
Division of Scientific Computing
Department of Information Technology
Uppsala University

NGSSC: Numerical Methods in Scientific Computing
Spring 2008

Project - Solving the Heat equation in 2D

Aim of the project
The major aim of the project is to apply some iterative solution methods and preconditioners
when solving linear systems of equations as arising from discretizations of partial differential
equations.

Introduction: The problem
Consider the time-dependent heat equation in two dimensions

ut = ∆u + f(u, t), u = u(x, t),x ∈ Ω = [0, 1]2,

where ∆u =
2∑

i=1

∂2u
∂x2

i
.

For the test example we let f = 1, u(x, t) |x∈∂Ω= 0 and as an initial condition we choose the
discontinuous function

u(x, 0) =

{
1 if

√
(x1 − 0.5)2 + (x2 − 0.5)2 < 0.2,

0 elsewhere.

We discretize the problem in two steps.

(i) Space discretization
Issues related to space discretization fall out of the scope of this project and all related
matrices are readily provided. A short description follows.

The space discretization is done using the Finite Element method. The spatial domain
is discretized with triangular elements and an example of the spatial mesh is provided in
Figure 1.

As a result we obtain the so-called semi-discrete problem which constitutes a system of
ODEs and has the following form:

M
∂U(t)

∂t
= KU(t) + F(t), (1)

1



Figure 1: A coarse space discretization

where U(t) is the unknown solution, discretizes in space and being now a function only of
time t. Similarly, F(t) is the discrete counterpart of f(u, t).

The matrices M and K are the corresponding standard mass and stiffness finite element
matrices, which are symmetric positive definite and symmetric negative definite corre-
spondingly.

(ii) Time discretization
The time discretization will be performed using the so-called θ method. The fully dis-
cretized system reads as follows:

(M − θδtK)Uk+1 = (M + (1− θ)δtK)Uk + δt(θF
k+1 + (1− θ)Fk), 0 ≤ θ ≤ 1, (2)

where Uk+1 is the solution on time level k + 1 to be computed and it is assumed that we
already have obtained Uk.

As we can see, θ = 0 corresponds to explicit Euler method, θ = 1 corresponds to implicit
Euler method and θ = 0.5 corresponds to Crank-Nicolson’s scheme (also referred to as the
trapezoidal method).

Regarding stability of the above discretization scheme, theory says that for θ ∈ [0, 0.5)
we have a conditionally stable scheme, where the time step δt has to be related to the
space discretisazion parameter (h), and for θ ∈ [0.5, 1] the time discretization scheme is
unconditionally stable.

It is also known that in order to balance in a best way the contributions of the space and
time discretization errors into the global discretization error, θ should be chosen as θ =
0.5 + ξ for some small ξ. Observe that θ = 0.5 might lead to unphysical oscillations in
the computed solution, in particular in the beginning of the simulation process, since the
initial solution is discontinuous.

Tasks
The task is to test a preconditioned iterative method to solve the so-arising linear systems of
equations. Observe that in the case when the Finite Element method is used, even if we use
explicit time discretization schemes, we always have to solve a linear system of equations.

2



Below we provide a description of the preconditioner for the matrix A = M − θδtK which has
to be implemented. We assume that the matrix A has a two-by-two block structure

A =

[
A11 A12

A21 A22

]

It is well-known (and can be checked with straightforward computation) that A admits the fol-
lowing exact factorization:

A =

[
A11 0
A21 SA

] [
I1 A−1

11 A12

0 I2

]
(3)

where I1 and I2 are identity matrices of a proper order and SA is the corresponding Schur com-
plement matrix SA = A22 − A21A

−1
11 A12.

In practice, even if A is sparse, its Schur complement can be a dense matrix and we do not want
to compute it explicitly.
For now we assume that we are able to construct an approximation S of SA, such that S is sparse
and it is also spectrally equivalent to SA, i.e.,

κ(S−1SA) = O(1).

In other words, we assume that we have a very good sparse approximation to a in general dense
matrix. Then we consider the following preconditioner to A, based on the exact factorization (3):

C =

[
A11 0
A21 S

] [
I1 Z12

0 I2

]
(4)

where we also assume that Z12 is a reasonably good approximation of the matrix product A−1
11 A12.

1. Write a MATLAB code which implements the following algorithm:
For a given θ, δt,M, K, A11, A21, S, Z12,F perform ten timesteps, based on the discrete
problem (2).

During each timestep solve the corresponding matrix A using the PCG method. To this
end, use the pcg function from MATLAB without and with preconditioning. For the latter
case write your own function to implement the preconditioner C from (4).

The way to do it in MATLAB is as follows

[u_next,flag,relres,iter,resvec] = pcg(A,rhs,tol,maxit,@blkprec,...
[],[],A11,A21,S,Z12)

The MATLAB function

function w = blkprec(v,A11,A21,S,Z12)

should implement the solution of the system Cw = v. Use MATLAB backslash operator
to solve systems with A11 and S.

3



2. Observe the pcg iterations per timestep, check the convergence history resvec.

3. Compare the performance of the unpreconditioned and the preconditioned CG methods.
Estimate the computational complexity and give your reasonings on whether it is relevant
to use an involved preconditioner in this case.

4. Check the spectrum of A and how it is transformed after preconditioning:

EA = sort(eig(full(A)));
EC = sort(eig(full(A),full(C)));

for some small matrix sizes.

5. Chech how well S approximates SA and include a comment on that.

Remark 1: In order to run the unpreconditioned CG, it suffices to use only the matrices M and
K, which do not depend on the choice of δt and θ. Therefore, such experiments can be done with
arbitrarily chosen δt (and, of course θ).
For the preconditioned CG, the blocks A11, A21, S, Z12 are constructed for a particular values
of δt and θ, which are included in the corresponding data file. For the cases where the blocks of
the preconditioner are precomputed, δt = hmax, where hmax measures the largest triangle in the
discretization mesh.
Remark 2: Use 10−4 as a stopping criterium for the CG method.

Writing a report on the results
The report has to have the following issues covered:

1. A brief problem description

2. Numerical experiments

Describe the experiments as consistently as possible. Include some relevant information on
your choice - iteration counts, plots of residual histories, condition numbers (as a function
of the size) etc. Is there a noticeable difference in the quality of the solution with respect
to the parameter θ? How does the number of iterations grow with the problem size? Add
a discussion on the suggested preconditioner - is it good (robust, computationally feasi-
ble etc.) or not and why. Comment on the relation between numerical stability (robust
discretization scheme) and robust linear system solver.

A listing of the MATLAB program code has to be attached to the report.

3. Conclusions

4



Provided data for the experiments
All the input matrices are to be loaded from MATLAB .mat files with the following name
convention:

Heat in N theta dt
where N is the size of the matrix A, THETA is the corresponding value of θ and dt is the timestep.
The latter is needed since the corresponding matrices A11, A21, S and Z12 do depend on both θ
and δt.
Each data file contains the following variables:
M, K, A11, A21, S, Z12, FF, theta, dt, u0
lvl total, Node, Face Node
Some of the arrays are provided in order to enable you to plot the solution, which for example
could be done as follows:

clf
eval([’u0_nr(O’ int2str(lvl_total) ’,1) = u0;’]) % Re-reorder
trisurf(Face_Node(:,:,2)’,Node(1,:),Node(2,:),u0_nr,’facecolor’,’interp’)
disp(’Initial condition’)

and

eval([’u_nr(O’ int2str(lvl_total) ’,1) = u_next;’]) % Re-reorder
clf
trisurf(Face_Node(:,:,2)’,Node(1,:),Node(2,:),u_nr,’facecolor’,’interp’)

In this particular case the function f(u, t) is constant and is contained in the vector FF .

File name File size Remark
Heat in 417 0.98438 0.125.mat 161736 θ = 1− h2

max, δt = hmax

Heat in 1601 0.99609 0.0625.mat 665448
Heat in 6273 0.99902 0.03125.mat 2704752
Heat in 417 0.75 0.125.mat 161736 θ = 0.5 + 2hmax, δt = hmax

Heat in 1601 0.625 0.0625.mat 665448
Heat in 6273 0.5625 0.03125.mat 2704752
Heat in 417 0 0.00024414.mat 161728 θ = 0, δt = h4

max

Good luck!

5


