Computational Assignment II The Implicitly Restarted Arnoldi Method

Jan Brandts, http://staff.science.uva.nl/~brandts

In this assignment you will write a MatLab function that implements a simplified version of the Implicitly Restarted Arnoldi Method that was discussed in the Lecture Notes 7-8. We will distinguish between some theoretical questions and some implementation tasks
Part 01. Recall that an Arnoldi factorization is an orthonormal basis of $K^{k+1}(A, v)$ represented as the columns of a matrix V_{k+1} together with the upper Hessenberg representation $H_{k+1, k}$ of $A V_{k}$ on this basis. They are related as follows,

$$
\begin{equation*}
A V_{k}=V_{k+1} H_{k+1, k} . \tag{1}
\end{equation*}
$$

To compute such a factorization, A, v, and k should be given. Then firstly, v needs to be scaled to norm one. The resulting vector will be the first column v_{1} of V_{k+1}. Then apply A to find $w=A v_{1}$. Orthogonalize w to v_{1} and normalize the result. This gives the second column v_{2} of V_{k+1}. By construction, $A v_{1}$ is a linear combination of v_{1} and v_{2}, and the coefficients that determine which linear combination it is, are the coefficients h_{11} and h_{21} of the matrix $H_{k+1, k}=\left(h_{i j}\right)$. The next step is to compute $A v_{2}$, and to orthogonalize it to v_{1} and v_{2}, to normalize the result, and so on.

Part 02. Write a MatLab function
$[\mathrm{V}, \mathrm{H}]=$ ArnoldiInit(A, v)
that computes the Arnoldi factorization for given A and v with $k=1$. Thus, v has two columns and H is two by one only (see (9) in Lecture Notes 7-8).
Part 03. Next, write a function that extends a given factorization:
$[\mathrm{V}, \mathrm{H}]=$ ArnoldiPlus $(\mathrm{A}, \mathrm{V}, \mathrm{H}, \mathrm{m})$
In this function, you may assume that the inputs V and H represent a valid Arnoldi factorization for some $k \geq 1$. This assures that V has at least two columns, and H at least one. The function should extend the factorization by computing m more basisvectors to be added to V . The returned matrix V should therefore have $n \times(k+m)$ mutually orthonormal columns. The matrix H must be $(k+m) \times k+m-1$.
Part 04. Test your routine on an example. Compute the input factorization of ArnoldiPlus using ArnoldiInit. In your test, use a small matrix, and check if

- V and H are indeed orthogonal and upper Hessenberg, and
- relation (1) should hold.

Part 05. Test the routine on a symmetric matrix A having the distinct and single eigenvalues $1,2, \ldots, 20$ and compute the eigenvalue approximations for A in each expansion by one more dimension. This way you should be able to reproduce a triangle of eigenvalue approximations like in (5-7) in Lecture Notes 7-8.

Part 06. Given any value μ in the complex plane, and an Arnoldi factorization of length $k \geq 2$, we have seen that it is possible to compute the Arnoldi factorization of length $k-1$ for the start vector $\hat{v}_{1}=\tilde{v}_{1} /\left\|\tilde{v}_{1}\right\|$ with $\tilde{v}_{1}=(A-\mu I) v$ without using any additional matrix vector multiplication with the matrix A again. Write a function for this:
[$\mathrm{V}, \mathrm{H}]=$ ArnoldiMinus($\mathrm{V}, \mathrm{H}, \mathrm{mu}$)
Again, test this routine on a simple example.
Part 07. Finally, write a program that combines the routines above and that implements the Implicitly Restarted Arnoldi Method as follows:

- At each iteration, list the eigenvalue approximations
- Prompt for the choice between expanding further, or removing an eigenvalue
- Implement this idea graphically: show the approximate eigenvalues in the complex plane. A mouseclick on an eigenvalue should remove it. A mouseclick on a expand button should expand the space further.

