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In 1997 Robert C. Merton and Myron S. Scholes received the Nobel Prize in Economy for their
method to determine the price of a European call option. In this project we will implement this
method using a finite difference scheme and compare it to a Monte Carlo simulation.
The Black-Scholes-Merton model consists of two assets – a bond B and a stock S – with dynamics
given by dB(t) = rB(t)dtdS(t) = �(t; S(t))S(t)dt + �(t; S(t))S(t)dW (t): (1)

Here W is a Wiener process (which is a stochastic process), r is the interest rate, � is the local
mean of return of S and � is the volatility of S.
The owner of a European call option has the right (but not the obligation) to buy a certain stock
(=the underlying stock) at a certain time T (=the time of maturity) to a certain price K (=the
strike price). As an example we can think of a European call option where the owner has the right
to buy an Ericsson B at the price 78 SEK on September 7, 2011.
The problem now is to determine the arbitrage free price (=the price yielding no secure profits in
the market) of this option. At the time of maturity it is easy to determine the price. If the price
of the underlying stock is less than K, then we will not exercise the option and it is worthless. On
the other hand, if the price S of the underlying stock is larger than K, we buy the stock for the
price K and sell it for S, giving us a profit of S �K. From this we conclude that the price F of
the option at time T is F (T ) = Φ(S(T )) = max(S �K; 0): (2)

We call the function Φ the contract function.
Black, Merton, and Scholes [1], [3], derived the following partial differential equation that gives
the arbitrage free price F (t; s) of an option when the stock price is s at time tFt + rsFs + 0:5s2�2Fss � rF = 0;F (T; s) = Φ(s): (3)

Suitable boundary conditions areF (t; 0) = 0;F (t; smax) = smax �K exp(�r(T � t)); (4)

or Fss(t; 0) = 0;Fss(t; smax) = 0: (5)

Here smax denotes the length of the computational interval in space.
An alternative is to simulate the stock price at t using a stochastic differential equation [2], [4].
Let S be the stock price. Then one can show that the equation isdS(t) = rS(t)dt + �S(t)dW (t): (6)

The numerical approximation of (6) is using the Euler scheme [2] from time tn to tn+1 = tn + ∆tSn+1 = Sn + rSn∆t + �Sn∆Wn: (7)
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The increment in the Wiener process ∆W in one time step is approximated by
p

∆tX , where X
is a random variable with normal distribution N (0; 1).
Starting at t = t0 the stock price at t = T is S(T ), the solution of (6) at T , which is approximated
by SN with tN = T . Then the value of the option is Φ(SN ) = max(SN �K; 0). Since SN is a
random variable we take the expected value of the option value E[Φ(SN )]. We have not taken the
risk free interest rate into account in (6). Hence, we have to discount the expected value of the
option at t0 and the result is F (t0; S0) = exp(�r(T � t0))E[Φ(SN )]: (8)

By computing many trajectories SNj ; j = 1; : : : ;M; with different sequences of random numbers,
we can determine an approximation of the expected value by computing the averageE[Φ(SN )] � 1M MXj=1

Φ(SNj): (9)

The average over M trajectories converges to the expected value when M ! 1 by the law of
large numbers.
The first task is to solve (3) with (4) or (5) using a finite difference method implemented in
MATLAB. Note that you should start at t = T and step backward in time.� Start by choosing the finite difference method. Motivate your choice of method.� Implement the method using MATLAB.� Run the code using � = 0:3, r = 0:05 and T = 50 and let smax = 4K. Present your results

in suitable diagrams and graphs.� Compute a reference solution Fr on a fine grid and with small time steps. Increase the step
size ∆s by a large factor (> 5) in the s direction and the time step ∆t by the same factor and
compute the difference between this solution F1 and the reference solution at t = 0. This is
the approximate error in F1. Double ∆s and ∆t and compute F2 at t = 0 and determine
the approximate error in F2. Do the errors behave in the way you can expect with your
discretization?

The second task is to solve (6) for M different sequences starting at S0 = S(t0) by Euler’s method
(7) and then compare the convergence of the discounted expected value (8) with the corresponding
value from the Black-Scholes equation. How does the convergence depend on M?
You should write a complete report on this project.

Acknowledgment. The project is a modification of a Black-Scholes assignment by Lina von
Sydow.
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