arithmetic, the same Ritz pairs. Each has its advantages
and disadvantages.

4.4.1 The influence of the initial vector

Clearly, the Ritz pairs that are produced in step k of the Arnoldi method depend only on
the start vector v1. In the general case, it is not possible to give a full analysis of their
approximation properties. If however A = A∗, the convergence theory is well understood,
and combines the theory in Section 4.1.3 with the particular choice Vk = Kk(A, v1). We refer
to [4] and the references therein for an excellent treatment of the sometimes rather technical
material.

A few simple statements can nevertheless be proved for the general non-hermitian case. For
instance, if v1 lies in an invariant subspace for A, then the corresponding exact eigenvalues
are found.

Proposition 4.4.1 Let A(q1| . . . |qn) = (q1| . . . |qn)R be a Schur decomposition of A and
write Qk = (q1| . . . |qk). Then, if

v1 = Qky for some y ∈ Rk, (4.26)

then there exists an m ≤ k such that the Arnoldi method terminates by division by zero after
m steps, producing m eigenvalues of A.

Proof. Since v1 ∈ colspan(Qk), which is an invariant subspace for A of dimension k, also
Kk(A, v1) is an invariant subspace, of some dimension m ≤ k. Applying the V-orthogonal
residual selection with an m-dimensional invariant subspace gives m Ritz pairs that are equal
to exact eigenpairs of A. �

By a continuity argument, one may expect that if the start vector v1 is close to an invariant
subspace, the eigenvalues beloning to this invariant subspace will be approximated sooner
and better by the Arnoldi method than other eigenvalues of A.

Unfortunately, this will only become visible after an investment of computational effort. An
important question is what to do if the Arnoldi method seems to produce approximations of
eigenvalues in which there is no interest.

4.4.2 Restarting the algorithm with a different start vector

Suppose that we have done k > p steps of the Arnoldi method with start vector v1, resulting
in

AVk = Vk+1Hk+1,k. (4.27)

This gives us k Ritz values, the eigenvalues of Hk,k. The idea is to divide those into two
groups: those we find uninteresting, say µ1, · · · , µ`, because they are relatively far away from
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some target τ ∈ C, and the remaining ones µ`+1, · · · , µk. Compute

v̂1 =
ṽ1

‖ṽ1‖
, where ṽ1 = Π`

j=1(A− µjI)v1, (4.28)

and start the algorithm again but now with v̂1 as startvector. The hope is that v̂1 will be
less close to the invariant subspace belonging to the eigenvalues that are approximated by
µ1, · · · , µ`, and closer to the one belonging to µ`+1, · · · , µk.

For ease of presentation, we consider the case ` = 1. The other cases can be covered simply
by repeating the below arguments ` times. We will write µ = µ1.

Observation 4.4.2 Using the Arnoldi factorization (4.27) we have that

v̂1 = Av1 − µv1 = AVke1 − µv1 = Vk+1Hk+1,ke1 − µv1 = (h11 − µ)v1 + h21v2. (4.29)

Therefore, to compute v̂1, no matrix multiplications with A are needed.

Now notice that since v̂1 ∈ K1(A, v1), we have that that

Kk(A, v̂1) ⊂ Kk+1(A, v1). (4.30)

Because of this, it is possible to recover this subspace, together with an orthonormal flag for
it without computing any additional matrix vector products with A.

Theorem 4.4.3 Let Hk+1,k − µIk+1,k = Qk+1,kRk,k denote the QR-decomposition of its
left-hand side. Define Wj as the first j columns of Wk, where

Wk = Vk+1Qk+1,k. (4.31)

Then Wk is the orthogonal flag for Kk(A, v̂1). Moreover,

AWk−1 = WkĤk,k−1 where Ĥk,k−1 = Rk,kQk,k−1 + µIk,k−1, (4.32)

is the corresponding Arnoldi factorization.

Proof. Because Qk+1,k is upper Hessenberg, so is Ĥk,k−1. Furthermore, since Qk+1,k is
upper Hessenberg, we also have the somewhat surprising equality

Ik+1,kQk,k−1 = Qk+1,kIk,k−1. (4.33)

Using this, it can easily be verified using the various definitions above, that

AWk−1 = AVkQk,k−1 = Vk+1Hk+1,kQk,k−1 = Vk+1(µIk+1,k + Qk+1,kRk,k)Qk,k−1

= Vk+1Qk+1,k(µIk,k−1 + Rk,kQk,k−1) = WkĤk,k−1. (4.34)

Since Wk is orthogonal, Theorem 4.3.6 yields that (4.32) is an Arnoldi decomposition. The
equality

Wke1 = VkQk+1,k
Rk,ke1

r11
=

1
r11

Vk(Hk − µI)e1 =
1

r11
(AVk − µVk)e1 = v̂1 (4.35)

shows that Wk is the orthogonal flag for Kk(A, v̂1). �

The conclusion is that without performing any computations in which the matrix A is involved,
it is possible to recover the Arnoldi factorization (4.32) from (4.27).
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Chapter 5

Recent Developments

The formulation of eigenproblems as generalized algebraic Riccati equations removes the non-
uniqueness problem of eigenvectors. This basic idea gave birth to the Jacobi-Davidson (JD)
method of Sleijpen and Van der Vorst (1996). JD converges quadratically when the current
iterate is close enough to the solution that one targets for. Unfortunately, it may take quite
some effort to get close enough to this solution. Here we present a remedy for this. Instead of
linearizing the Riccati equation (which is done in JD) and replacing the linearization by a low-
dimensional linear system, we propose to replace the Riccati equation by a low-dimensional
Riccati equation and to solve it exactly. The performance of the resulting Riccati algorithm
compares favorable to JD while the extra costs per iteration compared to JD are in fact
negligible.

5.1 Introduction

The standard eigenvalue problem Ax = λx for possibly non-Hermitian matrices A is one of
the basic building blocks in computational sciences. Solution methods, which are necessarily
iterative, range from the QR algorithm (if all eigenvalues are wanted) via the Arnoldi [1]
method to Jacobi-Davidson [6] for large problems from which only few eigenpairs are needed.
As a matter of fact, both the Arnoldi method and the Jacobi-Davidson method can be de-
rived as Ritz-Galerkin projection methods that use subspaces of growing dimension, and in
which the expansion of the subspace is governed by adding approximations of solution(s) of
a generalized algebraic Riccati equation. We will show this in Section 5.2, and then discuss
in Section 5.3 a third, very natural method based on the same idea. This method was briefly
introduced in [2]. In Section 5.4, convincing numerical evidence of the success of the new
approach is given, using matrices from the Matrix Market test-collection.

5.2 Projection on expanding subspaces

A straightforward tool to tackle the eigenvalue problem Ax = λx in Rn is to project it on a k
dimensional subspace V of Rn with k << n. By this we mean the following. Assume that V is
an n×k matrix of which the columns span V. Approximations of eigenpairs of A can be found
in V by computing vectors v ∈ V such that, instead of Av itself, the orthogonal projection
PVAv of Av onto V is a (scalar) multiple of v. The condition v ∈ V can be expressed as
∃y ∈ Rk : v = V y, whereas the condition w ⊥ V translates to V ∗w = 0, i.e., w is orthogonal
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to each of the columns of V and hence to their span V. So, the problem to solve, usually
called the projected problem, becomes

find y ∈ Rk and µ ∈ R such that V ∗(AV y − µV y) = 0. (5.1)

Note that both V ∗AV and V ∗V are small k × k matrices, and that when the columns of V
are an orthonormal basis for V, then V ∗V is the identity matrix, hence (5.1) a small standard
eigenvalue problem, which can be solved routinely by for instance the QR algorithm. The
couples (µ, V y) can be interpreted as approximate eigenpairs for A, and are usually called
Ritz-pairs. If the residuals r = AV y − µV y, which can easily be computed a posteriori, are
not small enough according to the wishes of the user, expansion of the subspace, followed by
solving a new projected problem, may lead to improvement.

5.2.1 Algorithm of the general framework

The following pseudo-code presents a general framework for this approach. In each execution
of the while-loop, the subspace dimension increases by one, in some direction q, to be specified
below.

input: A, V, ε;
W = AV ;
M = V ∗W ; initial projected matrix; note that M = V ∗AV
r = s = residual of projected problem;
while ‖r‖ > ε‖s‖

q = expansion vector for V;
v = with span (V |v) equal to span (V |q),

and (V |v) is orthonormal;
w = Av;

M =
(

M V ∗w

v∗W v∗w

)
efficient implementation of projection
M = (V |v)∗(W |w) using previous M ;

V = (V |v) expansion of V;
W = (W |w) expansion of W;
r = residual of the new problem;

end (while)

5.2.2 Expansion strategies

We will now discuss expansion strategies, i.e., how to choose q such that projection on the
expanded space may yield better approximate eigenpairs. For this, suppose that for the
eigenvalue problem Ax = λx we have an approximate eigenvector v with ‖v‖ = 1 that was
obtained by projection of the problem on a subspace V. Consider the affine variety

v⊥ = {x + v|x∗v = 0}. (5.2)

Generally, there will be n points vj in v⊥ corresponding to eigenvectors of the matrix A,
which are the intersections of lines (eigenvector directions) through the origin, with the affine
variety v⊥. Each of those points, obviously, can be written as vj = v + qj , with q∗j v = 0.
Writing µ = v∗Av and r = Av − µv, it is not hard to show that the vectors qj are the roots
of the following generalized algebraic Riccati equation in q,

q∗v = 0 and (I − vv∗)Aq − qµ = q(v∗A)q − r. (5.3)
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If we intend to use approximations to solutions qj of this equation to expand the subspace
V, we should find a balance between the effort spent on computing such approximations, and
what we get back in terms of improved approximations from the bigger space. Note that one
of the crudest (hence cheapest) approximations would result from replacing A by the identity
I, which gives q̂ = −(1− µ)−1r as approximate root q. The resulting algorithm is in fact the
Arnoldi method. Note that the orthogonalization step in the while loop above becomes then
superfluous, making the method even less numerically expensive.

5.2.3 The Jacobi-Davidson Method

The Jacobi-Davidson method [6] results, when the Riccati equation (5.3) is linearized around
q = 0. The linearized equation

q̂∗v = 0 and (I − vv∗)Aq̂ − q̂µ = −r (5.4)

is, in turn, usually only solved approximately. The approximate solution of (5.4) is then
used to expand the subspace V, and a new approximate eigenvector v is extracted from the
expanded space by projection, and the process repeated. Equation (5.4) can be approximated
by projection as well, say on a `-dimensional subspace U with and r ∈ U and U ⊥ v. Note
that the latter requirement assures that an approximation in v⊥ is found. If U is a matrix
whose orthonormal columns span U , then the projected equation would be

U∗AUẑ − ẑµ = −U∗r. (5.5)

For ` = 1, this gives the Arnoldi method again. Using higher values for ` results in a
structurally different method, whereas solving (5.4) exactly is the ”full” Jacobi-Davidson
method of which can be proved that asymptotically, it converges quadratically. Therefore,
much attention has been paid to finding good preconditioners to solve (5.4) in high precision
with little effort.

5.2.4 Stagnation due to unjust linearization

Perhaps the most important observation is, that due to the linearization, the effort in solving
(5.4) accurately is only worthwhile if the quadratic term in (5.3) could really be neglected,
which is only the case if there is a solution q of (5.3) with ‖q‖ small enough, i.e., close enough
to zero. Thus, v needs to be a rather good approximation of an eigenvector. It has been
quantified in [3] that this is the case if

σ2 − 12‖r‖‖v∗A‖ > 0, (5.6)

where σ is the smallest singular value of A projected on v⊥. It has moreover been observed in
experiments that this condition seems necessary, and also that it can be very restrictive. This
explains why the Jacobi-Davidson method shows an initial phase of no structural residual
reduction, before it plunges into the quadratically convergence region. Especially if the start-
vector for Jacobi-Davidson is chosen badly (for instance, randomly), this initial phase can be
very long and hence very expensive.
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5.3 Curing the stagnation: The Riccati method

The phase in the Jacobi-Davidson method in which the current eigenvector approximation
is still outside the quadratic convergence region can be significantly reduced, as was firstly
observed in Section 4.2 of [2]. There we proposed to project (5.3) directly on an `-dimensional
subspace U , and to observe that if ` is moderate, we can refrain from linearizing the resulting
`-dimensional nonlinear equation, and compute all its roots instead.

5.3.1 Main idea

Consider the Jacobi-Davidson method. Suppose that in solving (5.4), projection on a subspace
U with r ∈ U and U ⊥ v is used, as suggested below equation (5.4). As before, let U contain
an orthonormal basis for U . Then the projected linearized equation reads as

U∗AUẑ − µẑ = −U∗r, (5.7)

after which Uẑ is the approximation of q̂ with which V is going to be expanded. Alternatively,
we could also have used the subspace U to approximate the Riccati equation (5.3) directly,
without linearization, yielding the `-dimensional projected Riccati equation

U∗AUz − µz = z(v∗AU)z − U∗r. (5.8)

In fact, (5.7) is the linearization around z = 0 of (5.8), so it seems as if no progress has been
made, apart from the fact that linearization and projection commute. There is, however, an
important difference, which is that there is no need anymore to linearize the low-dimensional
Riccati equation. It can be solved exactly by realizing that it is equivalent to the (`+1)×(`+1)
eigenvalue problem (

µ v∗AU

U∗r U∗AU

)(
1
z

)
= (µ + v∗AUz)

(
1
z

)
. (5.9)

The gain in comparison to Jacobi-Davidson is, that instead of obtaining an approximation of
a unique correction q̂ of (5.4), we get a small number `+1 approximations q̃j of the solutions
q of (5.3). This gives extra freedom in deciding how to expand the space V, for example,
by computing the Ritz values corresponding to the vectors v + q̃j , j ∈ {1, . . . , ` + 1} and
using the q̃j that gives a Ritz value closest to a given target to expand V. We will call the
resulting method the Riccati method if U is chosen as the `-dimensional Krylov subspace for
r and (I − vv∗)A. Note that the presence of the projection (I − vv∗) assures that this Krylov
subspace U will be orthogonal to v.

5.3.2 Discussion

For moderately small ` << n, the costs for solving the eigenvalue problem (5.9) are negligible
compared to the ` matrix-vector multiplications with A that are needed to construct the
projected matrix U∗AU , which is needed in both JD (5.7) and Riccati (5.9). This shows that
the Riccati method is only slightly more expensive per iteration than JD. By one iteration
we mean expansion of V with a new vector q.

If v is very close to an eigenvector, then there exists a solution q of (5.3) with small norm.
If there exists a solution z of (5.8) such that Uz is very close to q, then the solution ẑ of
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(5.7) will yield an accurate approximation Uẑ of q, since the quadratic term in z will then
be negligible. Hence, JD would give a good approximation of this eigenvector. In the Riccati
method, we would have the option to expand the space in (almost) the same way as in JD,
resulting in similarly good approximations. In this case, the advantage of Riccati is, that if
we are not interested in this particular eigenvector but in another one, we can refrain from
expansion with the JD correction and point towards a different direction. This shows that it
is unlikely that JD will outperform Riccati: if the JD correction ẑ is good, then one of the
possible corrections in the Riccati method will be very close to ẑ.

In case v is not a good approximation of the eigenvector in which one is interested, the Jacobi-
Davidson correction q̂ may not make sense in the same way as a step of the Newton method
may not make sense far away from the objective solution. Since in the Riccati method there
are other possible expansion vectors (also called corrections) to choose from, this may lead to
substantial improvement.

In solving practical problems with the Jacobi-Davidson method, it is not unusual that the
expansion vector q̂ is computed from (5.4) by using a few iterations of a Krylov subspace
method like Conjugate Gradients or GMRES. We have just argued that the Krylov subspace
built in those methods could better be used to project the Riccati equation (5.3) on, resulting
in a small eigenvalue problem (5.9). We will now support this claim by numerical experiments
with matrices from the Matrix Market test collection.

For information on the matrices from Matrix Market, see the webpage

http://math.nist.gov/MatrixMarket/index.html

5.4 Numerical experiments

We will now list some results in comparing Jacobi-Davidson with the Riccati method. In
order to keep things as simple as possible and to illustrate the main idea, we did not include
sophisticated features that could enhance both methods equally well. Therefore, we did not
consider restart techniques, harmonic projections, and preconditioning.

For each matrix, we selected a random start vector. This start vector was used for each of the
experiments with the same matrix. JD and Riccati were compared in two aspects: cpu-time
and number of iteration steps needed to reduce the initial residual by a factor 1010. Since
the absolute numbers are not important for the comparison, we list, in the tabular below, the
relative numbers only. As an example, the number 0.31 that is listed for the matrix plat1919
for ` = 5 and belonging to cpu-time, indicates that Riccati needed only 0.31 of the cpu-time
that JD needed to attain the same residual reduction.

5.5 Conclusions

As appears from the numerical experiments, the plain Riccati method almost always outper-
forms the plain Jacobi-Davidson method, and in many cases by a large factor. When Riccati
loses, the difference is almost negligible. This suggests to incorporate the Riccati idea in ex-
isting JD codes which use Krylov subspaces to solve the Jacobi-Davidson correction equation.

As suggestions for further research one could think of recursiveness of this idea, since it is
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in principle a nested subspace method with inner and outer loop, i.e. the space V is the
space built in the outer loop, whereas for each expansion of V in one direction, as space U
is constructed. It may be of interest to develop general theory for nested subspace methods
for eigenvalue problems, which do not take into account that U is a Krylov subspace. Other
choices may be of interest as well.

For readers more interested in the theoretical aspects of the method, and in its adaptation
as a block method for the computation of invariant subspaces we refer to [2]. In contrast to
[2], the underlying paper presents clear heuristics for its success and is therefore particularly
suitable for people from computational science, computer science, and physics.

matrix name: size ` 5 10 20
sherman4 1104 cpu 0.68 0.10 0.05
real unsymm. its 0.71 0.29 0.11
nnc1374 1374 cpu 0.55 0.28 0.12
real unsymm. its 0.80 0.52 0.22
plat1919 1919 cpu 0.31 0.08 0.02
symm. indef. its 0.53 0.17 0.06
utm3060 3060 cpu 1.07 0.81 0.43
real unsymm. its 0.97 0.68 0.37
lshp3466 3466 cpu 0.79 1.09 1.07
symm. indef. its 0.90 0.92 0.76
bcsstm24 3562 cpu 0.26 0.14 0.06
symm. posdef. its 0.44 0.22 0.10
rw5151 5151 cpu 0.99 1.03 0.82
real unsymm. its 1.00 1.00 0.81
cry10000 10000 cpu 0.34 0.10 0.05
real unsymm. its 0.44 0.16 0.07
memplus 17758 cpu 0.17 0.19 0.08
real unsymm. its 0.33 0.23 0.10
af23560 23560 cpu 0.83 0.49 0.91
real unsymm. its 0.89 0.60 0.90
bcsstk32 44609 cpu 1.28 0.90 0.25
symm. indef. its 0.65 0.39 0.13
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