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Mandatory Assignment 2:

Guidelines how to prepare the assignment:
The assignment should contain six exercises from the list below, chosen as follows.

(i) Exercises 1 to 3 are mandatory for all course participants.

(i) Undergraduate students have to choose 2 among exercises 4 to 7 and one among exercises
8 to 11.

(iii) Graduate students have to choose one among exercises 4 to 7 and two among exercises 8
to 11.

Exercise 1 (Aasen’s algorithm) A method to reduce a symmetric matrix to a tridiagonal one.
Let A(n× n) be symmetric and partitioned in a block two-by-two form as follows:

A(1) = A =




a11 a12 uT

a21

u A22


 .

Assume that a12 = a21 6= 0. Here A22 is of order n− 1. Let

L1 =




1
0 1
0 `1 I


 ,

where `1 = − 1
a21

u. Let also v(1) =

[
a21

u

]
.

(a) Consider the congruence transformation A(2) = L1A
(1)LT

1 and show that

A(2) = L1A
(1)LT

1 =




a11 a12 0T

a21

0 A
(2)
22




where A
(2)
22 is of order n− 1 and

A
(2)
22 =

[
1 0
`1 I

]
A22

[
1 `T

1

0 I

]
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(b) Continue by partitioning A
(2)
22 in a similar way, compute L̃2 of order n− 1 and extend it to

L2 of order n. Continuing, show that after at most n − 2 steps, a tridiagonal matrix A(r),
r ≤ n− 1 has been constructed, such that

A(r) = Lr−1Lr−2 · · ·L1ALT
1 · · ·LT

r−1.

(c) Show that at the sth stage after s− 1 steps, 1 < s < r, we have

A(s) =




T (s−1) 0

v(s)T

0 v(s) A
(s)
22


 ,

where 0 is a zero n− s× s− 1 matrix, v = [a
(s)
s+1,s, · · · , a

(s)
ns ]T and T (s−1) is a tridiagonal

matrix of order s.

(d) A stabilized version of Aasen’s algorithm: For s = 1, 2, · · · let â
(s)
a+1,s = max

s+1≤i≤n
|a(s)

is | and

permute the matrix [
0 v(s)T

v(s) A
(s)
22

]

symmetrically to [
0 v̂(s)T

v̂(s) Â
(s)
22

]
,

where v̂
(s)
s+1,1 = â

(s)
a+1,s. Then perform the factorization of




T (s−1) 0
v̂(s)T

0 v̂(s) Â
(s)
22




and repeat. Show that all entries `
(s)
ij of Ls satisfy |`(s)

ij | ≤ 1.

(e) Implement Aasen’s algorithm in Matlab and demonstrate it on a suitable matrix of your
choice.

What is the computational complexity of Aasen’s algorithm? Compare with that of Gaus-
sian elimination. What are the advantages/disadvantages of Aasen’s algorithm compared
with the LU factorization?

(f) Historical (optional): Who is Aasen? What is the most relevant article where this algorithm
is described.

Note: In general, Aasen’s algorithm requires pivoting. However, for this exercise this is not
required to be taken into account. If it happens that you have chosen a test matrix for which a
zero pivot occurs, please amend the original matrix in a suitable way.
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Exercise 2 Let A be a matrix of order m × n. Denote the column vectors of A by ai, i =
1, 2, · · · , n.
Consider the Modified Gram-Schmidt algorithm:

for i 1 to n
vi = ai

end
for i = 1 to n

rii = ‖vi‖
qi = vi/rii

for j = i + 1 to n
rij = q∗i vj

vj = vj − rijqi

end
end

Each outer step of the Modified Gram-Schmidt algorithm can be interpreted as a right -multiplication
by a square upper triangular matrix (R̂i). For example, beginning with A, the first iteration multi-
plies the first column a1 by 1/r11 and then subtracts r1j times the result of each of the remaining
columns aj . This is equivalent to right-multiplication by a matrix R1(= R̂1) as follows:



v1 v2 · · · vn







1/r11 −r12/r11 −r13/r11 · · ·
1

1
. . .


 =



q1 v

(2)
2 · · · v

(2)
n




At the end of the iteration we have AR1R2 · · ·Rn = Q. Observe that the matrices R̂i are of
decreasing order. In order to be able to form the product R = R1R2 · · ·Rn we have R1(= R̂1),

R2 =

[
1 0

0 R̂2

]
etc.

Task: Determine the exact numbers of floating point operations (additions, subtractions, multi-
plications and divisions involved in computing the factorization AR = Q.

Exercise 3 Let A(n × n) nonsingular be given. We need to form A−1 explicitly. Give two
algorithms to compute A−1 and compare their computational complexity.
Describe possible restrictions on A, related to the numerical stability of the methods you have
described.

Exercise 4 Let A be a rectangular matrix of size (m × n) which has a full rank. Consider the
matrix

Ã =

[
I A

AT 0

]
.
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What is the condition number of the matrix Ã in terms of the singular values of A? Hint: Use
some proper factorization of Ã and the SVD decomposition of A.

Exercise 5 Here is a strip-down of one of the Matlab’s built-in m-files:

[U,S,V]=svd(A);
S = diag(S);
tol = max(size(A))*S(1)*eps;
r = sum(S>tol);
s = diag(ones(r,1)./S(1:r));
X = V(:,1:r)*s*U(:,1:r)’;

What does this program compute?

Exercise 6 (Least Squares problem)
In the supplementary directory you find three LS matrices from the Harwell-Boeing collection
(http://math.nist.gov/MatrixMarket/data/Harwell-Boeing/), illc1033,
well1033 and well1850, together with the corresponding right-hand-side (rhs) vectors.
illc1033.mtx
illc1033_rhs1.mtx

The matrix illc1033 of order 1033× 320 and a rhs vector

well1033.mtx
well1033_rhs1.mtx

The matrix well1033 of order 1033× 320 and a rhs vector

well1850.mtx
well1850_rhs1.mtx

The matrix well1850 of order 1850× 712 and a rhs vector

hb_file_read.m This is a utility routine which downloads in Matlab a given
matrix and its rhs vector. The way to call the utility is as fol-
lows:
> [A,b]=hb_file_read(’well1033’);

(i) Study the three matrices from the Harwell-Boeing collection. What are their properties?

(ii) Solve one of the above problems. Motivate the choice of your method. Illustrate some
disadvantages of some other of the known methods. Can you recommend to use the normal
equation approach? Motivate.

Exercise 7 (Weighted Least Squares, Course book, Question 3.4, page 135)
If some components of Ax−b are more important than others, we can weight them with a scale
factor di and solve the weighted least Squares problem

min ‖D(Ax− b)‖2

instead, where D is a diagonal matrix which contains the (positive) weights di. More generally
one can consider the problem

min ‖Ax− b‖C , (1)

for some symmetric positive definite matrix C. Recall that for any spd matrix C, the scalar
product (Cx,x) = xT Cx defines a norm ‖x‖C .
Task: Define the normal equation for problem (1).

4



Exercise 8 Suppose x is the Least Squares solution of Ax = b. Form a new matrix B with one
additional column which is the sum of the columns of A. Show that if y is the vector which is
formed from x by adding a zero at the end, then y is a Least Square solution of By = b but is
not in the row space of B in general.
(The row space of a matrix is the subspace spanned by its row vectors.)

Exercise 9 Two matrices, A,B ∈ Cm×m are unitary equivalent if there exists a unitary matrix
Q ∈ Cm×m, such that A = QV Q∗. Is it true or false that A and B are unitary equivalent if and
only if they have the same singular values?

Exercise 10 LetA(m,n) be given. Suppose that B(n,m) is obtained by rotating A ninety de-
grees clockwise on a paper (which is not exactly a standard mathematical transformation, how-
ever is performed by Matlab’s rot90(A,-1)). Do A and B have the same singular values?
Prove that the answer is yes or give a counterexample.

Exercise 11 Let A(m,n), m ≥ n be given. The following system has to be solved for various
values of a parameter p,

(AT A + p In)x = ATb.

• Show that for p > 0 and rank(A) < n the matrix Ã ≡ AT A + p In is invertible.

• Let σ1 ≥ σ2 ≥ · · · σn > 0 be the nonzero singular values of A and p > 0. Show that if
σn ≤ σ1

√
ε, then

κ2(A
T A + pIn) <

1

ε

for p ≥ 0.

The solutions, in the form of a written report in Swedish or English, should be delivered to me
no later than November 26, 2007.
Please try to present your arguments as much as if you were writing a scientific report.
Success!

Maya (Maya.Neytcheva@it.uu.se, room 2307)
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