
Division of Scientific Computing
Department of Information Technology
Uppsala University

NGSSC: Numerical Methods in Scientific Computing
January 2012

Project - Solving linear systems with complex symmetric
matrices

1 Aim of the project
The project deals with large scale linear systems with complex symmetric matrices and their
solution using iterative methods. Consider the system

Ax = b; (1)

where x 2 Cn;x 2 Cn and A 2 Cn�n.
The matrix is called complex symmetric if A = AT . We assume also that the real part of A is
symmetric positive definite. (The theory is valid also in the case when the symmetric part of the
imaginary part of A, i.e., the matrix 1=2(imag(A) + (imag(A))T ), is positive semidefinite.)

2 Solution approaches

Method 1:
Solve the system as it is given (i.e., as a complex system) using a suitable iterative solution
method.

Method 2:
Since there is much more experience in solving real systems of equations with iterative methods,
rewrite the system (1) as a twice larger real system of equations and solve it, again, via some
iterative method.
We describe the idea in some more details.
The matrix A and the vector b have complex entries. The solution x is a complex vector itself.
We rewrite (1) and separate the equations for the real and the complex part of the solution vector
x. Let x = xr + ixc and similarly, A = Ar + i Ac and b = br + ibc. We substitute the latter

1



in (1) and obtain the following real linear system of equations which, as already mentioned, is
twice larger: �

Ar �Ac

Ac Ar

� �
xr

xc

�
=
�
br

bc

�
(2)

The matrix bA =
�
Ar �Ac

Ac Ar

�
is skew-symmetric, i.e., bAT = � bA. (It has purely imaginary

eigenvalues.)
The system in (2) is now real and can be solved using standard iterative solution methods, such
as GMRES and others.
For systems of the form �

B �C
C B

�
;

where B is symmetric and positive definite, the following preconditioner is known to be efficient:

bP �

�
B �C
C B + 2C

�
=
�
B 0
C B + C

� �
I �B�1C
0 B�1(B + C)

�
(3)

It is shown that all eigenvalues of the preconditioned system bP�1 bA belong to the interval [0:5; 1].
Thus, when solving the system (2) iteratively, using bP as a preconditioner, the number of itera-
tions is be bounded, independently of the size of the system. You are encouraged to check the
eigenvalue estimates numerically.
For details on the preconditioner, see [2].

3 Tasks
1. You have at your disposal two generators of complex symmetric matrices (see below).

Using both of them, create consecutively matrices of increasing size: 50, 100, 500, 5000
� � � . You could be curious and
(i) check the sparsity of the above matrices (spy) and their structure,
(ii) for some smaller-sized matrices compute the complete spectra by using the MATLAB
function eig and see how the spectrum changes with size.

2. The Quasi-Minimal Residual (QMR) method is one of the iterative solution methods,
recommended for solving complex linear systems. Read some theory about QMR and de-
scribe it briefly. What are the main features of this method? Is it computationally cheaper
than GMRES, for instance?

3. Solve Problem (1) using unpreconditioned QMR. Plot the convergence. (Please use semilogy
and not plot.)

For n = 50 you see that it takes exactly 50 iterations for QMR to converge. This is an
illustration of the final termination property of the method. What does the property mean?

2



4. Solve Problem (2) using a preconditioned GMRES.

Implement the action of the preconditioner as follows:

Use the preconditioner bP as defined in (3). The preconditioner should be implemented in
its factored form. You have to write a Matlab routine, called, say, blkprec.m, which
solves a system with the factorized preconditioner, using the particular block form.

In details, we want to solve�
B 0
C B + C

� �
I �B�1C
0 B�1(B + C)

� �
x1
x2

�
=
�
b1
b2

�

We first solve �
B 0
C B + C

� �
y1
y2

�
=
�
b1
b2

�
and then �

I �B�1C
0 B�1(B + C)

� �
x1
x2

�
=
�
y1
y2

�
The two steps consist of the following computational tasks:

(I) Forward step:
Solve By1 = b1
Solve (B + C)y2 = b2 � Cy1

(II) Backward step:
Solve (B + C)x2 = y2
Compute x1 = y1 � y2 + x2 (Why?)

The way to use the preconditioner in MATLAB is as follows

[x,flag,relres,iter,resvec] = gmres(A,rhs,restart,tol,maxit,...
@blkprec,[],[],A_r,A_c)

The MATLAB function

function w = blkprec(v,A_r,A_c)

should implement the solution of the system bPw = v as sketched above. Use MATLAB
backslash operator to solve systems with Ar and Ar + Ac.

(OBS! It is not acceptable to assemble the triangular factors and then solve systems with
those.)

Remark: Of course, one can use OMR, preconditioned by bP . However, QMR requires the
action of the transposed of the preconditioner and some special attention should be paid to
that issue when implementing the preconditioner in blkprec.m.

3



5. An additional task to bring 0.5 points extra: In [2], an algorithm is described, where one
can reorganize the computations in (I) and (II) so that the solution with B can be avoided.
If you implement that algorithm in blkprec.m, an extra 0.5 pt will be added to your final
course points.

6. Derive the computational complexity of solving a system with bP . Assume that you solve
the systems with B + C using algebraic Multigrid method.

4 Test matrices
You have at your disposal two Matlab routines, which generate complex symmetric test-matrices.

(1) Pade parabolic matrix.m
The so-called R22�Padé approximation systems

A =
�
I +

�
1 + i

�
L
�

(4)

which arise in Padé type integration schemes for parabolic problems.

(2) Shift omega matrix.m
The so-called shifted-omega systems

A = L + i!L (5)

For more details on both types of test matrices, see [1] and the references therein.

5 Writing a report on the results
The report has to have the following issues covered:

1. Brief description of the problem and the methods used and the computational complexity
of the preconditioner bP .

2. Numerical experiments

Describe the experiments (iteration counts, plots of the residual history) for representative
cases. How does the number of iterations grow with the size? Which method is to recom-
mended for the given test problems and why? Please note, that iteration counts should be
repoted preferably in a table and not as a graph.

3. Conclusions.

A printout of the Matlab code must be attached to the report.
Success!

4



References
[1] O. Axelsson, A. Kucherov. Real valued iterative methods for solving complex symmetric

linear systems. Numerical Linear Algebra with Applications, 7 (2000), no. 4, 197-218.

[2] O. Axelsson, P. Boyanova, M. Kronbichler, M. Neytcheva, X. Wu Numer-
ical and Computational Efficiency of Solvers for Two-Phase Problems. Upp-
sala University, Institute for Information Technology. Technical report 2012-002,
http://www.it.uu.se/research/publications/reports/2012-002/

5


