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Chapter 1

Matrix Algebra

1.1 multiplication

For two matrices with compatible dimensions such as

A =











a11 · · · a1k · · · a1N

...
...

...
ai1 · · · aik · · · aiN

...
...

...
aM1 · · · aMk · · · aMN











= {aik}1≤i≤M,1≤k≤N

with M rows and N columns

B =











b11 · · · b1j · · · b1L

...
...

...
bk1 · · · bkj · · · bkL

...
...

...
bN1 · · · bNj · · · bNL











= {bkj}1≤k≤N,1≤j≤L

with N rows and L columns, then matrix multiplication defines the product as the M × L
matrix

C = AB = {cij}1≤i≤M,1≤j≤L

where
cij = ai1b1j + · · ·+ aikbkj + · · ·+ aiN bNj

≡
N∑

k=1

aikbkj

That is, a component of the product is the inner product of a row of A with a column of B
In general AB 6= BA, if AB exists it is not necessarily true that BA exists, e.g. if L 6= M
above. The unit matrix or identity matrix I has ones on the diagonal and zeros elsewhere
and for any M ×N matrix A,

IA = AI = A

where the identity on the right is M ×M and on the left is N ×N . A permutation matrix
P has exactly one unit component in each row and each column, all other components are
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zero. The matrix multiplication PA permutes the rows of A and AP permutes the columns
of A.

For addition the matrices must have the same dimensions, thus if A and B are both
M ×N then

D(M×N) = A + B = {dij}1≤i≤M,1≤j≤N

dij = aij + bij

examples

A =





1 4
2 5
3 6



 , B =

(
5 6 7 8
1 2 3 4

)

and P =

(
0 1
1 0

)

then

AB =





9 14 19 24
15 22 29 36
21 30 39 48





and

AP =





4 1
5 2
6 3



 , PB = B =

(
1 2 3 4
5 6 7 8

)

1.2 transpose and inverse

The transpose of the M ×N matrix A is

AT =











a11 · · · ak1 · · · aM1

...
...

...
a1i · · · aki · · · aMi

...
...

...
a1N · · · akN · · · aMN











so if

A =





1 4
2 5
3 6





then

AT =

(
1 2 3
4 5 6

)

A square matrix A such that AT = A is said to be symmetric. The inverse of a square
matrix A is denoted by A−1 and is such that

AA−1 = A−1A = I

Not every square matrix has an inverse, if no inverse exists the matrix is said to be singular.
Note on the notation: Vectors, denoted in bold such as

x =








x1

x2

...
xn







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are always assumed to be column vectors, that is matrices of dimension n× 1 where n is the
length of the vector. So xT is a row vector.

Exercise 1.1 Verify that the permutation matrix P that interchanges rows i and j can be
defined as

P = I − (ei − ej)(ei − ej)
T

where ei and ej are respectively the i-th and j-th unit vectors.

1.3 norms

The size of matrices and vectors are represented in terms of norms which are generalisations

of the concept in three dimensions where the length of a vector x =
(

x1 x2 x3

)T
is

denoted by ‖x‖2 and is defined by

‖x‖22 = x2
1 + x2

2 + x2
3

This is generalised for any x =
(

x1 · · · xN

)T
as

‖x‖2 =

[
N∑

i=1

x2
i

] 1
2

it is possible to define other norms the most common are

‖x‖1 =
N∑

i=1

|xi|

and

‖x‖∞ = max{|xi|, i = 1, · · · , N}

thus if x =
(

1 2 3
)T

, ‖x‖1 = 6, ‖x‖2 = 3.74, ‖x‖∞ = 3. All norms satisfy the same
basic axioms:

1. ‖x‖ ≥ 0

2. ‖x‖ = 0 ⇐⇒ x = 0

3. ‖αx‖ = |α| ‖x‖ for all α ∈ R

4. ‖x + y‖ ≤ ‖x‖+ ‖y‖ The triangle inequality

The norm of a matrix is defined in terms of the norm of a vector as

‖A‖ = max
‖x‖6=0

‖Ax‖
‖x‖

it can be shown that the simplest cases reduce to

‖A‖1 = max
1≤i≤N

{
N∑

j=1

|aji|},
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the maximum column sum, and

‖A‖∞ = max
1≤i≤N

{
N∑

j=1

|aij |},

the maximum row sum. Matrix norms satisfy an additional axiom

1. ‖AB‖ ≤ ‖A‖ ‖B‖

The condition number, κ(A), of a matrix defined by

κ(A) = ‖A−1‖‖A‖

is a useful indicator of the sensitivity of the problem to small changes in the data. If the
condition number is large, we say that the problem is ill conditioned whereas if it is small
the problem is well conditioned. Note that an accurate evaluation of the condition number
requires knowledge of the inverse A−1 as this is invariably not available computer packages
(such as MATLAB) make of estimates of the condition number.
Note on the notation: Components of vectors and matrices are denoted by subscripts e.g.
xi, ajk. etc. elements of a sequence are denoted by superscripts e.g. x(n), the elements in

the sequence could be vectors e.g. x(n), then the components are x
(n)
i , etc..

Exercise 1.2 Matlab Exercise Construct a random 5×5 matrix A and compute
‖Ax‖1
‖x‖1

for 100 different random vectors x(n), n = 1, . . . , 100. Compute ‖A‖1 and max
n

{‖Ax(n)‖1
‖x(n)‖1

}

are they close, explain the difference?

1.4 Simultaneous Linear Equations

Systems of simultaneous linear algebraic equations are written as

Ax = b (1.1)

where A is an N × N matrix with x and b column vectors of length N , or explicitly a
component-wise definition is

N∑

j=1

aijxj = bi i = 1, · · · , N

If the matrix A is regular or (more commonly) non-singular then the system (1.1) has
exactly one solution and the problem is said to be well-posed. If the matrix A is singular,
then Ax = b may have no solutions or an infinity of solutions depending on the form of b

e.g.
x + y = a

2x + 2y = b

has no solution if b 6= 2a and has the solution

(
x

a− x

)

for any value of x if b = 2a.

In either case the problem is said to be ill-posed In general, if the rows (or equivalently
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the columns) of a matrix are linearly dependent then the matrix is singular. A sequence
of vectors (either rows or columns) a1, · · · , ai, · · · , aN is linearly dependent if there exist a
sequence of scalars (i.e. numbers) α1, · · · , αi, · · · , αN such that

α1a1 + · · ·+ αiai + · · ·+ αNaN = 0

if we define the matrix A with columns ai, i = 1, .., N this becomes

Ax = 0

where x = (α1, · · · , αi, · · · , αN)T .
If the vectors are not linearly dependent they are said to be linearly independent. The

rank of a square matrix is the number of linearly independent rows (or columns). The
theory is usually summarised as in theorem 1. A singular matrix is said to be rank deficient,
a non-singular matrix is said to have full rank.

Theorem 1 Let A be a square matrix of order N , the following statements are equivalent:

1. For any vector b, the solution of Ax = b is unique.

2. If a solution of the system Ax = b exists it is unique.

3. For all x, Ax = 0 ⇒ x = 0.

4. The columns (rows) of A are linearly independent.

5. There is a matrix A−1 such that A−1A = AA−1 = I.

6. det(A) 6= 0

The solution vector x ≡
(

x1 · · ·xi · · ·xN

)T
can be written as x = A−1b but this formula

should never be used for numerical computation.

Example 1

• (
1 1
2 2

)

rank 1

• 



1 2 3
4 5 6
3 6 9



 rank 2

• 



1 2 3
4 5 7
5 7 10



 rank 2

• 



1 2 3
2 4 6
3 6 9



 rank 1

If the matrix is not symmetric then the coefficients αi linking the rows will not be the same
as those linking the columns.
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1.5 Eigenvalues and Eigenvectors

Given any square matrix A, the eigenvalue problem or eigenproblem is to find a vector x (an
eigenvector), with at least one component not zero, and a scalar λ (an eigenvalue) such that

Ax = λx (1.2)

Clearly x = 0 is a trivial solution of (1.2) that we exclude. If x is a solution of (1.2) so is αx,
any multiple of a eigenvector is an eigenvector, so eigenvectors are frequently normalised so
x∗x = 1

It follows from (1.2) and theorem 1 that the eigenvalues λ of an x×N matrix A satisfy

det(A− λI) = 0 (1.3)

this is a polynomial of degree N in λ, known as the characteristic equation of A. A poly-
nomial of degree N has N roots, which may not be distinct and which may be complex.
Thus a real matrix A may have multiple eigenvalues or complex eigenvalues. If a matrix
has distinct eigenvalues then the eigenvectors are linearly independent, if there are multiple
eigenvalues then the structure of the system of eigenvectors is more complicated. Since the
determinant of AT equals the determinant of A, they have the same eigenvalues

AT y = λy or yT A = λyT (1.4)

but different eigenvectors, thus if x is an eigenvector of A corresponding to the eigenvalue λ
and y is an eigenvector of AT corresponding to the eigenvalue λ̃ with λ 6= λ̃ then yT x = 0.
Thus the eigenvectors of a symmetric matrix are orthogonal. Assuming that there are N
linearly independent eigenvectors xi and yi (for an N×N matrix A) then if U = (x1 . . .xN )
and V = (y1 . . . yN ) it follows that UV T = I (or V T = U−1) and V T AU = D where
D = diag(λ1, . . . , λN ), this can also be written as UDV T = A.

Example 2

A =





2 3 2
10 3 4
3 6 1





λ = 11, x = (2 4 3)T

λ = −3, x = (0 2 − 3)T

λ = −2, x = (1 2 − 5)T

AT =





2 10 3
3 3 6
2 4 1





λ = 11, y = (4 3 2)T

λ = −3, y = (2 − 1 0)T

λ = −2, y = (−9 3 2)T

1.5.1 Mechanical Vibration

Consider the motion of five equally spaced masses on a taut string. The system defining the
natural modes of vibration can be written in matrix terms as

Kx = −ω2x

or
(K + ω2I)x = 0

and this is an eigenvalue problem. A solution in this case consists of an eigenvalue (in this
case ω2 and hence positive, and a non-zero eigenvector x. In structural terms, the matrix
K is the stiffness matrix, ω is a natural frequency and x is the mode corresponding to that
frequency.

8
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Natural Modes

Figure 1.1: Natural modes of equally spaced vibrating masses

In terms of this simple example of five masses on a string, if all the masses are equal

K =
T

h









−2 1
1 −2 1

1 −2 1
1 −2 1

1 −2









where T is the tension and h is the spacing between the masses. For x1 =
(

1 −√3 2 −√3 1
)T

then

Kx1 = −(2 +
√

3)
T

h
x1

√
3 = 1.73, 2 +

√
3 = 3.73

for x2 =
(

1 −1 0 −1 1
)T

then

Kx2 = −3
T

h
x2

for x3 =
(

1 0 −1 0 1
)T

then

Kx3 = −2
T

h
x3

for x4 =
(

1 1 0 −1 −1
)T

then

Kx4 = −T

h
x4

for x5 =
(

1
√

3 2
√

3 1
)T

then

Kx5 = −(2−√3)
T

h
x5 2−√3 = 0.27

Note the eigenvectors in figure (1.1) get ”smoother” as the eigenvalues get smaller. At
any given moment time=t, the position vector of the masses is y = cos(ωt)x. Usually in
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mechanical vibration problems we wish to compute the smallest eigenvalue together with
the corresponding eigenvalue, but in some problems (possibly electrical circuits) we wish to
compute the largest eigenvalue.

Numerically, the largest eigenvalue is easier to compute so we consider that first.

1.5.2 Principal Component Analysis

This is usually viewed as a statistical technique, sometimes it is viewed as a technique in
Data Mining. The idea is to characterise a set of observations as columns of a matrix and
then identify the key features of the data in terms of the eigenvectors corresponding to the
largest eigenvalues.

Eigenfaces Face recognition, the art of matching a face to a database of photographs,
is an important security issue nowadays. An image of a face is a set of pixels, which are
numerical values. The pixel values for each face form a vector, the vectors are put together
as the columns of a matrix. The matrix is padded with zero columns to form a square matrix
as there are usually many more pixels in a face than faces in the database. The eigenvectors
can be interpreted as eigenfaces and then any individual face can be expressed as a linear
combination of eigenfaces. Two images can then be compared in terms of the expansion in
terms of eigenfaces.

Insect Taxonomy Small winged aphids Alate Adelges can be caught in a light trap and the
point of interest of the study is to determine the number of distinct taxa (sub-populations)
present in the particular habitat from which the trap was taking samples. Adelges are
difficult to identify with any certainty by the conventional taxonomic keys and so principal
component analysis is used to provide guidance on the number of distinct taxa present in
the collection. It is possible to make a variety of measurements of the adelges, the variables
chosen for this model were;

body length
body width
fore-wing length
hind-wing length
number of spiracles
length of antennal segment 1
length of antennal segment 2
length of antennal segment 3
length of antennal segment 4
length of antennal segment 5
number of antennal spines
leg length, tarsus
leg length, tibia
leg length femur
rostrum
ovipositor
number of ovipositor spines
anal fold (categorical data - yes/no)
number of fond-wing hooks
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These 19 variables were chosen as being possible diagnostic characters and can be measured
(or counted) by microscopic examination. The purpose of the model is to identify sub-
groups in a sample, hence a diagrammatic representation that clusters the data is adequate
if followed by a visual inspection for clusters. In an experiment N individuals are collected,
the data is assembled into an N × 19 data matrix A. The variability of each of the 19 sets
of data with respect to each other are computed as the 19× 19 covariance matrix cov(A).

Covariance Matrix Given the raw data (n sets ai of m parameter values, n > m) define

A =
(

a1 a2 · · · am

)

and
E =

(
a1 − a1 a2 − a2 · · · am − am

)

then the m×m (sample) covariance matrix1 can be defined as

cov(A) =
1

n− 1
ET E

If it is possible to identify just two factors that account for this variability then a scatter plot
would split into distinct clusters if here were separate sub-populations. Thus if it is possible
to identify two factors that account for “most” of the variability then it is possible to produce
an “approximate” scatter plot which best represents the data, in the sense of being as widely
dispersed as possible, by selecting vectors (in 19 dimensional space) xi i = 1, 2, . . . , m that
maximise the directional sum of squares

xT cov(A)x

The vector x1 gives the maximum and x2 is the optimal subject to the restriction

xT
1 x2 = 0

A scatter plot of the data projected onto (x1, x2) space is then the best two-dimensional
representation of the data in the above sense. The directions xi i = 1, 2 are the first two of
the m eigenvectors of the matrix cov(A) i.e.

cov(A)xi = λixi

where the eigenvalues are ordered as

λ1 ≥ λ2 ≥ · · · ≥ λm > 0

and the eigenvectors are orthogonal so that

xT
i xj = 0 i 6= j

It can be shown that the total sum of squares is the sum of the eigenvalues hence

λ1 + λ2
∑

λi

1The analysis can alternatively be performed in terms of the correlation matrix. If the covariance matrix

is denoted by C and the correlation matrix by K then Kij =
Cij√

CiiCjj
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is the proportion of the variability illustrated in such a two-dimensional plot. Thus this
quantity can be used as a validation of the model, a value of (say) less then 0.7 indicates
there is a considerable body of information that is not modelled by this two-dimensional
representation. In the case of the Alate Adelges data λ1+λ2

P

λi
= 0.92 and it is possible to

identify 4 distinct clusters from the scatter plot.

Exercise 1.3 Show that for any two vectors x, y not necessarily the same length, that
xyT is a matrix with rank one (a rank-one matrix) and that any rank-one matrix can be
written in the form xyT .

Exercise 1.4 Show that if UDV T = A then An = UDnV T or AT =
∑N

i=1 λn
i xiy

T
i .

Exercise 1.5 Matlab Exercise Using the Alate Adelges data, compute the eigenvalues
and eigenvectors of the covariance matrix and construct a two-dimensional scatter-plot
(using plot and a three-dimensional scatter-plot (using plot3). Are the clusters easier to
identify in 3-D? What is the proportion of the residual sum of squares attributed to λ3?

12



Chapter 2

Numerical Approximations

On any digital computer, numbers are stored to a finite precision in floating point form,
typically as 2e×d, d is known as the mantissa or fraction and e is the exponent. The round-
off error is the difference between the exact answer (say) x+y (the sum of two numbers) and
the result of the evaluating the numerical value using floating point arithmetic, in this case
denoted by fl(x + y). If there are t bits (binary digits) in the mantissa, then it is possible to
state a bound on the round-off error incurred in a single arithmetic operation in the form

fl(x + y) = (x + y)(1 + e) (2.1)

where

|e| ≤ ǫM = 2−t

the constant ǫM is known as the machine precision. Alternatively we can write

|fl(x + y)− (x + y)| ≤ |(x + y)||e|

with similar bounds for the other arithmetic operations viz -, ×, /. Bounds of the form (2.1)
lead to backward error analysis. The standard (IEEE) form of single precision arithmetic is
to store numbers in the form

x = ±2e × d

where the e is stored as 8 binary digits (bits) and d ≡ 0.d1 . . . d23 is stored as 23 bits, there
is a single bit for the sign. This is a binary floating point number. In IEEE double precision
e is 11 bits and d is 52 bits, and this is the form that MATLAB uses by default (64 bits
including the sign bit).

Floating point numbers are normalised so that d1 6= 0 hence in base-β arithmetic, x =
βe×d then 1 > d ≥ β−1 (an alternative normalisation would be to interpret d = d1.d2 . . . d23

then β > d ≥ 1). If as a result of the computation a number is generated that is too large
for the defined form of floating point representation then this is known overflow which is one
form of floating point exception the unrepresentable value is replaced (in IEEE arithmetic)
by the character string Inf and this is replicated throughout any subsequent computation.
Alternatively, if the computed number is too small to be represented (e large and negative)
this is termed underflow and the unrepresentable number replaced by zero. The result of
the calculations 0/0 or Inf/Inf is NaN (not a number). For further information consult
Wikepedia [6].

13



2.1 Rounding errors

The limit on the stored precision means that numbers have to be rounded to the fixed preci-
sion available. Thus for example in five digit decimal arithmetic (t = 5) a = .x1x2x3x4x5y1y2 . . . (×10k),
withx1 6= 0 is rounded to b = .x1x2x3x4z (×10k). If we define y = y1.y2y3 . . . then when a
is rounded to b:

• y ≥ 5 then (ignoring the complications with x5 = 9 hence z = 10) z = x5 + 1 and

b− a = (10− y)× 10−t−1(×10k)

• y < 5 then z = x5 and

b− a = −y × 10−t−1(×10k)

In both cases we have the absolute error |b − a| ≤ 5 × 10−t−1 (×10k) = 1
2 × 10−t (×10k).

Assuming that the numbers are normalised x1 6= 0⇒ x1 ≥ 1 the relative error

|b− a|
|a| ≤ 5× 10−t−1 (×10k)

0.x1 (×10k)
(2.2)

≤ 5× 10−t−1 (×10k)

0.1 (×10k)
(2.3)

=
1

2
× 10−t+1 (2.4)

With t-digit binary arithmetic the results are similar if a = .x1x2x3x4x5y1y2 . . . (×2k),
withx1 6= 0 is rounded to b = .x1x2x3x4z (×2k).

• y ≥ 1 ⇒ y1 = 1 then (ignoring the complications of ”carry digits” with z = 2)
z = x5 + 1 and

b− a = (2 − y)× 2−t−1(×2k)

• y < 1⇒ y1 = 0 then z = x5 and

b− a = −y × 2−t−1(×2k)

In both cases we have the absolute error |b− a| ≤ 2−t−1 (×2k) = 1
2 × 2−t (×2k). Assuming

that the numbers are normalised x1 6= 0⇒ x1 = 1 the relative error

|b− a|
|a| ≤ 2−t−1 (×2k)

0.x1 (×2k)
(2.5)

=
2−t−1 (×2k)

1
2 (×10k)

(2.6)

= 2−t (2.7)

=
1

2
× 2−t+1 (2.8)

From (2.4) and (2.8) it can be seen that the bound on the relative error is independent of
the base.
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Figure 2.1: The dynamics of Table Tennis

2.2 loss of accuracy

A common reason for a serious loss of accuracy in numerical calculation is the subtraction
of two nearly equal numbers.

Example 3 At table tennis I can smash the ball at 47 ms (the world record is 47.2 ms). I
claim that at that speed, gravity has no effect on the path of the ball. To verify this claim we
can perform a simple calculation1.

Using the notation in figure (2.1),

x = vt cos(θ)
y = h− vt sin(θ) − 1

2gt2

where v = 47 ms, g = 981 ms−2, h = .15 m and θ = arctan
(

15
20

)
. The ball hits the table

when y = 0, ignoring g this gives

vt sin(θ) = h
x = h

tan(θ) = 20 cms

incorporating g

0 = h − x tan(θ) − g

2v2 cos2(θ)
x2

assuming that h, v and tan(θ) are measured to 4 figures

.003469x2 + .7500x − .1500 = 0

using the formula

x =
−b± (b2 − 4ac)1/2

2a

1Example taken from OU course M351
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to solve ax2 + bx + c = 0 we have, working to four figures, to find the positive root x1

x1 = −.7500+(.5625+.002081)1/2

.006938

= −.7500+(.5646)1/2

.006938

= −.7500+.7514
.006938

= .0014
.006938

= .2018 (metres)

> 20 cms

If this value were correct it would imply that gravity is acting upwards (to increase the
distance travelled). The problem is the numerical computation of the difference .7514− .7500
both of which are correct to 4 figures but the difference only has 2 figures correct. In this
example we should compute the large (negative) root x2 as

x2 = −.7500−(.5625+.002081)1/2

.006938

= −.7500−(.5646)1/2

.006938

= −.7500−.7514
.006938

= −1.501
.006938

and then compute x1 using x1x2 = − c
a as

x1 = − c
ax2

= .1500
.003469

.006938
1.501

= .3000
1.501

= .1999

i.e. gravity reduces the distance travelled by 0.01cm.

2.3 backward error analysis

Error analysis can be either forward or backward, in forward error analysis we try to predict
the error made in the computation, in backward error analysis we show that the computed
solution could have come from slight perturbations of the original data. So

• Forward analysis: bounds on computed solution of the exact problem

• Backward analysis: bounds on exact solution of a perturbed problem

An ill-conditioned problem contains a high degree of uncertainty, a stable algorithm
applied to a well conditioned problem leads to an accurate result. The ill-conditioning in a
problem is quantified by the condition number. The difference between ill conditioned and
well conditioned systems is illustrated in figure (2.2), in both cases the dotted lines illustrate

16



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4
ill conditioned

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4
well conditioned

Figure 2.2: Conditioning of a pair of linear equations

ax1 + bx2 = c+ ǫ with |ǫ| = 0.1 and the central diamond contains all possible solutions with
|ǫ| ≤ 0.1. The well conditioned problem is the pair of simultaneous equations

−x1 + x2 = 1
x1 + x2 = 3

the ill conditioned system is
−x1 + x2 = 1

−1.2x1 + 1.1x2 = 1

The components of the matrix in a linear system may not be known exactly, they may be
measured to a finite precision or the results of numerical computation and hence subject to
round off error. In either case the true problem

Ax = b

is replaced by a perturbed system

(A + δA)x̃ = b + δδδb.

Assuming that A is nonsingular if ‖A−1δA‖ < 1 then A+δA is nonsingular and the perturbed
system has a unique solution. Since ‖A−1δA‖ < ‖A−1‖‖δA‖ a similar, but weaker, result

can be stated if ‖A−1‖‖δA‖ < 1. In particular, if δδδb = 0 and ‖δA‖
‖A‖ is small then the following

inequality is almost true
‖x̃− x‖
‖x‖ ≤ κ(A)

‖δA‖
‖A‖ (2.9)

This suggests that the relative perturbations in A are scaled by the condition number to
give the relative perturbations in x. This is the standard use of the term condition number,
that is the ratio (or a bound on the ratio) of the relative error output to the relative error
in input.
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Exercise 2.1 Using the properties of norms, with δδδb = 0

1.
‖x̃− x‖
‖x̃‖ ≤ ‖A−1δA‖

2.
‖x̃− x‖
‖x‖ ≤ ‖A−1δA‖

1− ‖A−1δA‖

3.

‖x̃− x‖
‖x‖ ≤

κ(A)
‖δA‖
‖A‖

1− κ(A)
‖δA‖
‖A‖

18



Chapter 3

Numerical Solution of
simultaneous equations

3.1 Introduction

Assuming that Ax = b has a unique solution:

• Interchanging the rows of A (together with the rows of b) does not change the solution.

• Replacing a row by a linear combination of it with another row does not alter the
solution

If

a11x1 + a12x2 + a13x3 = b1 (3.1)

a21x1 + a22x2 + a23x3 = b2 (3.2)

a31x1 + a32x2 + a33x3 = b3 (3.3)

for any α, β define a linear combination of ( 3.1) and (3.2) in the form

(αa21 + βa11)x1 + (αa22 + βa12)x2 + (αa23 + βa13)x3 = αb2 + βb1 (3.4)

then if |β| 6= 0 (3.1), (3.2), (3.3) and (3.1), (3.4), (3.3) are equivalent systems, if |α| 6= 0
then (3.1), (3.2), (3.3) and (3.4), (3.2), (3.3) are equivalent systems.

Using these two rules systematically we can eliminate variables from the equations to
derive a sequence of equivalent systems that are progressively easier to solve.

exmpl
x1 + 2x2 − 3x3 = 2

2x1 + 2x2 − 2x3 = 2
x1 + 5x2 − 8x3 = 6

(3.5)

x1 + 2x2 − 3x3 = 2
−2x2 + 4x3 = −2

3x2 − 5x3 = 4
(3.6)

x1 + 2x2 − 3x3 = 2
−2x2 + 4x3 = −2

x3 = 1
(3.7)
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All have the solution
x1 = −1, x2 = 3, x3 = 1

To transform (3.5) into (3.6) subtract multiples of row 1 from rows 2 and 3. To transform
(3.6) into (3.7) subtract a multiple of row 2 from row 3. To obtain the solution of the upper
triangular system (3.7), solve the third equation for x3, substitute this value into the second
equation and solve for x2. Thus

x3 = 1
(−2x2 = −2− 4x3 = −6)

x2 = 3
(x1 = 2− 2x2 + 3x3)
x1 = −1

In this example we have a sequence of linear systems

A(1)x = b(1) A(1) ≡ A, b(1) ≡ b

A(2)x = b(2)

A(3)x = b(3)

where, in this example,

A(1) =





1 2 −3
2 2 −2
1 5 −8



 b
(1) =





2
2
6





A(2) =





1 2 −3
0 −2 4
0 3 −5



 b(2) =





2
−2
4





Note that

A(1) =





1
2 1
1 0 1



A(2) and A(2) =





1
−2 1
−1 0 1



A(1) (3.8)

The gaps in the matrices linking A(1) and A(2) signify zeros, hence the matrices are lower
triangular. The transformation from A(1) to A(2) is therefore equivalent to multiplication
by a lower triangular matrix.

Continuing the example

A(3) =





1 2 −3
0 −2 4
0 0 1



 b(3) =





2
−2
1





with

A(2) =





1
0 1
0 − 3

2 1



A(3) and A(3) =





1
0 1
0 3

2 1



A(2)

These matrices

L(1) =





1
2 1
1 0 1



 and L(2) =





1
0 1
0 − 3

2 1




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are known as elementary matrices or elementary transformations. In both cases the coeffi-
cients in the lower triangular matrices are the multipliers used in the elimination. The final
system has an upper triangular matrix A(3) where

A(3) = L(2)L(1)A(1) ⇒ A(1) = L(1)−1
L(2)−1

A(3)

A(1) =





1
2 1
1 0 1



A(2)

=





1
2 1
1 0 1









1
0 1
0 − 3

2 1



A(3)

=





1
2 1
1 − 3

2 1



A(3)

Note





1
0 1
0 − 3

2 1









1
2 1
1 0 1



 6=





1
2 1
1 − 3

2 1



 and the order of the factors is im-

portant.

That is, a by-product of the elimination process to solve Ax = b has been to generate a
lower triangular matrix which we denote by L, in terms of the elementary matrices

L = L(1)−1
L(2)−1

is this example

L =





1
2 1
1 − 3

2 1





and an upper triangular matrix, usually denoted by U but sometimes by R such that A =
LU , in this example

U =





1 2 −3
−2 4

1




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Exercise 3.1

1. Verify that the elementary matrix L(j), that eliminates column j, can be written as

L(j) = I − vje
T
j

where ej is the j-th unit vector and vj is a vector such that vT
j ek = 0 for all k ≤ j.

2. Prove that L(j)−1
= I + vje

T
j .

3. Prove that if i ≤ j then
L(i)L(j) = I − vie

T
i − vje

T
j

and hence that if U = L(n−1) · · ·L(2)L(1)A then

L = I +

n−1∑

l=1

vle
T
l .

3.2 elimination algorithm

The basic form of Gauss Elimination is given in figure 3.1. At the k-th stage, we say that the

do k = 1 : N − 1
do i = k + 1 : N

mik = aik/akk

do j = k + 1 : N
aij = aij −mikakj

enddo j
bi = bi −mikbk

enddo i
enddo k

Figure 3.1: Gauss Elimination

term a
(k)
kk is the pivot. The computational cost can be determined by the number of flops

= ”floating point operations” needed for the computation

1 operation = 1 multiplication
= 1 addition
= 1 division

Ignoring the operations on the vector b, the computational cost, in terms of all arithmetic
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operations, is

N∑

k=1

N∑

i=k+1

(

(1 division) +

N∑

j=k+1

(1 multiplication + 1 addition)

)

(3.9)

there are many more multiplications and additions than there are divisions, so those terms
dominate. There are usually (almost) the same number of multiplications as additions.
From (3.9), the number of multiplications (or additions) is

N−1∑

k=1

N∑

i=k+1

(N − k) =
N−1∑

k=1

(N − k)2

=
N−1∑

k=1

k2

= N(N−1)(2N−1)
6

= N3

3 − N2

2 + N
6

For large N the N3

3 term dominates and we say that the computational cost ( work or
computer time) is proportional to N3 which is written as O(N3). The additional cost of the
operations involving components of b can be written as

N−1∑

i=1

( N∑

j=i+1

(1 multiplication + 1 addition)

)

so in terms of multiplications or additions we have

N−1∑

i=1

(N − i) = N(N−1)
2

= N2

2 − N
2

= O(N2)

The backward substitution can be written as in figure 3.2. The computational cost is

do i = N : 1
do j = i + 1 : N

bi = bi − aijxj

enddo j
xi = bi/aii

enddo i

Figure 3.2: Backward Substitution

1∑

i=N−1

(

(1 division) +

N∑

j=i+1

(1 multiplication + 1 addition)

)
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in terms of multiplications or additions, ignoring divisions, we have

1∑

i=N−1

(N − i) = N(N−1)
2

= N2

2 − N
2

= O(N2)

Hence the work in the elimination dominates.

3.3 alternative forms

The elimination algorithms are not unique. The order of the loops in the algorithm can be
changed so, for example, back-substitution could be reordered to access the matrix (in the
innermost loop) by columns, i.e. the order of the loops could be reversed so the the outer
loop involves the subscript j, as in figure 3.3.

do j = N : 1
xj := bj/ajj

do i = j − 1 : 1
bi := bi − aijxj

enddo i
enddo j

Figure 3.3: Backward Substitution by columns

An alternative form of elimination is to scale the pivot row first to give a unit diagonal.
This alternative form as shown in figure 3.4 can also be written in terms of elementary
matrix operations and the computational cost is unaltered. The elimination algorithm has
three nested loops so there are 6 permutations of the subscripts (assuming that the form of
the innermost loop is always aij = aij · · ·.
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do k = 1 : N
do j = k + 1 : N

akj = akj/akk

enddo j
bk = bk/akk

do j = k + 1 : N
do i = k + 1 : N

aij = aij − aikakj

enddo i
bj = bj − ajkbk

enddo j
enddo k

Figure 3.4: Alternative form of GE

Exercise 3.2

1. Verify that using the revised elimination, the elimination of column k can be written
as

A(k+1) = L(k)A(k)

where
L(k) = I − vkeT

k

where ek is the k-th unit vector and vk is a vector such that vT
k ej = 0 for all j < k.

2. What is the form of L(k)?.

3. Verify that this elimination corresponds to a factorisation A = LU where diag(U) = I
and diag(L) 6= I

3.4 augmented matrix notation*

We can define the N × (N + 1) matrix

(
A b

)
=











a11 · · · a1k · · · a1N b1

...
...

...
...

ai1 · · · aik · · · aiN bi

...
...

...
...

aN1 · · · aNk · · · aNN bN











within which we clearly use the notation ai,N+1 = bi i = 1, · · · , N and the elimination can
be written as in figure 3.5.

i.e. no special treatment for the right hand side vector b.
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do k = 1 : N − 1
do i = k + 1 : N

mik = aik/akk

do j = k + 1 : N + 1
aij = aij −mikakj

enddo j
enddo i

enddo k

Figure 3.5: Augmented Matrix form of GE

3.5 Crout Factorisation

If we can write A = LU , the product of a lower triangular matrix L and and upper triangular
matrix U then we can solve Ax = b i.e. L(Ux) = b as Ly = b then Ux = y. If the matrix U
has a unit diagonal while the diagonal of L varies, This is known as Crout Factorisation. If
it is assumed that the components of the matrix A, can be overwritten by the corresponding
components of L (aij := lij i > j) and U (aij := uij i ≤ j) . The symbol := is interpreted
as is over written by and is equivalent to an assignment statement in a computer code. This
replacement could also be written as A := (L − I) + U , where the matrix L− I has a zero
diagonal, it is not necessary to store the fixed unit diagonal of the lower triangular matrix
L.

3.6 Cholesky Factorisation

If the matrix A is symmetric then it is possible to construct a symmetric factorisation. If
the matrix A is symmetric and positive definite i.e. xT Ax > 0 for all x 6= 0 then there
exists a factorisation of the form A = LLT this is known as a Cholesky Factorisation. If
A is symmetric and nonsingular, but not necessarily positive definite, then it is possible to
construct a factorisation of the form A = LDLT where diag(L) = I and D is a diagonal
matrix. As with the LU factorisations, there exist inner-product forms, outer-product forms,
row oriented forms, column oriented forms,etc..

3.7 Computing an inverse*

If Gauss elimination is applied to a sequence of problems, viz

Ax1 = e1

...
Axi = ei

...
AxN = eN
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where the right hand sides are the columns of the unit matrix i.e.

I =
(

e1 · · · ei · · · eN

)

e1 =








1
0
...
0







· · · ei =















0
...
0
1
0
...
0















← ith position · · · eN =








0
...
0
1








The solution vectors are then the columns of the inverse i.e.

A−1 =
(

x1 · · · xi · · · xN

)

3.8 elimination with partial pivoting

In the elimination at the kth stage, we divide by the pivot akk. Clearly if akk = 0 the
algorithm breaks down such as when

A =





1 2 −3
2 4 1
−2 2 2



 b =





2
−6
0





In order to avoid a zero pivot at the kth stage, we search the pivot column (column k) below
the diagonal to find the component of maximum modulus (say apk then, if p 6= k interchange
rows p and k). At the kth stage we have a reduced matrix of the form

A =
















a11 · · · a1k · · · a1N

. . .
...

...
akk · · · akN

...
...

apk · · · apN

...
...

aNk · · · aNN
















Interchanging rows does not alter the solution of Ax = b and the search for the

max {|aik|, i = k, · · · , N}

does not require a great computational effort. A general purpose elimination algorithm
should always include partial pivoting.

Note that the pivot ratios aik, i > k, which are also the components of the lower triangular
factor L, all satisfy |aik| ≤ 1. Provided that the row interchanges on the right hand side are
carried out during the elimination (i.e. forward substitution) the backward substitution is
unaffected by the pivoting. Gauss Elimination with pivoting can be written as a sequence
of elementary matrix operations so that at the k-th stage:

A(k+1) = L(k)P (k)A(k)
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do k = 1 : N − 1
find p such that |apk| = max

k≤i≤N
|aik|

if p 6= k then
interchange apj with akj , j = k, · · · , N
interchange bp with bk

end if
do i = k + 1 : N

aik := aik/akk

do j = k + 1 : N
aij := aij − aikakj

enddo j
bi := bi − aikbk

enddo i
enddo k

Figure 3.6: elimination with partial pivoting

. The result of partial pivoting is to compute a factorisation such that PA = LU where P
is a permutation matrix.

Exercise 3.3

1. Verify that elimination can be written as

L(N−1)P (N−1) . . . L(1)P (1)A = U.

and that

L(N−1)P (N−1) . . . L(1)P (1) = L̃(N−1) . . . L̃(1)P (N−1) . . . P (1)

= L̃P

where L̃(j) are elementary transformations.

2. Hence show that L̃PA = U so PA = LU with L = L̃−1. Verify that L is lower
triangular.

3.9 pivoting for accuracy

The main purpose of partial pivoting (row interchanges) is not to avoid the breakdown of
the method because of a zero pivot but to avoid unnecessary loss of accuracy because of
small pivots and large pivot ratios.

28



Example 4 Using three digit arithmetic to solve Ax = b with

A =





−1.41 2 0
1 −1.41 1
0 2 −1.41



 b =





1
1
1





without pivoting

L =





1
−.709 1

0 200 1



 U =





−1.41 2 0
.0100 1

−201





which gives the ”solution” x =
(

.709 1.00 1.70
)T

. If partial pivoting is applied, then
at the second stage we interchange rows 2 and 3 to give

L =





1
0 1

−.709 .00500 1



 U =





−1.41 2 0
2 −1.41

1.01





which gives the solution x =
(

1.69 1.69 1.69
)T

which is correct, rounded to 3 figures.
Another view of the same phenomenon observes that, using 3 figure arithmetic, the ma-

trices

A =





−1.41 2 0
1 −1.41 1
0 2 −1.41



 and A + δA =





−1.41 2 0
1 −1.41 1
0 2 −1





lead to the same LU factors.
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Chapter 4

Nonlinear Equations

Taylor’s Series

In one dimension,

f(x + δ) = f(x) + 1
1!δf

′(x) + 1
2!δ

2f ′′(x) + 1
3!δ

3f ′′′(x) + · · ·

+ 1
n!δ

nf (n)(x) + · · ·

+ 1
(n+1)!δ

n+1f (n+1)(x + θδ),

for some 0 < θ < 1, i.e. the point ξ = x + θδ is an unknown point in the open interval
(x, x + δ) (assuming δ > 0). 1 In R

2

f(x + δx, y + δy) = f(x, y) + 1
1!

(

δx
∂
∂x + δy

∂
∂y

)

f(x, y) + · · ·

+ 1
2!

(

δ2
x

∂2

∂x2 + 2δxδy
∂2

∂x∂y + δ2
y

∂2

∂y2

)

f(x, y) + · · ·

+ 1
n!

(

δn
x

∂n

∂xn + · · ·+ δn
y

∂n

∂yn

)

f(x, y) + · · ·

+ 1
(n+1)!

(

δn
x

∂n

∂xn + · · ·+ δn
y

∂n

∂yn

)

f(ξ, η),

the point (ξ, η) is in the open set (x, x + δx)× (y, y + δy) (assuming δx, δy > 0).

1Note there are a number of different notations for derivatives, Newton (4 January 1643 31 March 1727)
was responsible for the ḟ(x) notation and the f ′ (x) notation is due to Lagrange (January 25, 1736 April

10, 1813), while Leibniz (July 1 1646 November 14, 1716) was responsible for the dy
dx

. In R
n there are even

more notational variations, mostly of a more recent origin. Assume that u = u(x1, . . . , xn) then the partial
derivatives w.r.t. xi (assuming xj , j 6= i are constant) can be denoted by ∂u

∂xi
, uxi or ∂xiu and the differential

operator can be denoted by ∂
∂xi

or ∂xi . A second derivative can be ∂2u
∂x2 , uxx or ∂xxu. The operator notation

is often extended to the multi-index notation, where for x = (x1, . . . , xn) and α = (α1, . . . , αn) with xi ∈ R

and αi non-negative integers,

∂α =
∂α1

∂x1
α1

· · · ∂αn

∂xn
αn
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4.1 Simple Iteration

The problem is to solve f(x) = 0, where f can be any nonlinear function, we denote the
desired (unknown) solution by x = x∗. To solve f(x) = 0 rewrite the equation in the form

x = G(x)

Then iterate as
x(n+1) = G(x(n)) n = 0, 1, . . .

assuming we have a starting value x0. This process is an example of iteration, any numerical
iteration reqires:

• An initial approximation, x0

• An update formula x(n+1) = G(x(n))

• A terminating condition, e.g. given a small parameter ǫ (=10−5 say) stop when
|x(n+1) − x(n)| ≤ ǫ

Example 5 Given the equation x− e−x = 0 we could use

x = e−x

or
x = 0.36x + 0.64e−x

or

x = x − x− e−x

1 + e−x
A special form known as Newton-Raphson (see later)

in each case the equation x = G(x) has the same solution as f(x) = 0. In each case the
iteration is started with x0 = 1.2 and the iteration is terminated when |x(n+1)−x(n)| < 10−14.
The results are given in table 4.1. Clearly some iterations work faster than others

If we take the final solution of the fastest iteration as the correct result x∗, then the
errors in the iterates e(n) = x(n) − x∗, are as shown in 4.2, it can be seen that the errors
in the first column (using x = e−x) reduce by a factor -0.57, in the second column (using
x = 0.36x + 0.64e−x) by a factor -0.003 and in the third column the errors are reducing
faster than linear.

4.1.1 analysis of convergence

From the Mean Value Theorem (M.V.T.)

G(x) −G(y) = (x− y) G′(ξ)

where ξ is a particular (but unknown) point between x and y so

G(x(n))−G(xn−1) = (x(n) − x(n−1)) G′(ξn)

where ξn is a particular (but unknown) point between x(n) and xn−1, but as f(x∗) = 0, it
follows that x∗ = G(x∗) so

x(n+1) − x∗ = G(x(n))−G(x∗)

= (x(n) − x∗) G′(ηn) (4.1)
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n x = e−x x = 0.36x + 0.64e−x x = x − x−e−x

1+e−x

0 1.20000000000000 1.20000000000000 1.20000000000000
1 0.30119421191220 0.62476429562381 0.50924547630216
2 0.73993405478361 0.56756321480851 0.56652610854838
3 0.47714537993889 0.56714207451609 0.56714322147124
4 0.62055230687888 0.56714329402333 0.56714329040978
5 0.53764740921430 0.56714329039905 0.56714329040978
6 0.58412083447184 0.56714329040982
7 0.55759586544701 0.56714329040978
8 0.57258397937492 0.56714329040978
9 0.56406601899719

10 0.56889123231067
· · ·

57 0.56714329040978
58 0.56714329040979

Table 4.1: Iterates

where in general ξn 6= ηn and are unknown. Assume that

|G′(x)| ≤ m (< 1) for all x

i.e. define m such that
m = max

x
|G′(x)| (4.2)

then the estimate of the convergence will be a good one if |G′| ≈ m, that is if the derivative
is approximately constant. If it is not possible to find a value m < 1 then we cannot prove
that the sequence of approximate values x(n), n = 0, 1, · · · converges to the solution x∗.
Combining the results (4.2) and (4.1)

|x(n+1) − x∗| ≤ m|x(n) − x∗| (4.3)

If we define the error in x(n), the n-th iterate, as

e(n) = x(n) − x∗

n x = e−x x = 0.36x + 0.64e−x x = x − x−e−x

1+e−x

0 6.32856709e-01 6.32856709e-01 6.32856709e-01
1 -2.65949078e-01 5.76210052e-02 -5.78978141e-02
2 1.72790764e-01 4.19924398e-04 -6.17181861e-04
3 -8.99979104e-02 -1.21589369e-06 -6.89385396e-08
4 5.34090164e-02 3.61354668e-09 -8.88178419e-16
5 -2.94958811e-02 -1.07384101e-11
6 1.69775440e-02 3.18634008e-14
7 -9.54742496e-03 -2.22044604e-16
8 5.44068896e-03
9 -3.07727141e-03

10 1.74794190e-03

Table 4.2: Errors
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then we can write (4.3) as
|e(n+1)| ≤ m|e(n)| (4.4)

This assumes exact arithmetic, if we include rounding errors, we must define the actual error
ẽ(n) in terms of x̃(n), the computed value of the n-th iterate, this leads to

|x̃(n+1) − x∗| ≤ m|x̃(n) − x∗|+ |En|

or
|ẽ(n+1)| ≤ m|ẽ(n)|+ |En|

Either way the error is only reducing if m < 1, the closer m is to 0 the faster the convergence.
In particular

|x(2) − x(1)| ≤ m|x(1) − x(0)|

|x(3) − x(2)| ≤ m|x(2) − x(1)| ≤ m2|x(1) − x(0)|

|x(n) − xn−1| ≤ mn−1|x(0) − x(0)|
so

|x(n) − x(0)| ≤ |x(n) − xn−1|+ . . . + |x(2) − x(1)|+ |x(1) − x(0)|
≤ mn−1|x(1) − x(0)|+ . . . + m|x(1) − x(0)|+ |x(1) − x(0)|
= (mp−1 + . . . + m + 1)|x(1) − x(0)| (4.5)

It is possible to sum the power series for

mn−1 + · · ·+ m + 1 =
1−mn

1−m

and so

|x(n) − x(0)| ≤ 1−mn

1−m
|x(1) − x(0)| (4.6)

Let n→∞ then mn → 0, if 0 < m < 1 the iteration process converges,

1 + m + m2 + · · · = 1

1−m

and it follows that as n→∞ and x(n) → x∗ from (4.6)

|x∗ − x(0)| ≤ 1

1−m
|x(1) − x(0)|

The purpose of this analysis is to estimate the unknown errors e(n) in terms of the known
displacements (also known as corrections), defined as δ(n) = x(n+1) − x(n), so in general

|x∗ − x(n)| ≤ 1

1−m
|x(n+1) − x(n)| (4.7)

|e(n)| ≤ 1

1−m
|δ(n)| (4.8)

and

|x∗ − x(n+1)| ≤ m

1−m
|x(n+1) − x(n)| (4.9)

|e(n+1)| ≤ m

1−m
|δ(n)| (4.10)
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(with exact arithmetic). We can use any of either (4.7) or (4.9) to estimate the unknown
errors e(n) in terms of the known displacements δ(n). Note that with (4.7) we are using the
latest value x(n+1) to estimate the error in the previous iterate x(n). If the rounding errors
are included and if

|En|, |E(n+1)|, etc. < E

the absolute error bound by an analogous algebra is

|x∗ − x̃(n)| ≤ 1

1−m
|x̃(n+1) − x̃(n)| +

E

1−m

If |G′| ≪ 1 the convergence is fast and if |G′| ≈ 1 the convergence is very slow.

Example 6 (continued) For the iteration x − e−x = 0, the solution is x∗ ≈ 0.567, then
in the simple iteration

x(n+1) = e−x(n)

G(x) = e−x and G′(x) = −e−x

so
|G′(x∗)| = x∗ ≈ .567

and the error is (approximately) halved at each iteration. If we take

x = x + θ(x − e−x)

and choose a constant θ such that G′ ≈ 0 then

G′ ≈ 1 + θ(1 + e−x∗
)

≈ 1 + θ(1 + 0.567)
≈ 0

so

θ = − 1

1.567
≈ −0.64

so
G(x) = x− 0.64(x− e−x)

= 0.36x + 0.64e−x

If we allow a variable θ such that G′(x) = 0 then θ = − 1
f ′ = − 1

1+e−x and we have a new
method, known as the Newton-Raphson method, for which the convergence to the solution is
much faster.

4.1.2 Order of convergence

If lim
n→∞

x(n) = x∗ and there exists a constant K 6= 0 such that

lim
n→∞

|e(n+1)|
|e(n)|p = K

then we say that the order of convergence is p,

• p = 1 linear convergence (first order) and we must have K < 1

• p = 2 quadratic convergence, no restriction on the value of K

• p = 3 cubic convergence

K is known as the asymptotic error constant. From (4.4) it follows that the simple iteration
has linear convergence and the value of the asymptotic error constant is m.
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x0x(1)x(2)

f(x0)

f(x1)

Figure 4.1: The Newton-Raphson Method

4.2 Newton-Raphson

The tangent to the curve y = f(x) at any point x = X is

y = f(X) + (x−X)f ′(X)

this is obtained by truncating the Taylor series

f(x) = f(X) + (x −X)f ′(X) + . . .

We can approximate the root x = x∗ where f(x) = 0 by the root of the tangent line, that
is where

0 = y = f(X) + (x−X)f ′(X)

which is

x = X − f(X)

f ′(X)

We can use this process to generate a sequence {x(n)} as

x(n+1) = x(n) − f(x(n))

f ′(x(n))
n = 0, 1, 2, . . .

assuming we have a starting value x0

We compute the sequence in the form, given x0

δ(n) = − f(x(n))

f ′(x(n))
x(n+1) = x(n) + δ(n)






n = 0, 1, 2, . . .
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Exercise 4.1 In molecular dynamics simulations in R
3, the strengths of the interactions

depend on the inverse of the distance between particles, thus as the simulation proceeds,
there are a great many computations of the form d−1/2. The value of d can be determined
quickly, but on some modern processors used in parallel machines the accurate inverse
square root is comparatively slow, although it is possible to determine an approximate so-
lution. Construct a Newton-Raphson iteration for finding the inverse square root. Use you
algorithm to determine 130−1/2 given the solution is near 0.1!

4.3 Error Analysis

Write
ẽ(n) = x̃(n) − x∗

as the error in the computed n-th iterate, write En as the error in computing the update

x(n+1) = x(n) − f(x(n))

f ′(x(n))

so

x̃(n+1) = x̃(n) − f ′(x̃(n))

f(x̃(n))
+ En

From Taylor’s series

f(x̃(n)) = f(x∗) + (x̃(n) − x∗)f ′(x∗) + 1
2 (x̃(n) − x∗)2f ′′(x∗) + . . .

= 0 + ẽ(n)f ′(x∗) + ẽ(n)2 1
2f ′′(x∗) + . . .

f ′(x̃(n)) = f ′(x∗) + (x̃(n) − x∗)f ′′(x∗) + 1
2 (x̃(n) − x∗)2f ′′′(x∗) + . . .

If x̃(n) is close to x∗ then f ′(x̃(n)) ≈ f ′(x∗) so (provided that f ′(x∗) 6= 0)

x(n+1) = x(n) − e(n)f ′(x∗) + e(n)2 1
2f ′′(x∗) + . . .

f ′(x∗) + e(n)f ′′(x∗) + . . .

e(n+1) = e(n) − e(n)f ′(x∗) + e(n)2 1
2f ′′(x∗) + . . .

f ′(x∗) + e(n)f ′′(x∗) + . . .

≈
e(n)

(
f ′(x∗) + e(n)f ′′(x∗)

)
−
(

e(n)f ′(x∗) + e(n)2 1
2f ′′(x∗)

)

f ′(x∗) + e(n)f ′′(x∗)

= e(n)2 1
2

f ′′(x∗)
f ′(x∗) +O(e(n)3)

also

x̃(n+1) = x̃(n) − e(n)f ′(x∗) + e(n)2 1
2f ′′(x∗) + . . .

f ′(x∗) + e(n)f ′′(x∗) + . . .
+ En

ẽ(n+1) =

(
1

2

f ′′(x∗)

f ′(x∗)

)

ẽ(n)2 + En +O(ẽ(n)3)

≈ Kẽ(n)2 + En (4.11)
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x0x(1)x(2)x(1)

x∗

Figure 4.2: The Secant Method

Assuming that that rounding error En is much smaller that the truncation error we get

ẽ(n+1) ≈ Kẽ(n)2

where K =
(

1
2

f ′′(x∗)
f ′(x∗)

)

is a constant and we say that the Newton-Raphson method converges

quadratically. Note that if ẽ(n) ≈ 10s then ẽ(n+1) ≈ 102s so that the number of digits correct
(approximately) doubles at each iteration. We do not know the true solution x∗ so it is
necessary to estimate the errors using the differences between the iterates. If we assume
that the iteration converges then from (4.11) it follows that |e(n+1)| ≪ |e(n)| and so

|e(n)| = |x(n) − x∗| = |x(n) − x(n+1) + x(n+1) − x∗|
< |x(n) − x(n+1)|+ |x(n+1) − x∗|
≈ |x(n) − x(n+1)| = |δ(n)| (4.12)

Note in figure(4.1), where f ′, f ′′ > 0 it follows from (4.11) that e(n) > 0. Note in (4.12) the
error in x(n) is estimated using the more accurate approximation x(n+1).

4.4 The Secant Method

The Newton-Raphson method required derivatives and the function was approximated by a
tangent. In the secant method the function is interpolated locally using two function values.
So

p(x) = f(x(n)) + (x− x(n))
f(x(n))− f(xn−1)

x(n) − xn−1

i.e. we use the replacement

f ′(x(n)) ≈ f(x(n))− f(xn−1)

x(n) − xn−1
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The value of x(n+1) is then the solution of p(x) = 0 so

x(n+1) = x(n) − f(x(n))
x(n) − xn−1

f(x(n))− f(xn−1)

computed as, given x0 and x1,

δ(n) = −f(x(n))
x(n) − xn−1

f(x(n))− f(xn−1)

x(n+1) = x(n) + δ(n)







n = 1, 2, . . .

If we assume that the method converges and that near the solution f ′(x(n)) ≈ f ′(x∗) then
we can generate estimates for the error e(n) = x(n)−x∗ we can rewrite the secant update as

x(n+1) = x(n) − f(x(n))
x(n) − xn−1

f(x(n))− f(xn−1)

=
xn−1f(x(n))− x(n)f(xn−1)

f(x(n))− f(xn−1)

then
e(n+1) = x(n+1) − x∗

=
xn−1f(x(n))− x(n)f(xn−1)

f(x(n))− f(xn−1)
− x∗ f(x(n))− f(xn−1)

f(x(n))− f(xn−1)

=
en−1f(x(n))− e(n)f(xn−1)

f(x(n))− f(xn−1)

but

f(x(n)) = f(x∗) + e(n)f ′(x∗) + e(n)2

2 f ′′(x∗) + . . .

f(xn−1) = f(x∗) + en−1f ′(x∗) + en−12

2 f ′′(x∗) + . . .

where f(x∗) = 0 so

e(n+1) =
(en−1e(n)2 − e(n)en−12

)1
2f ′′(x∗) + . . .

(e(n) − en−1)f ′(x∗) + . . .

≈ e(n)en−1 1
2

f ′′(x∗)
f ′(x∗)

For Newton-Raphson we had

e(n+1) = e(n) − f(x(n))

f ′(x(n))

≈ e(n) − f(x∗) + e(n)f ′(x∗) + e(n)2

2 f ′′(x∗)

f ′(x∗)

≈ e(n)2 1
2

f ′′(x∗)
f ′(x∗)
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If we assume that the secant method is order then then

e(n+1) ≈ Ke(n)p (4.13)

but we have
e(n+1) ≈ ke(n)en−1 (4.14)

from (4.13)
e(n+1) ≈ K

(
Ken−1p)p

and from (4.14)
e(n+1) ≈ k

(
Ken−1p)

en−1

comparing coefficients gives
p2 = p + 1

and
Kp+1 = kK

so

p =
1 +
√

5

2

Again we can estimate the unknown errors by writing

|e(n)| = |x(n) − x∗| = |x(n) − x(n+1) + x(n+1) − x∗|

< |x(n) − x(n+1)|+ |x(n+1) − x∗|

≈ |x(n) − x(n+1)| = |δ(n)|

assuming once again that |e(n+1)| ≪ |e(n)| and using the value of x(n+1) in the estimate of
the error in x(n).

4.5 Nonlinear Systems

To solve the coupled pair of equations

f(x, y) = 0
h(x, y) = 0

(4.15)

where we denote the desired solution by x = x∗, y = y∗.

4.5.1 Simple Iteration

The system (4.15) must be rewritten in the form

x = F (x, y)
y = H(x, y)

(4.16)

Then given a pair of initial approximations x(0) and y(0) we iterate using (4.16) as

x(n+1) = F (x(n), y(n))

y(n+1) = H(x(n), y(n))
n = 0, 1, · · · (4.17)
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In matrix notation if we write

x =

(
x
y

)

and G(x) =

(
F (x, y)
H(x, y)

)

we have the iteration is
x(n+1) = G(x(n)) (4.18)

For a single equation x(n+1) = G(x(n)) the iteration converges if |dG
dx | < 1, we need an

equivalent condition for the iteration (4.18). The Taylor series in two variables gives:

F (x, y) = F (x∗, y∗) + (x− x∗)
∂

∂x
F (x∗, y∗) + (y − y∗)

∂

∂y
F (x∗, y∗) + · · · (4.19)

since x∗ = F (x∗, y∗) it follows setting x = x(n) and y = y(n) in (4.17) using (4.19) that

x(n+1) = x∗ + (x(n) − x∗)
∂

∂x
F (x∗, y∗) + (y(n) − y∗)

∂

∂y
F (x∗, y∗) + · · ·

x(n+1) − x∗ ≈ (x(n) − x∗)
∂

∂x
F (x∗, y∗) + (y(n) − y∗)

∂

∂y
F (x∗, y∗) (4.20)

similarly

y(n+1) − y∗ ≈ (x(n) − x∗)
∂

∂x
H(x∗, y∗) + (y(n) − y∗)

∂

∂y
H(x∗, y∗) (4.21)

Writing (4.20) and (4.21) gives

(
x(n+1) − x∗

y(n+1) − y∗

)

≈
(

∂
∂xF (x∗, y∗) ∂

∂y F (x∗, y∗)
∂
∂xH(x∗, y∗) ∂

∂y H(x∗, y∗)

)(
x(n) − x∗

y(n) − y∗

)

(4.22)

this is equivalent to the single variable error equation

x(n+1) − x∗ ≈ d

dx
G(x∗)(x(n) − x∗) (4.23)

In order to provide an error bound (4.23) was replaced by

|x(n+1) − x∗| ≤ m|x(n) − x∗| (4.24)

where m = max
x
|dG

dx
|. To construct an analogous bound based on (4.22) it is necessary to

use matrix norms so that if the matrix error equation is

e(n+1) = Ae(n)

then
‖e(n+1)‖ ≤ ‖A‖ ‖e(n)‖

From (4.22), the matrices are

A =

(
∂
∂xF (x, y) ∂

∂y F (x, y)
∂
∂xH(x, y) ∂

∂y H(x, y)

)

with

e(n+1) =

(
x(n+1) − x∗

y(n+1) − y∗

)

and e(n) =

(
x(n) − x∗

y(n) − y∗

)
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It then follows that the method converges if

m = max
x,y
‖A‖ < 1

where x and y are evaluated ”near” the solution x = x∗, y = y∗. If we define the displace-
ment as

δδδ(n) =

(
x(n+1) − x(n)

y(n+1) − y(n)

)

we can estimate the error norm ‖e(n)‖ in terms of the displacement norm ‖δδδ(n)‖ as for (4.7).

4.5.2 Newton-Raphson Method

To find the root of a single equation f(x) = 0, the Newton-Raphson method replaced the
function f(x) by a linear approximation and at each iteration found the root of the tangent
to the curve y = f(x). For a pair of equations the Taylor series, at x = X , y = Y are

f(x, y) = f(X, Y ) + (x −X) ∂
∂xf(X, Y ) + (y − Y ) ∂

∂y f(X, Y ) + · · ·
h(x, y) = h(X, Y ) + (x−X) ∂

∂xh(X, Y ) + (y − Y ) ∂
∂yh(X, Y ) + · · ·

We can approximate the root (x∗, y∗) where f(x, y) = 0 and h(x, y) = 0 by the root of the
local linear approximations (tangents), that is where

0 = f(X, Y ) + (x−X) ∂
∂xf(X, Y ) + (y − Y ) ∂

∂y f(X, Y )

0 = h(X, Y ) + (x−X) ∂
∂xh(X, Y ) + (y − Y ) ∂

∂y h(X, Y )

which can be written in matrix notation as

0 = f (X) + J(X)(x−X)

where x = (x, y)T , X = (X, Y )T , f(X) = (f(X, Y ), h(X, Y ))T and

J(X) =






∂
∂xf(X, Y ) ∂

∂y f(X, Y )

∂
∂xh(X, Y ) ∂

∂y h(X, Y )






The matrix of partial derivatives, denoted by J(X) is known as the Jacobian Matrix. The
improved approximation to the solution can then be written as

x = X − J(X)−1f(X)

So if X = x(0), the initial approximation, then the improved approximation x(1) is given by

J(x(0))(x(1) − x(0)) = −f(x(0))

or
J(x(0))δδδ(0) = −f(x(0)) Solve for δδδ(0)

x(1) = x(0) + δδδ(0)

so in general the Newton-Raphson method can be written as

J(x(n))δδδ(n) = −f(x(n)) Solve for δδδ(n)

x(n+1) = x(n) + δδδ(n)







n = 0, 1, 2, . . .
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where x(n) =

(
x(n)

y(n)

)

, f(x(n)) =

(
f(x(n), y(n))

h(x(n), y(n))

)

, etc.. This is the solution of a system

of simultaneous linear equations and so the solution should be by an efficient technique
such as Gauss Elimination and not be explicit matrix inversion. Newton-Raphson converges
quadratically for systems so that

‖e(n+1)‖ = O
(

‖e(n)‖2
)

43



44



Chapter 5

Numerical Solution of Ordinary
Differential Equations

5.1 Introduction

A typical differential equation has infinitely many solutions, we apply a numerical method
to find the solution of a well posed problem with a unique solution. In figure 5.1 for example
a few of the solution curves for the simple differential equation dy

dt = t + y are illustrated.

We frequently use the notation y′ ≡ dy
dt . The first type of problem we consider is an initial

−2 −1.5 −1 −0.5 0 0.5 1
−1

0

1

2

3

4

5

6

7
y’=t+y

t

y

Figure 5.1: Solutions of dy
dt = t + y

value problem that consists of a differential equation together with additional conditions
that restrict the solution set to a single function. For example:

• First order problems:

dy

dt
= F (t, y) t ≥ a y(a) = c
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y(a) = c is the initial condition. Hence in figure 5.1 we might specify the initial
condition y(0) = 1, then there is exactly one solution curve.

• Second order problems:

d2w

dt2
= f(t, w, w′) t ≥ a

{
w(a) = c
w′(a) = d

(5.1)

usually we write y′′ ≡ d2y
dt2

• Systems of first order problems:

dy

dt
= f(t, w, z)

dz

dt
= g(t, w, z)







t ≥ a







w(a) = c

z(a) = d

(5.2)

We shall not consider partial differential equations such as

∂u

∂t
=

∂2u

∂x2

in this chapter.

Theorem 1 Given to differential equation

y′ = F (t, y), t > t0

such that y(t0) = y0

Assume that the function F is Lipschitz continuous, that is there exists a constant L > 0
such that

|F (t, y)− F (t, ỹ)| ≤ L|y − ỹ|
then the two solutions y and ỹ subject to the initial conditions y(t0) = y0 and ỹ(t0) = ỹ0

satisfy

|y(t)− ỹ(t)| ≤ eL(t− t0)|y0 − ỹ0|
and it can be shown that a unique solution exists.

5.2 Numerical methods for 1st order systems

All the methods discussed will be defined for scalar problems of the form

y′ = F (t, y) t ≥ a y(a) = c

but can be applied to 1st order systems written in matrix notation as

y′ = F (t, y) t ≥ a y(a) = c

where for a system written as (5.2),

y =

(
w
z

)

y′ =

(
w′

z′

)

F (t, y) =

(
f(t, w, z)
g(t, w, z)

)

c =

(
c
d

)
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Higher order equations such as (5.1), can be written as first order systems. For example if
we define z = y′ (so that y′′ = z′) then

y =

(
w
w′

)

y′ =

(
w′

w′′

)

F (x, y) =

(
z

f(t, w, z)

)

c =

(
c
d

)

So a numerical method defined for a scalar 1st order equation can be used for a 1st order
system and hence for higher order problems (and even systems of higher order problems).

The only methods considered for initial value problems are step-by-step methods. The
original problem in terms of a continuous function y(t) for all t ≥ a, is replaced by a numerical
problem in terms of a sequence of discrete values Yn at the mesh points a = t0 < t1 < t2 < . . .
such that Yn ≈ y(tn). To begin with, assume that tn+1 − tn = h, known as the step length
is constant.

5.3 Forward, backward and central differences

A forward difference is an expression of the form

D+f(x) = f(x + h)− f(x).

A backward difference arises when h is replaced by −h:

D−f(x) = f(x)− f(x− h).

Finally, the central difference is the average of the forward and backward differences. It is
given by

D0f(x) =
D+f(x) + D−f(x)

2
=

f(x + h)− f(x− h)

2
.

The derivative of a function f at a point x is defined by the limit

f ′(x) = lim
h→0

f(x + h)− f(x)

h
.

Assuming that f is continuously differentiable, it is possible to estimate the truncation error
using Taylor’s series1

f(x) = f(a) +
f ′(a)

1!
(x− a) +

f (2)(a)

2!
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n + Rn

The Lagrange form of the remainder term states that there exists a number ξ between a
and x such that

Rn =
f (n+1)(ξ)

(n + 1)!
(x − a)n+1.

Then
D+f(x)

h
− f ′(x) = O(h)

D−f(x)

h
− f ′(x) = O(h)

1Brook Taylor (August 18, 1685 - November 30, 1731), although the result was first discovered in 1671
by James Gregory
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and
D0f(x)

h
− f ′(x) = O(h2)

Similarly the central difference approximation of the second derivative of f is

f ′′(x) ≈ D+D−f(x)

h2
=

f(x + h)− 2f(x) + f(x− h)

h2
.

and

f ′′(x) − D+D−f(x)

h2
= O(h2)

5.4 Euler’s Method

The simplest method is to replace y′(t) by a forward divided difference, thus

y′(t) ≈ y(t + h)− y(t)

h

so if t = tn, then t + h = tn+1, y(x) ≈ Yn, y(t + h) ≈ Yn+1 and y′(t) = F (t, y) ≈ F (tn, Yn)
which all leads to

1

h
(Yn+1 − Yn) = F (tn, Yn)

or
Yn+1 = Yn + hF (tn, Yn)
tn+1 = tn + h

n = 0, 1, 2, . . .

with t0 = a and Y0 = c. Euler’s method approximates the gradient y′(t) by a tangent to the
solution curve through y = Yn at t = tn as in figure 5.2(a), this leads to a point y = Yn+1

at t = tn+1 that will, in general, be on a different solution curve. The next step of Euler’s
method uses the tangent of this second solution curve to generate a point y = Yn+2 at
t = tn+2. At step n there is a local error which is the difference between the solution curves
through y = Yn at t = tn and through y = Yn+1 evaluated at t = tn+1. The global error is
the combined effect of all the local errors as illustrated in figure 5.2(b).
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(b) Two steps

Figure 5.2: Euler’s Method
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5.5 error

To solve y′ = t + y subject to y(0) = 1 by Euler’s Method

Yn+1 = Yn + h F (tn, Yn) n = 0, 1, . . .

where tn = nh and for this problem F (t, y) = t + y. The exact solution is y(t) = 2et− t− 1.
The numerical solution with h = 0.1 is:

n tn Yn F (tn, Yn) y(tn)
0 0.0 1.0 1.0 1.0
1 0.1 1.1 1.2 1.1103
2 0.2 1.2200 1.4200 1.2428
3 0.3 1.3620 1.6620 1.3997
4 0.4 1.5282 1.9282 1.5836
5 0.5 1.7210 2.2210 1.7974
6 0.6 1.9431 2.5431 2.0442
7 0.7 2.1974 2.8974 2.3275
8 0.8 2.4872 3.2872 2.6511

Estimate of y(0.8) using the numerical solution Y (0.8) with different values of h:

h n Y (t) Error
0.1 8 2.48717762 0.16390424
0.01 80 2.63343043 0.01765142
0.001 800 2.64930297 0.00177889
0.0001 8000 2.65090383 0.00017803

We introduce the alternative notation Y (t) for the numerical solution at the fixed value
of t (using steps of size h) in order to emphasise the dependence on the value of t rather
than the value of n the number of steps needed. In the table above, and in other examples,
we consider the solution for a fixed value of t and let h get smaller. As nh is fixed if t is
fixed, this means that n must increase as h decreases, but when discussing the error it is the
value of h that is important.

It is possible to prove that, for Euler’s method, the global error, y(t)−Y (t), varies linearly
as h, for all problems, not just for simple linear problems as in the example above. Expand
y(tn+1) by Taylor’s series about tn then

y(tn+1) = y(tn + h) = y(tn) + hy′(tn) +
h2

2
y′′(tn) + . . .

where y′(tn) = F (tn, y(tn)), so

y(tn+1) = y(tn) + hF (tn, y(tn)) +
h2

2
y′′(tn) + . . .

and
Yn+1 = Yn + h F (tn, Yn) (5.3)

To determine the local truncation error (l.t.e.) let Yn = y(tn) = yn then

y(tn+1) = yn + hF (tn, yn) + h2

2 y′′(tn) +O(h3)
Yn+1 = yn + hF (tn, yn)
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and so

y(tn+1)− Yn+1 =
h2

2
y′′(tn) +O(h3)

It is possible to truncate the power series (using the mean value theorem) and write it
with a finite remainder term so that, for example,

y(tn+1) = y(tn) + hF (tn, y(tn)) +
h2

2
y′′(ξ) (5.4)

where ξ is a particular (but unknown) point between tn+1 and tn. To estimate the global
error we have to assume that the solution y(t) is continuous and smooth so we can assume
that for some (sufficiently large) value M

|y′′(ξ)| ≤ M for all ξ

and that for some (sufficiently large) value L

| ∂
∂y

f(x, y)| ≤ L for all x, y

The global error is defined as
en = y(tn)− Yn

and so from (5.3) and (5.4)

en+1 = en + h (F (tn, y(tn))− F (tn, Yn)) +
h2

2
y′′(ξ)

and then by the mean value theorem

en+1 = en + hen
∂

∂y
f(x, η) +

h2

2
y′′(ξ)

where η is another particular (but unknown) point this time between the values of y(tn) and
yn. Hence taking absolute values and applying the smoothness assumptions

|en+1| ≤ |en|+ hL|en|+ h2

2 M

= (1 + hL)|en|+ h2

2 M

Using the binomial theorem we can sum the terms and, assuming that e0 = y(t0)− Y0 = 0,
we get

|en+1| ≤
hM

2L
eL(tn+1−t0)

so that in general

|Y (t)− y(t)| ≤ hM

2L
eL(t−t0)

hence the error in computing to a fixed point t varies linearly with h (if the solution is
sufficiently smooth). This bound involving a Lipschitz constant L is similar to the stability
result in the proof of a unique solution to the initial value problem (see theorem 1).

The error is a power series in h and the leading term is h2 so the l.t.e. is O(h2) and the
method is first order accurate. If l.t.e. is O(hp) then the method is said to be accurate to
order p− 1. The l.t.e. is the additional new error made at each step assuming that there is
no error in the solution so far.
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Definition 2 Truncation Error: The truncation error is defined by substituting the solution
of the differential equation y′ = F (t, y) into the difference equation Yn+1 = Fk(tn, Yn) then
the approximation is accurate of order q if

{ |y(tn+1)− Fk(tn, y(tn))| ≤ d(tn)hq+1, tn = nh,

|y(tj)− Yj | ≤ cjh
q.

(5.5)

If q > 0 the approximation is said to be consistent.

5.6 Stability

Example 7 Instability: Given
y′(t) = F (t, y(t))

it follows that
∫ b

a

y′(t)dt =

∫ b

a

F (t, y(t))dt

so

y(b)− y(a) =

∫ b

a

F (t, y(t))dt

We can then construct new numerical methods for ode’s using quadrature formulae! For ex-
ample, as we only evaluate at integer multiples of h, using the Mid-Point Rule for evaluating
an integral over two step-lengths (b = tn+1, a = tn−1) would give:

y(tn+1)− y(tn−1) ≈ 2hF (tn, y(tn))

leads to the formula

Yn+1 = Yn−1 + 2h F (tn, Yn) tn = nh; n = 1, 2 . . .

This formula is usually known as the Leapfrog Method

• Euler’s Method: l.t.e. is O(h2)

• The Leapfrog Method: l.t.e. is O(h3)

y(tn+1) = y(tn) + hF (tn, y(tn)) + h2

2 y′′(tn) + h3

6 y′′′(tn) + · · ·

y(tn−1) = y(tn)− hF (tn, y(tn)) + h2

2 y′′(tn)− h3

6 y′′′(tn) + · · ·

y(tn+1) = y(tn−1) + 2hF (tn, y(tn)) + h3

3 y′′′(tn) + . . .

l.t.e. y(tn+1)− Yn+1 = O(h3)

To solve y′ = −2y + 1 subject to y(0) = 1 by where tn = nh and for this problem F (t, y) =
−2y + 1. The exact solution is y(t) = 0.5(e−2t + 1) with the given initial condition. As
can be seem from figure 5.3, all solutions to the differential must decay, because the solution
is a negative exponential. The numerical solution with the Leapfrog Method is compared
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Figure 5.3: Solutions of dy
dt = −2y + 1

below with the results using the Euler method, Leapfrog is a 2-step method so it needs two
initial conditions and we take the second condition from the exact solution in this example
Y1 = y(h).

tn y(tn) Euler Leapfrog
0 1.00000 1.00000 1.00000
0.03125 0.9697065 0.96875 0.9697065
0.0625 0.9412484 0.9394531 0.9412866
0.09375 0.9145145 0.9119873 0.9145456
0.125 0.8894003 0.8862380 0.8894684
0.15625 0.8658078 0.8620982 0.8658621
0.1875 0.8436446 0.8394670 0.8437357
0.21875 0.8228242 0.8182503 0.8228951
0.25 0.8032653 0.7983597 0.8033738
0.28125 0.7848914 0.7797122 0.7849734
0.3125 0.7676307 0.7622302 0.7677521
0.34375 0.7514157 0.7458408 0.7515044

The solutions seems to be developing satisfactorily, but if the computation is continued:

tn y(tn) Euler Leapfrog
3.75 0.50027 0.50021 0.517434
3.78125 0.50025 0.50020 0.481999
3.8125 0.500234 0.50019 0.519684
3.84375 0.50022 0.50017 0.479539
3.875 0.50021 0.500167 0.52224
3.90625 0.50020 0.500156 0.47675
3.9375 0.50019 0.500147 0.52515
3.97825 0.500178 0.500138 0.47362
4.0 0.500168 0.500129 0.52844

The solution using the Leapfrog Method is clearly wrong and getting worse, the behaviour of
the solutions is illustrated in figure 5.4. If the time step h is reduced then the solution may
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Figure 5.4: Instability of Leapfrog Method

appear better at first, but eventually the solution using Leapfrog Method will become unstable.

5.6.1 Conditional Instability

Another example is to solve y′ = −10y subject to y(0) = 1 by Euler’s Method, so F (tn, Yn) =
−10Yn and

Yn+1 = (1 − 10h)Yn n = 0, 1, . . .

with Y0 = 1 this gives
Yn = (1 − 10h)n

and the solution is
h 0.5 0.25 0.2 0.1 0.05
Y0 1 1 1 1 1
Y1 −4 −1.5 −1 0 0.5
Y2 16 2.25 1 0 0.25
Y3 −64 −3.375 −1 0 0.125

The approximation to y(1) = 4.5 10−05 for different values of h is

h 0.5 0.25 0.2 0.1 0.05
n 2 4 5 10 20

Y (1) 16 5.0625 −1 0 9.8 10−04

The true solution is y(t) = e−10t but the numerical solution is only decreasing for h ≤ 0.1!

5.6.2 Analysis of Stability

Theorem 3 Convergence: Let y be a solution of the differential equation for which (5.5)
holds, and Y be a solution of the difference approximation for which stability holds then

‖y(t)− Y (t)‖ = O(h)q

and q > 0 the method is convergent.
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To study the stability of a numerical method, apply the method to the test equation

y′ = −λy

where λ is a positive constant. All solutions of this equation are decreasing exponential
functions of the form

y(t) = Ae−λt

where A is a constant. A good numerical method should also generate solutions that are
decreasing functions. A method is said to be stable if the solutions decrease for all possible
initial conditions. Applying Euler’s method to the test equation (F (t, y) = −λy) we get

Yn+1 = Yn + h F (tn, Yn)
= Yn − h λYn

= (1 − λh) Yn

If |1 − λh| < 1 then Yn+1 < Yn and the solution is decreasing, so the method is stable if
|1− λh| < 1 that is if

hλ < 2.

As λ is fixed this condition is a restriction on the step length h and is usually written as

h <
2

λ
. (5.6)

The more rapid the decay of the solution (the greater the value of λ), the smaller the
step length h. As stability imposes are condition on the step length, we say that the
method is conditionally stable. To apply the 2-step Leapfrog Method to the test equation
(y′ = −λy, λ > 0) we assume solution has form Yn = anY0

Yn+1 = Yn−1 + 2h f(tn, Yn)

an+1Y0 = an−1Y0 − 2h λanY0

a2 = 1− λh a

Solutions of a2 +2λha−1 = 0 are a = −λh±
√

1 + λ2h2. The Leapfrog Method rule always
generates an increasing solution |a| > 1 and is said to be unconditionally unstable (and
therefore useless).

5.6.3 Implicit Methods

The condition for stability (5.6) can place a severe restriction of the step-size h if the λ is
large, even though the solution might be smooth and the l.t.e. is very small. In order to
remove this restriction on the step-length, it is necessary to condition implicit methods. for
example the Backward Euler Method

Yn+1 = Yn + hF (tn+1, Yn+1)

has the same local truncation error as the (Forward) Euler Method, but in general it defines
a nonlinear equation in Yn+1 which can only be solved by iteration. Thus the work at each
time-step is much greater than for the explicit forward Euler method. The only reason for
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considering this more complicated version is because of its stability properties. Applying
Backward Euler to the test equation (f(t, y) = −λy) we get

Yn+1 = Yn + h F (tn+1, Yn+1)

= Yn − h λYn+1

(1 + λh) Yn+1 = Yn

Yn+1 =
1

1 + λh
Yn

As | 1

1 + λh
| < 1 for all λ > 0 we say the method is unconditionally stable The Backward

Euler solution to y′ = −10y starting from Y0 = y(0) = 1

h 0.5 0.25 0.2 0.1 0.05
Y1 0.16667 0.28571 0.33333 0.5 0.66667
Y2 0.02778 0.08163 0.11111 0.25 0.44444
Y3 0.00462 0.02332 0.03704 0.125 0.29629
Y4 0.00077 0.00666 0.01235 0.0625 0.19753

The approximation to y(1) = 4.5 10−05 is

h 0.5 0.25 0.2 0.1 0.05
n 2 4 5 10 20

Y (1) 0.02778 0.00666 0.00411 0.00098 0.00030

Approximating the integral

y(b)− y(a) =

∫ b

a

F (t, y(t))dt

using the Trapezoidal (Trapezium) Rule for numerical integration

y(tn+1)− y(tn) ≈ h

2
(F (tn, y(tn)) + F (tn+1, y(tn+1)))

leads to the formula

Yn+1 = Yn +
h

2
(F (tn, Yn) + F (tn+1, Yn+1)) n = 0, 1, . . . (5.7)

This formula is also known as the Trapezium Rule. If we apply this to the test equation we
get

Yn+1 = Yn +
h

2
(−λYn − λYn+1)

so

(1 + λ
h

2
)Yn+1 = (1− λ

h

2
)Yn

so

Yn+1 =
(1− λh

2 )

(1 + λh
2 )

Yn
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and for all λh
2 > 0,

∣
∣
∣
∣
∣

(1 − λh
2 )

(1 + λh
2 )

∣
∣
∣
∣
∣

< 1

so the method is unconditionally stable. To solve for Yn+1at each step of the trapezium
method (5.7), requires the solution of a nonlinear equation using iteration, i.e. an initial
approximation and an iteration formula are needed. One implementation that uses Euler’s
method to generate the initial approximation Ỹn+1 and then uses a single step of a iterative
update in the form Yn+1 = G(Ỹn+1) is known as the modified Euler method (or Heun’s
method),

Ỹn+1 = Yn + h F (tn, Yn)

Yn+1 = Yn + h
2

(

F (tn, Yn) + F (tn+1, Ỹn+1)
)

It is illustrated in figure 5.5. The method can also be written in the standard notation for

0 0.5 1 1.5 2 2.5
−5

0

5

10

15

20

25
One step of Modified Euler

y(t) − true solution thru Y
0

k
1
 tangent at Y

0
y

0
(t) − intermediate solution

k
2
 tangent to intermediate curve

h/2(k
1
+k

2
)

y
1
(t) − solution thru Y

1
Y

0
Y

0
+k

1
Y

1

Figure 5.5: The Modified Euler Method

Runge-Kutta methods as a two-stage Runge-Kutta method

k1 = F (tn, Yn)
k2 = F (tn + h, Yn + hk1)
Yn+1 = Yn + h

2 (k1 + k2)

Applying this method to the test equation gives:

Ỹn+1 = Yn − h λYn

= (1− λh) Yn

Yn+1 = Yn + h
2

(

− h λYn − h λỸn+1)
)

= Yn + h
2 (− h λYn − h λ(1 − λh) Yn))

=

(

1− hλ +
(hλ)2

2

)

Yn

Then

∣
∣
∣
∣
1− hλ +

(hλ)2

2

∣
∣
∣
∣

< 1 if

h <
2

λ
.
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So Heun’s method is conditionally stable, unconditionally stability is only attained if the
iteration to solve for Yn+1 is continued to convergence. Note that

y(tn + h) = e−hλy(tn)

where

e−hλ = 1− hλ +
(hλ)2

2
− (hλ)3

6
+ . . .

and
Yn+1 = G Yn

where

G = 1− hλ +
(hλ)2

2

so the local truncation error is O(h3) and the method is said to be second order accurate.

5.7 Systems of ode’s

Systems of equations can be classified as either stiff or non-stiff. Stiff systems are those for
which the limiting factor in the numerical solution is stability, whereas for non-stiff system
for ”reasonable” step sizes the limiting factor is truncation error. An example of a Non-stiff
system is a model of two interacting species y(t) (predator) + x(t) (prey) modelled as

y′ = −c(y − xy)

x′ = a(x− xy)






Lotka - Volterra Equations

The example shown in figure 5.6 uses a = 12 and c = 10 as the rates of growth of the species
and the population variation should follow the blue curve. In 5.6(a) the numerical solution
(the green curve) uses the step size is h = 0.0005 in 5.6(b) the step size is increased by a
factor 4 and clearly the error is increased in proportion.
In a non-stiff system the different components all have similar time-scales, but in a stiff
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Figure 5.6: Non-Stiff System: Error is truncation error

57



system there is a large difference in the time scales. Consider two linear systems of the form
y′ = Ay with

A1 =

(
−2 1
1 −2

)

and

A2 =

(
−2 99
1 −100

)

The eigenvalues of A1 are λ = −1,−3 the eigenvalues for A2 are λ = −1,−100 . If A = A1

the solution has two components e−t and e−2t whereas for A = A2 the solution has two
components e−t and e−100t for which the first is relatively slowly varying while it is the
second component that determines the condition for stability, even if this is only a very
small part of the solution. If, for example the Euler method is applied to the system
y′ = Ay then

Y n+1 = Y n − hAY n

= (I −Ah)Y n

if the method is stable then ‖Y n+1‖ < ‖Y n‖ and hence is stable if ‖I − Ah‖ < 1. Hence
it is stable if the eigenvalues of I − Ah are less the one in absolute value, that is if h < 2

λ
for all eigenvalues λ of the matrix A. For stiff systems it is necessary to either or very small
time steps or to use implicit methods.

5.8 Automatic Error Control

Automatic error control involves the automatic adjustment of the step size. It attempts
to keep the additional local error generated at each step within predefined limits (both
upper and lower bounds are needed). In Heun’s method for example, each step provides two
approximations to y(tn+1), Ỹn+1 and Yn+1. It is assumed that Yn+1 is much more accurate
than Ỹn+1. So

|Yn+1 − y(tn+1)| ≪ |Ỹn+1 − y(tn+1)|

and so:
Ỹn+1 − y(tn+1) = (Ỹn+1 − Yn+1) + (Yn+1 − y(tn+1))

≈ Ỹn+1 − Yn+1

Thus we can estimate the error in the least accurate solution but we use the more accurate
solution. With a predefined local error tolerance τ we check the additional error at each
step:

• If |Ỹn+1 − Yn+1| > τ reduce h and recompute Yn+1.

• If |Ỹn+1 − Yn+1| << τ accept Yn+1 but increase h before computing Yn+2

• Otherwise accept Yn+1 and continue computation of Yn+2 with an unchanged value of
h.

The Runge-Kutta method in the Matlab routine ode45 uses this form of automatic step
control. The formulae which are very accurate are set out below, but they are rather
complicated and are taken from the DOPRI5 method of Dorman and Prince. The basic
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method is a 7 stage, 5th order method :

k1 = F (tn, Yn) ≈ y′(tn)

k2 = F
(
tn + 1

5h, Yn + 1
5hk1)

)
≈ y′(tn + 1

5h)

k3 = F
(
tn + 3

10h, Yn + h( 3
40k1 + 9

40k2)
)

≈ y′(tn + 3
10h)

k4 = F
(
tn + 4

5h, Yn + h(44
45k1 − 56

15k2 + 32
9 k3)

)
≈ y′(tn + 4

5h)

k5 = F
(
tn + 8

9h, Yn + h(19372
6561 k1 − 25360

2187 k2 + 64448
6561 k3 − 212

729k4)
)

≈ y′(tn + 8
9h)

k6 = F
(
tn + h, Yn + h(9017

3168k1 − 355
33 k2 + 46732

5247 k3 + 49
176k4 − 5103

18656k5)
)
≈ y′(tn + h)

k7 = F
(
tn + h, Yn + h( 35

384k1 + 500
1113k3 + 125

192k4 − 2187
6784k5 + 11

84k6)
)

≈ y′(tn + h)

then

Yn+1 = Yn + h

(
5179

57600
k1 +

7571

16695
k3 −

393

640
k4 −

92097

339200
k5 +

187

2100
k6 +

1

40
k7

)

(5.8)

This is a seven stage method, the local truncation error is O(h6) hence it is a fifth order
method. But within this method there is the six stage, fourth order method:

Ỹn+1 = Yn + h

(
35

384
k1 +

500

1113
k3 +

125

192
k4 −

2187

6784
k5 +

11

84
k6

)

(5.9)

hence we use Ỹn+1−Yn+1 as an estimate of the local truncation error Ỹn+1− y(tn+1) in the
fourth order method. Thus we estimate the error in Ỹn+1 by

Ỹn+1 − y(tn+1) ≈ (Ỹn+1 − Yn+1)

= h
(

71
57600k1 − 71

16695k3 + 71
1920k4 − 17253

339200k5 + 22
525k6 − 1

40k7

)

This type of error control using two coupled methods is used in practical ode codes and
has replaced the use of extrapolation in which each step was computed twice once with a
step size h and once with a step size h

2 .

The ”classical” fourth order four stage Runge-Kutta method that appears in almost all
textbooks and was extremely popular for pre-electronic computer calculation because the
coefficients are simple, is now rarely used in practical computation as the only form of error
control possible is extrapolation.

The Classical Runge-Kutta

Yn+1 = Yn +
h

6
(k1 + 2k2 + 2k3 + k4)

where
k1 = F (tn, Yn) ≈ y′(tn)

k2 = F (tn + 1
2h, Yn + h

2 k1) ≈ y′(tn + 1
2h)

k3 = F (tn + 1
2h, Yn + h

2 k2) ≈ y′(tn + 1
2h)

k4 = F (tn + h, Yn + hk3) ≈ y′(tn + h)
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5.9 Boundary value problems

The initial value problems discussed so far all had additional data specified at the beginning
(say) x = 0 only. In a boundary value problem some data is specified at the beginning and
some at the end such as

y′′(x) = f(x, y, y′) a < x < b
y(a) = α y(b) = β

(An initial value problem would have included y′(a) but not y(b).) There are two established
numerical methods for solving problems of this type

• Shooting Methods, in which the problem is converted to a first order system and
solved an an IVP, iterating on the unknown value of the the missing initial value y′(a)

• Simultaneous difference equations, in which the differential equation is replaced
by difference equations on a fixed grid and resultant banded system is solved as a
system of simultaneous equations.

5.9.1 Shooting

Solve as an IVP and use the mismatch at x = b to correct the estimate of y′(a). The error
which can be written as

Y (b)− β

can be interpreted as a function of the initial value γ = y′(a) so we implicitly define a
function F (γ) such that

F (γ) = Y (b)− β

and then we wish to solve F (γ) = 0 We use the secant method, as this avoids the difficulties
associated with the definition of dF

dγ needed in Newton-Raphson. Note that every evaluation

of the function F (γ) requires the solution of an IVP.

5.9.2 Band Matrix Method

Define a fixed mesh xn = a + nh, n = 0, 1, . . . , N on the interval [a, b], xN = b = a + Nh so
h = b−a

N , with mesh values yn ≈ y(xn). Then

y′(xn) =
D0y(xn)

h
+ O(h2)

≈ yn+1 − yn−1

2h

and

y′′(xn) =
D+D−y(xn)

h2
+ O(h2)

≈ yn+1 − 2yn + yn−1

h2

Definition 4 Truncation Error The truncation error is defined by substituting the solution
of the differential equation L(u(x)) = g(x) into the difference equation Lh(U(xm)) = gm

then { |Lh(u(xm))− gm| ≤ O(hq), xm = mh,

|u(x)− U(x)| ≤ C(hq).
(5.10)
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The approximation is said to be accurate of order q, if q > 0 the method is consistent. 2

Example 8 Given

y′′ + (1 + x2)y′ + exy + sin x = 0 0 < x < 1
y(0) = 1 y(1) = 0

we have
yn+1−2yn+yn−1

h2 + (1 + x2
n)yn+1−yn−1

2h + exnyn + sin xn = 0

i = 1, 2, . . . , N − 1
y0 = 1 yN = 0

Multiplying through by h2 leads to a linear system that can be written as

Ay + By + Cy + f = 0 (5.11)

where

A =










−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2










C =






ex1

. . .

exN−1






B =












0
1+x2

1

2 h

− 1+x2
2

2 h 0
1+x2

2

2 h
. . .

. . .
. . .

− 1+x2
N−2

2 h 0
1+x2

N−2

2 h

− 1+x2
N−1

2 h 0












y =






y1

...
yN−1






f =







sin(x1)h
2 + y0 +

1+x2
1

2 hy0

...

sin(xN−1)h
2 + yN − 1+x2

N−1

2 hyN







Consider the same equation but with derivative boundary conditions:

y′′ + (1 + x2)y′ + exy + sin x = 0 0 ≤ x ≤ 1
y′(0) = 1 y′(1) = 0

then define a fixed mesh xn = a+(n− 1
2 )h, n = 0, 1, . . . , N on the interval [a, b], x0 = a− h

2

and xN = b+ h
2 hence x0 and xN are outside the interval [a, b] and ther is no mesh point on

the boundary so h = b−a
N−1 , with mesh values yn ≈ y(xn). Then as x0 = a− h

2 , x1 = a + h
2 ,

xN = b + h
2 and xN−1 = b− h

2 e

y′(a) =
y(x1)− y(x0)

h
+ O(h2)

y′(b) =
y(xN )− y(xN−1)

h
+ O(h2)

2This definition is analogous to the definition 2 for the truncation error in IVPs as the definition of the
numerical scheme has been modified.
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so for the numerical solution

y′(0) =
y1 − y0

h
y0 = y1 − hy′(0) (5.12)

and

y′(1) =
yN − yN−1

h
yN = yN−1 + hy′(1) (5.13)

then the finite difference equations (5.11) are valid with the substitutions (5.12) and (5.13).
In which case the matrices become

A =










−1 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −1










B =












− 1+x2
1

2 h
1+x2

1

2 h

− 1+x2
2

2 h 0
1+x2

2

2 h
. . .

. . .
. . .

− 1+x2
N−2

2 h 0
1+x2

N−2

2 h

− 1+x2
N−1

2 h
1+x2

N−1

2 h












f =







sin(x1)h
2 − hy′(0)− 1+x2

1

2 h2y′(0)
...

sin(xN−1)h
2 − hy′(1) +

1+x2
N−1

2 h2y′(1)






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Chapter 6

Finite Difference Methods for
PDEs

6.1 Applications

• The transport equation:

Assume a drop of ink in a pipe full of water moving a velocity c the concentration
is denoted by u(x, t). The amount of ink in a fixed length x of pipe at time t is
∫ x

0 u(z, t)dz at a later time t + h the ink has moved, with velocity c so the same ink is

now
∫ x+ch

ch
u(z, t + h)dz thus

∫ x

0

u(z, t)dz =

∫ x+ch

ch

u(z, t + h)dz

differentiating w.r.t. x
u(x, t) = u(x + ch, t + h)

differentiating w.r.t. h at h = 0

0 = cux(x, t) + ut(x, t)

• The wave equation:

Consider the motion of a string of length l, fixed at the endpoints. From Newton’s
law of motion, the force of the tension is balanced by the acceleration, so considering
two neighbouring points x0 and x1

Tux|x1
x0

=

∫ x1

x0

ρuttdx

differentiate w.r.t x
(Tux)x = ρutt → utt = c2uxx

• Diffusion (Heat Conduction):

Given a region Ω ∈ R
3, the amount of heat at time t is denoted by H(t) then

H(t) =

∫

Ω

cρu dΩ

where
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– c is the specific heat

– ρ is the density

– u is the temperature

– k is the conductivity

then

dH
dt =

∫

Ω
cρ∂tu dΩ

= heat flux out of Ω

=
∫

Γ k∂nu ds (∂nu = n · ∇u the outward normal derivative)

=
∫

Ω
∇ · (k∇u)dΩ The divergence theorem

so

cρ∂tu = ∇ · (k∇u)

Theorem 5 Divergence Theorem: Let ΩR
n be a bounded domain, with a piecewise smooth

boundary Γ. If w is a smooth vector field defined on an open set containing Ω = Ω∪ Γ then

∫

Ω

∇ · w dΩ =

∫

Γ

w · n ds

• Laplace’s Equation: Consider small displacements of a membrane, whose energy dif-
ference from no displacement is approximated by

I(ϕ) =
1

2

∫

Ω

∇2ϕdΩ,

The functional I is to be minimised among all trial functions ϕ that assume prescribed
values on the boundary Γ of Ω. If u is the minimising function and v is an arbitrary
smooth function that vanishes on Γ, then the first variation of I[u + v] must vanish:

d

dǫ
I(u + ǫv)|ǫ=0 =

∫

Ω

∇u · ∇v dΩ = 0.

Provided that u is sufficiently differentiable, it is possible to apply the divergence
theorem to obtain

∫

Ω

∇ · (v∇u) dΩ =

∫

Ω

(∇u · ∇v + v∇ · ∇u) dΩ +

∫

Γ

v∂nuds,

where s is arc-length along Γ. Since v vanishes on Γ and the first variation vanishes,
the result is ∫

Ω

v∇u · ∇u dΩ = 0

for all smooth functions v that vanish on Γ. It then follows that

∇2u = 0 in Ω,

assumption that the minimising function u has two derivatives.
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6.2 Initial and Boundary Conditions

In order to obtain exactly one solution, it it is necessary to impose certain assumptions on
the problem. Assumptions that can be justified by the physical meaning of the PDE are of
two types:

• Initial Conditions: In the case of the wave, it is reasonable to specify the shape of the
wave at t = 0 thus

u(x, 0) = g(x) given

for the wave equation it is also necessary to specify the velocity at t = 0 (does the
wave start from rest?) so

∂tu(x, 0) = f(x) is also known

• Boundary Conditions: For the heat equation (stationary or not) it is necessary to spec-
ify what happens on the boundary Γ, there are three well known boundary conditions

– u|Γ Dirichlet boundary condition, where the surface temperature is specified

– ∂nu|Γ Neumann boundary condition, where the heat flux out of the body is spec-
ified

– (∂nu + au)|Γ where a is given, Robin boundary condition, the heat flux depends
on the surface temperature (the body loses heat by conduction)

Definition 6 : If the boundary condition is constantly equal to zero, then the condition is
said to be homogeneous. If not then it is inhomogeneous.

The heat conduction problem for which the heat distribution is known for t = 0 (an initial
condition) and for which the surface temperature is specified (a boundary condition) is an
example of an initial-boundary value problem or I.-B.V.P.

6.2.1 Equations of Second Order

Consider R
2

0 = a11uxx + 2a12uxy + a22uyy + a1ux + a2uy + a0u

note uxy = uyx hence a12 + a21 = 2a12. Then the second order part of the differential
operator is

a11∂
2
xx + 2a12∂

2
xy + a22∂

2
yy

w.l.o.g. assume a11 = 1 then

∂2
xx + 2a12∂

2
xy + a22∂

2
yy = (∂x + a12∂y)2 + (−a2

12 + a22)∂
2
yy

consider 3 cases depending on the sign of the second coefficient!

• Hyperbolic Equations: (a11a22 − a2
12) < 0

• Parabolic Equations: (a11a22 − a2
12) = 0

• Elliptic Equations: (a11a22 − a2
12) > 0

The three different types lead to 3 different types of well posed problems. For Hyperbolic
and Parabolic problems, one of the variables is usually time so the variable y is replaced by
t. Hyperbolic equations such as utt − c2uxx = 0 have many properties in common with the
transport equation ut = aux.
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6.3 Numerical Methods

As for o.d.e.’s it is possible to replace the derivatives by finite differences. Given an equation
such as ut = aux, a mesh length h and a time-step k define a fixed mesh xn = mh,
m = 0, 1, . . . and tn = nk, n = 0, 1, . . ., with mesh values Un

m ≈ u(xm, tn). As before we also
use the alternative notation U(x, t) for the numerical solution.

Definition 7 Truncation Error The truncation error is defined by substituting the solution
of the differential equation Lu(x, t) = f(x, t) into the difference equation Lh,k(U(xm, tn)) =
fm,n then

{ |Lh,ku(xm, tn)− fm,n| ≤ O(hq1 + kq2), xm = mh, tn = nk,

|u(x, t)− U(x, t)| ≤ C(hq1 + kq2).
(6.1)

The approximation is said to be accurate of order (q1, q2), if q1, q2 > 0 the method is consis-
tent.

An alternative definition is that the truncation error is defined as Lhkv − Lv → 0, for any
function v, and the scheme is consistent if Lhkv − Lv → 0 as h, k → 0, assuming that
fmn = f(xm, tn).

Theorem 8 Lax-Richtmeyer Equivalence Theorem: Given a properly posed linear initial-
value problem and a linear finite-difference approximation to it that satisfies the consistency
condition, stability is a necessary and sufficient condition for convergence

Example 9 Leapfrog: Consider the hyperbolic equation ut = aux, the leapfrog scheme is

U(x, t + k) = U(x, t− k) + raD0U(x, t)

where r = k/h (see figure 6.1(b)). The order is (2, 2).

Example 10 Lax-Friedrichs: The Lax-Friedrichs1 scheme is

U(x, t + k) =
1

2
(U(x + h, t) + U(x− h, t)) + raD0U(x, t)

see figure 6.1(a).

Example 11 Lax-Wendroff Scheme: Consider the equation ut = aux the Lax-Wendroff
scheme is

U(x, t + k) =

(

1 + raD0 +
a2r2

2
D+D−

)

U(x, t)

if ut = aux + f then with x = mh, t = nk and r = k/h, with

gm,n =
1

2
(f(x, t + k) + f(x, t))− ak

4h
(f(x + h, t)− f(x, t))

the method is order (2,2), if gm,n = f(x, y) the scheme is only order (2,1).

1Peter David Lax (born May 1, 1926, Budapest), his PhD supervisor was Kurt O. Friedrichs
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Figure 6.1: Solution of ut − ux = 0 at t = 0.8 with r = 0.8

The solution of the problem

ut + aux = 0, t > 0
u(x, 0) = f(x)

}

−∞ < x <∞ (6.2)

satisfies

ût + iξaû = 0

û(ξ, 0) = f̂

}

⇒ û = e−iξatf̂

so in particular

û(ξ, t + k) = e−iξakû(ξ, t)

In general a difference solution satisfies

Û(ξ, t) = g(ξk)nf̂(ξ)

so

Û(ξ, t + k) = g(ξah)Û(ξ, t)

= |g(ξah)|e−iξα(ξh)kÛ(ξ, t)

If α = a for all frequencies ξ then all frequencies are propagated with the correct speed.

6.3.1 Courant Friedrichs Lewy (CFL) Condition

Assume that a first order hyperbolic differential equation has been approximated by a differ-
ence equation so that U(x, t+k) is computed in terms of U(x, t), U(x+h, t) and U(x−h, t) in
addition assume that the characteristic through (x, t+k) passes through the point (x+α, t).
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x + α
x− h x x + h

t

t + k

Then the domain of dependence of the difference solution must include the domain of depen-
dence of the differential equation, if not, the solution U cannot converge to u as h, k → 0.
Thus the point (x+α, t) must lie between U(x+h, t) and U(x−h, t). Given the differential
equation ut = aux the characteristics are x + at = constant so the characteristic through
(x, t + k) passes through (x + ak, t) so the CFL condition is

|ak| ≤ h ⇒ |a|r ≤ 1

where r = k
h . This shows that for a > 0 the forward difference scheme

U(x, t + k) = (1− ar)U(x, t) + arU(x + h, t)

will converge but
U(x, t + k) = (1 + ar)U(x, t) − arU(x− h, t)

will converge if a < 0. In each case the scheme that will converge is known as an upwind
scheme.

6.3.2 Stability

The CFL condition is concerned with convergence but it is closely associated with stability
problems for the difference schemes. Again consider the first order equation

ut = aux (6.3)

The coefficient a is the propagation velocity and is assumed constant. Then discretising the
time derivative using a forward difference and expanding by Taylor’s series (centred on x, t)
gives

ut =
1

k
(u(x, t + k)− u(x, t))− k

2
utt +O(k2) (6.4)

using a central difference for the space derivative gives

ux =
1

2h
(u(x + h, t)− u(x− h, t)) +O(h2) (6.5)

Substituting into (6.3) gives

U(x, t + k) = U(x, t) +
ak

2h
(U(x + h, t)− U(x− h, t)) (6.6)

this is first order accurate (in time), but substituting back with (6.4), shows that the differ-
ence equation (6.5) is a O(k2 + h2) replacement (i.e. order (2,2)) of

ut − aux = −k

2
utt (6.7)
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from (6.3) this is equivalent to

ut − aux = −k

2
a2uxx (6.8)

as the diffusion coefficient in (6.8) is negative this means that the solution is unstable. If
the centred difference (6.5) is replaced by either a forward difference which, expanding by
Taylor’s series gives

ux =
1

h
(u(x + h, t)− u(x, t))− h

2
uxx +O(h2) (6.9)

or backward difference which, expanding by Taylor’s series about (x, t), gives

ux =
1

h
(u(x, t)− u(x− h, t)) +

h

2
uxx +O(h2) (6.10)

These give respectively

U(x, t + k) = U(x, t) + a
k

h
(U(x + h, t)− U(x, t)) (6.11)

and

U(x, t + k) = U(x, t) + a
k

h
(U(x, t)− U(x− h, t)) (6.12)

as second order replacements of respectively

ut − aux =
a

2
(h− ak)uxx (6.13)

and

ut − aux = −a

2
(h + ak)uxx (6.14)

Thus for stability, with positive diffusion, the forward difference (6.11) is needed when a
is positive and the backward difference (6.12) when a is negative (i.e. upwind or upstream
differences), in addition to the CFL condition |a|k ≤ h.

6.3.3 Stability Analysis

There are two standard ways of investigating the stability of finite difference approximations

• The matrix method where the scheme can be written as

U(t + k) = AU (t) + b

and the stability depends on the eigenvalues of A.

• The Fourier Method (a.k.a. The von Neumann method2) is easier to apply, but from
the von Neumann condition in general it only provides a necessary condition for sta-
bility.

2John von Neumann first used the method during world war II
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In either case, assume that the finite difference equations are solved for two different initial
conditions f1(x) and f2(x) to give two different solutions U1 and U2 the scheme is stable
if the difference w = U1 − U2 remains bounded. The difference w satisfies the same finite
difference equations as the solutions U1 and U2 so

w(t + k) = Aw(t)

and it remains bounded if ‖A‖ ≤ 1. In the Fourier method it is assumed that the difference
can be expressed as a Fourier series, that is the sum of components such as

w(x, t) = κt/keiξx, x = mh, t = nk

for different frequencies ξ and the scheme is stable if it only permits solutions with |κ| ≤ 1.
Substituting into the difference scheme leads to an equation involving κ and ξh known as
the characteristic equation (which has no connection with characteristics).

Definition 12 Dissipation: Dissipation is the process whereby the solution looses energy
and hence the solution decays (|κ| < 1). If all solutions satisfy

|κ| ≤ 1− δ|ξh|p, 0 ≤ |ξh| ≤ π

for some constant δ then p is called the order of dissipation.

Definition 13 Dispersion: Dispersion is the phenomenon whereby different frequencies are
propagated at different speeds. The quantity α(ξh) is known as the phase speed.

Example 14 • Leapfrog: The characteristic equation is

(κ2 − 1)− 2κira sin(ξh) = 0

or

κ = ira sin(ξh)±
√

1− r2a2 sin2(ξh)

so |κ| = 1 for ra ≤ 1 and so the approximation is not dissipative.

• Lax-Friedrichs: The characteristic equation is

κ = cos(ξh) + ira sin(ξh)

so |κ| ≤ 1 for ra ≤ 1 it is not dissipative as |κ| = 1 when ξh = π.

Finite Volume Methods

Consider the equation
ut + ux = 0,

define

u(t) =
1

h

∫ x+h

x

u(x, t) dt

then
∫ x+h

x

∫ t+k

t

(ut + ux) dtdx =

∫ x+h

x

∫ t+k

t

ut dtdx +

∫ t+k

t

∫ x+h

x

ux dxdt
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and so
∫ x+h

x

(u(x, t + k)− u(x, t)) dx +

∫ t+k

t

(u(x + h, t)− u(x, t)) dt = 0

which can be written as

u(t + k) = u(t)−
∫ t+k

t

u(x + h, t) dt +

∫ t+k

t

u(x, t) dt

the integrals on the right represent flow across the boundaries of the cell (the finite volume).

x x + h

t

t + k

6.4 Parabolic Equations

Consider the initial boundary value problem






ut = uxx 0 < x < l, t > 0
u(x, 0) = f(x) 0 < x < l

u(0, t) = g0, u(l, t) = g1 t > 0
(6.15)

Parabolic equations typically model heat conduction or diffusion processes, so if there is no
input into the model, the typical solution exhibits an exponential decay. The proof is not
restricted to one space dimension so rewrite (6.15) as







ut = ∇2u in Ω; t > 0
u = f in Ω; t = 0
u = g on Γ; t > 0

(6.16)

The space L2(Ω) is defined with the inner product

(u, v) =

∫

Ω

uv dΩ

and hence the norm

‖u‖ = (u, u)1/2 =

(∫

Ω

u2 dΩ

)1/2

.

Theorem 15 Stability: Given that u is the solution of (6.16), it follows that if g = 0 then

d

dt
‖u‖ < 0

and hence for any t ≥ 0, ‖u(., t)‖ ≤ ‖f‖.
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Proof
For any fixed t > 0, using the divergence theorem

ut = ∇2u in Ω,

utu = u∇2u in Ω,
∫

Ω

utu dΩ =
∫

Ω u∇2u dΩ,

∫

Ω

utu dΩ = −
∫

Ω |∇u|2 dΩ,

1
2

d
dt

∫

Ω

u2 dΩ = −
∫

Ω
|∇u|2 dΩ < 0

Hence ‖u(., t)‖ is a decreasing function of t so

‖u(., t)‖ < ‖u(., 0)‖ = ‖f‖

Q.E.D.

6.4.1 Crank-Nicolson

A simple explicit method for the diffusion equation in (6.15) can be written as

U(x, t + k) = U(x, t) + rD+D−U(x, t)

= rU(x − h, t) + (1 − 2r)U(x, y) + rU(x + h, t)

where now r = k
h2 . The Crank-Nicolson method for (6.15) is implicit and can be written as

U(x, t + k) = U(x, t) + r
2D+D− (U(x, t + k) + U(x, t))

− r
2U(x− h, t + k) + (1 + r)U(x, t + k)− r

2U(x + h, t + k)

= r
2U(x− h, t) + (1 − r)U(x, t) + r

2U(x + h, t)

Substituting w for U in the explicit scheme gives

w(x, t + k) = rw(x − h, t) + (1− 2r)w(x, t) + rw(x + h, t)

κn+1eiξx = rκneiξ(x−h) + (1− 2r)κneiξx + rκneiξ(x+h)

κ = re−iξh + (1− 2r) + reiξh

= 1 + 2r (cos(ξh)− 1)

= 1− 4r sin2
(

ξh
2

)

hence the method is stable for all frequencies such that

−1 ≤ 1− 4r sin2

(
ξh

2

)
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and is stable for all frequencies if

r ≤ 1

2

In order to apply the matrix method it is necessary to write out the full set of difference
equations, including the boundary conditions, in the form U(t+k) = AU(t)+b, for problem
(6.15) it follows that the explicit scheme with the mesh length h = l/m leads to the (m −
1)× (m− 1) matrix

A =










1− 2r r
r 1− 2r r

. . .
. . .

. . .

r 1− 2r r
r 1− 2r










with

b =










rU(0, t)
0
...
0

rU(mh, t)










U(t) =










U(h, t)
U(2h, t)

...
U((m− 2)h, t)
U((m− 1)h, t)










where U(0, t) and U(mh, t) ≡ U(l, t) are defined by the boundary conditions in (6.15). It is
known that the eigenvalues of the (m− 1)× (m− 1) matrix

A =










a b
c a b

. . .
. . .

. . .

c a b
c a










are
λs = a + 2

√
bc cos

(sπ

m

)

where a, b and c may be real or complex. With h = l
m by writing ξ = sπ

l the condition
λ ≤ 1 gives the same condition as for the Fourier method which is necessary and sufficient
in this case. The result for more general matrices such as

A =










a b
c a b

. . .
. . .

. . .

c a b
c −β + a










which has eigenvalues

λs = a + 2
√

bc cos

(
2sπ

2m− 1

)

, s = 1, . . . , m− 1

when β =
√

bc are given in [8]. Matrices of this form arise when Neumann boundary
conditions are included. For Crank-Nicolson the equation is

A1U(t + k) = A0U(t) + b
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where

A0 =










1− r r
2

r
2 1− r r

2
. . .

. . .
. . .

r
2 1− r r

2
r
2 1− r










and A1 =










1 + r − r
2

− r
2 1 + r − r

2
. . .

. . .
. . .

− r
2 1 + r − r

2
− r

2 1 + r










and A = A−1
1 A0 as A0 and A1 have the same eigenvectors, the eigenvalues of A are

λs =
1− 2r sin2

(
ξh
2

)

1 + 2r sin2
(

ξh
2

)

which clearly satisfies λs ≤ 1 for all ξ and all r > 0. So the stability of the Crank-Nicolson
method is unrestricted. For other boundary conditions it may be necessary to bound the
eigenvalues using:

Theorem 16 Gershgorin’s first theorem: The largest of the moduli of the eigenvalues cannot
exceed the largest sum of the moduli of the elements in any row or column.

Theorem 17 Gershgorin’s circle theorem: Let Ps be the sum of the moduli of the elements
along the s-th row, excluding the diagonal ass. Then each eigenvalue lies inside or on at
least one of the circles |λ− ass| = Ps.

6.5 Elliptic Equations

Any numerical solution must preserve the property that the solution depends continuously
on the boundary data and cannot have maxima or minima at interior points (i.e. Dirichlet’s
Principle). At the present time, in most practical computation finite element methods are
preferred to finite differences. Currently work is focused primarily on solution methods,
either fast direct solvers or efficient iterative methods.

Consider solving numerically the heat conduction problem







uxx + uyy = 0, ∀x, y ∈ (0, l),
u(x, 0) = g0(x), ∀x ∈ [0, 1]
u(x, 1) = g1(x), ∀x ∈ [0, 1]

ux(0, y) = 0 = ux(1, y) ∀y ∈ [0, 1].

(6.17)

This corresponds to computing a temperature distribution on the unit square, with two
edges thermally insulated and with prescribed temperatures on the others. The difference
replacements are similar to those for two-point boundary value problems in section 5.9.2. A
second order accurate finite difference approximation to the p.d.e. is

2(1 + α)U(x, y)− U(x− h1, y)− U(x + h1, y)− α(U(x, y − h2) + U(x, y + h2)) = 0 (6.18)

where α =

(
h1

h2

)2

. If h1 = h2 = h this reduces to the 5-point Laplacian

4U(x, y)− U(x− h, y)− U(x + h, y)− U(x, y − h)− U(x, y + h) = 0
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To discretise the problem, use a uniform mesh of (m1 + 2)× (m2 + 2) nodes defined by:

xj = (j − 1
2 )h1, h1 = 1/m1, j = 0, . . . , m1 + 1,

yk = kh2, h2 = 1/(m2 + 1), k = 0, . . . , m2 + 1.

Note that the mesh is centred at the boundaries with Neumann boundary conditions (x =

x0 x1 xm1 xm1+1

y0

ym2+1

y1

ym2

Figure 6.2: Grid for Poisson Problem

0, 1). Order the nodal values row-wise as

U(y) =






U(h1

2 , y)
...

U(1− h1

2 , y)




 , U =






U(h2)
...

U(1− h2)






The discrete solution satisfies finite difference equations that can be written in the form

AU = b (6.19)

where

b(0) =






g0(x1)
...

g0(xm1)




 , b(1) =






g1(x1)
...

g1(xm1)




 and b =










b(0)
0
...
0

b(1)









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and the coefficient matrix is a block-tridiagonal (m1m2) × (m1m2) matrix with m2 block
rows

A =










Ã T

T Ã T
. . .

. . .
. . .

T Ã T

T Ã










where for Ã is the m1 ×m1 tridiagonal matrix

Ã =










2α + 1 −1
−1 2α + 2 −1

. . .
. . .

. . .

−1 2α + 2 −1
−1 2α + 1










and T = −αI.
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Chapter 7

Finite Element Methods

7.1 Introduction

The finite-element method was originally introduced in the 1950’s as a method to calculate
elastic deformations in solids. Later the method has been developed and generalised for all
kinds of partial differential equations. It is the dominating technique for solid-mechanics
problems such as estimating stresses and strains in elastic material under prescribed loads.
CAD (Computer Aided Design) systems typically provides finite-element solvers in a highly
integrated fashion. The engineer can typically with a few clicks on the computer screen esti-
mate the deformations and stresses of, say, a machine part during the design. Finite-element
methods are also commonly applied to other areas, such as calculations of electromagnetic
fields and fluid flows.

In order to provide a brief introduction to the ideas, this note concentrates on a standard
model problem for elliptic boundary-value problems, the Poisson problem. Only homoge-
neous Dirichlet boundary conditions are covered here.

7.2 FEM for the Poisson Problem in Two Space

Dimensions

We consider the boundary-value problem

−∆u = f in Ω,
u = 0 on Γ,

(7.1)

where Ω is an open, bounded and connected domain in the plane, and Γ is its boundary.
The Laplacian ∆ is the sum of second derivatives

∆u =
∂2u

∂x2
+

∂2u

∂y2
.

Letting u represent a temperature field, equation (7.1) models steady heat conduction
in a homogeneous, isotropic material, such as a metal, in which the temperature is held at
zero on the boundary. The function f can be used to model heat sources such as electric
heaters embedded in the material.
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7.3 Green’s Formula

.
We need some definitions and formulae from vector calculus. For any differentiable

function v from R
m to R, the gradient is the vector

∇v =

(
∂v

∂x1
,

∂v

∂x2
, . . . ,

∂v

∂xm

)

,

and for any differentiable vector-valued function w = (w1, w2, . . . , wm) from R
m to R

m, the
divergence is

∇ ·w =

m∑

i=1

∂wi

∂xi
.

By the product rule of differentiation, the formula

∇ · (v∇u) = ∇v · ∇u + v∆u, (7.2)

that is,
m∑

i=1

∂

∂xi

(

v
∂u

∂xi

)

=

m∑

i=1

∂v

∂xi

∂u

∂xi
+

m∑

i=1

v
∂2u

∂x2
i

,

holds for differentiable functions v and twice differentiable functions u.
Also recall the divergence theorem (or Gauss’ theorem) which identifies the integral of a

vector-field divergence over a domain with the integral of the normal component of the field
along the boundaries: ∫

Ω

∇ ·w dΩ =

∫

Γ

n ·w ds, (7.3)

Here, n denotes the outward-directed unit normal on Γ. Identity (7.3) holds for functions
w and boundaries Γ that are sufficiently smooth.

Combining the divergence theorem (7.3) with formula (7.2) yields Green’s formula

∫

Γ

v
∂u

∂n
ds =

∫

Ω

∇v · ∇u dΩ +

∫

Ω

v∆u dΩ, (7.4)

where
∂u

∂n
= n · ∇u =

m∑

i=1

ni
∂u

∂xi
,

denotes the directional derivative of u in the normal direction. Green’s formula is a gener-
alisation to higher dimensions of the integration-by-parts formula

∫ 1

0

u′v′ dx = u′(1)v(1)− u′(0)v(0)−
∫ 1

0

u′′v dx.

7.4 The Variational Form

A classical solution to the Poisson problem (7.1) is a smooth function u satisfying equation
(7.1). The precise requirements for u to be a classical solution is that it should be twice
continuously differentiable, and its first and second derivatives should be functions that can
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be continuously extended up to the boundary. This assures that Green’s formula (7.4) can
be applied on u. Let v be a smooth function from Ω = Ω ∪ Γ to R such that v(x) = 0
for each x ∈ Γ. Multiply both sides of equation (7.1) with v, integrate over Ω, and apply
Green’s formula (7.4) to obtain

∫

Ω fv dΩ = −
∫

Ω v∆u dΩ
= −

∫

Γ v ∂u
∂n ds +

∫

Ω∇v · ∇u dΩ =
∫

Ω∇v · ∇u dΩ,
(7.5)

where the fact that v vanishes on the boundary has been used in the last equality. From
expression (7.5) immediately follows

Theorem 18 If u is a classical solution to the Poisson problem (7.1), then u satisfies

∫

Ω

∇u · ∇v dΩ =

∫

Ω

fv dΩ, (7.6)

for each smooth function v vanishing on the boundary.

Equation (7.6) is called the variational form of the Poisson equation. Theorem 18 refers
to the original problem (7.1), but the variational form can be used to define a function u
without reference to the differential equation. For this purpose, we introduce the function
space

V =

{

v :

∫

Ω

|∇v|2 dΩ < +∞ and v|Γ = 0

}

, (7.7)

where

|∇v|2 =

(
∂v

∂x1

)2

+

(
∂v

∂x2

)2

.

The condition ∫

Ω

|∇v|2 dΩ < +∞

corresponds in many applications to demanding that the energy should be bounded, for
instance when the Poisson equation is used to model steady heat conduction. Note that V
is a linear space, that is, if v, w ∈ V , then αv + βw ∈ V for each α, β ∈ R. The space V is
a so-called Sobolev space, and is often denoted H1

0 (Ω) in the literature.
The variational problem, now formulated without reference to the differential equation

(7.1) is

Find u ∈ V such that
∫

Ω
∇u · ∇v dΩ =

∫

Ω
fv dΩ ∀v ∈ V.

(7.8)

Solutions to variational problem (7.8) are called weak solutions of the partial differential
equation (7.1). From Theorem 18 follows that classical solutions are weak solutions. As the
label “weak” suggests, there are weak solutions that are not classical solutions. However,
one can show that weak solutions are classical solutions provided that the function f and
the boundary Γ are sufficiently smooth.

7.5 The Minimisation Problem

The variational form above is all that is needed to define a finite-element discretisation.
However, a classical solution to the particular problem that we consider, equation (7.1),
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also satisfies a certain minimisation problem, that is, the classical solution minimises the
quadratic form

F (v) =
1

2

∫

Ω

|∇v|2 dΩ−
∫

Ω

fv dΩ.

Similarly as was done for the variational problem, we can also consider the problem of
minimising F within the function space V without reference to classical solutions, that is,
consider the problem:

find u ∈ V such that
F (u) ≤ F (v) ∀v ∈ V.

(7.9)

In fact, the variational problem (7.8) and the minimisation problem (7.9) are equivalent:

Theorem 19 The element u ∈ V minimises F if and only if it is a solution to the varia-
tional problem (7.8)

Remark 1 The proof below may appear long, but in essence it is really no more complicated
than showing that the parabola F (x) = 1

2x2 − xf has its minimum at x = f

Proof
For any u, v ∈ V , we have

F (u + v) = 1
2

∫

Ω |∇u +∇v|2 dΩ−
∫

Ω f(u + v) dΩ
= 1

2

∫

Ω

[
|∇u|2 + 2∇u · ∇v + |∇v|2

]
dΩ−

∫

Ω
f(u + v) dΩ.

(7.10)

(i) Assume that u ∈ V is a solution to the variational problem (7.8). Then expression
(7.10) reduces to

F (u + v) = 1
2

∫

Ω |∇u|2 dΩ−
∫

Ω fu dΩ + 1
2

∫

Ω |∇v|2 dΩ

= F (u) +
1

2

∫

Ω

|∇v|2 dΩ

︸ ︷︷ ︸

≥0

≥ F (u) (7.11)

for any v ∈ V , which shows that u minimises F .

(ii) Now assume that u ∈ V minimises F . For any t ∈ R and v ∈ V , we define the function
f(t) = F (u + tv), that is, by perturbing F away from its minimum. Expression (7.10)
yields that

f(t) = F (u + tv)

= F (u) + t
(∫

Ω∇u · ∇v dΩ−
∫

Ω fv dΩ
)

+ t2

2

∫

Ω |∇v|2 dΩ,
(7.12)

that is, f is a second-order polynomial in t with a minimum when the derivative
vanishes (since the leading term is non-negative). We also know that the minimum is
attained for t = 0 since u minimises F . Setting f ′(0) = 0 yields that

∫

Ω

∇u · ∇v dΩ−
∫

Ω

fv dΩ = 0, (7.13)

for any v ∈ V , that is, u is a solution to the variational problem (7.8).

Q.E.D.
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Remark 2 Variational forms can be defined for practically all elliptic boundary-value prob-
lems, but minimisation forms cannot always be defined, for instance when the differential
equation contains first-derivative terms.

Remark 3 In mechanics application the variational form (7.8) is called the principle of vir-
tual work, and the minimisation problem (7.9) is called the principle of minimum potential
energy.

Remark 4 The terminology used here, “variational” for (7.8) and “minimisation” for (7.9),
is convenient for our purpose, but is not the only existing. Quite commonly the minimisation
problem is called a variational form. In fact, the notion of variational forms was first
attached to minimisations of “functionals” like F in the calculus of variations.

7.6 Meshing and Finite-Element Approximation

We introduce a triangulation of the domain Ω, that is, Ω will be subdivided into non-
overlapping triangles as illustrated in figures 7.1 and 7.3. The triangular corners are called
the nodes of the triangulation. The boundary nodes are the nodes which are located on the
boundary, and the internal nodes are the nodes which are not boundary nodes. A valid
triangulation should not contain “hanging nodes”, that is, no node should be located at
another triangles side, as in figure 7.2. The “fineness” of the triangulation is characterised
by a parameter h > 0, the largest length of any of the triangular sides, for instance.

Now define Vh as the space of all functions that are continuous on Ω, linear on each
triangle, and vanishing on the boundary Γ. The graph of such a function is a surface
composed of triangular-shaped planes, as illustrated in figure 7.4.

This space is constructed so that Vh ⊂ V , and we define the finite-element discretisation
of the Poisson problem (7.1) as

Find uh ∈ Vh such that
∫

Ω
∇uh · ∇vh dΩ =

∫

Ω
fvh dΩ ∀vh ∈ Vh.

(7.14)

Note that the discretisation is obtained simply by replacing V with the subspace Vh in the
variational form (7.8). This kind of procedure is also called a Galerkin approximation.

7.7 The Algebraic Problem

A function in the above defined space Vh is uniquely defined by its values at the internal
nodes (we already know that the function is zero at the boundary nodes). To see this, it
is enough to note that the planar surface of uh on each triangle is uniquely defined by the
values of uh at the triangular corners. Let N be the number of internal nodes. Using the
basis functions {φj(x)}Nj=1 ⊂ Vh, each function uh ∈ Vh can be written

uh(x) =

N∑

j=1

ujφj(x), (7.15)

where uj is the value of uh at note j, and φj(x) is the “tent” function depicted in figure 7.5.
The function φj is zero everywhere, except that it raises as a “tent” around node j, that is,
φj ∈ V such that

φj(xk) =

{
1 if k = j,
0 otherwise,
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Figure 7.1: A valid triangulation. Inter-
nal nodes are marked by solid dots and
boundary nodes by circles.

Figure 7.2: Not a valid triangulation:
contains hanging nodes.

Figure 7.3: A more complicated triangulated domain (note that the domain may contain
holes!)

Figure 7.4: The functions in Vh are continuous and linear on each triangle. (The boundary
nodes are not included in this picture.) 82



Figure 7.5: The basis function φj(x) is equal to one at node j and zero at all other nodes.

where xk is the coordinate of node k. Substituting the expansion (7.15) into equation (7.14)
yields that

N∑

j=1

uj

∫

Ω

∇φj · ∇vh dΩ =

∫

Ω

fvh dΩ ∀vh ∈ Vh.

Since equation (7.7) should hold for each vh ∈ Vh, it must in particular hold for vh = φi,
i = 1, . . . , N , which means that

N∑

j=1

uj

∫

Ω

∇φj · ∇φi dΩ =

∫

Ω

fφi dΩ i = 1, . . . , N . (7.16)

Problem (7.16) is a system of linear equation in the coefficients uj , j = 1, . . . , N , that is,

Au = b, (7.17)

where the matrix A has components

Aij =

∫

Ω

∇φi · ∇φj dΩ,

and

u =






u1

...
un




 , b =






∫

Ω fφ1 dΩ
...

∫

Ω
fφN dΩ




 .

With a terminology borrowed from solid mechanics, the matrix A is called the stiffness
matrix and the vector b the load vector. This terminology is used also for cases, like heat
conduction, when the PDE we are discretising has nothing to do with mechanics!

We conclude that a numerical approximation of the Poisson problem with a finite-element
method involves setting up and solving the linear system (7.17).

7.8 An Example

Let the domain Ω be the unit square, and consider the structured mesh of figure 7.6. There
are J internal nodes in both directions and the sides of each triangle are h = 1/(J + 1).
There is a total of J2 = N internal nodes, assumed to be numbered in the row-wise direction
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h

h

1..... J...

J+1...

JJ

...2J

Figure 7.6: A structured meshing of the unit
square.

Figure 7.7: A basis function associated with
the mesh in figure 7.6

as indicated in figure 7.6. The basis functions φi have the shape indicated in figure 7.7. The
support of each basis function, that is, the nonzero region of the function, consists of the 6
neighbouring triangles that surround node i. Note that this means that most of the stiffness
matrix elements

Aij =

∫

Ω

∇φi · ∇φj dΩ

are zero. For instance, Ai,i+2 = 0 since there is no overlap in the support for the functions
φi and φi+2; see figure 7.8. In fact, Aij can be nonzero only when i and j are associated
with nearest-neighbouring nodes (figure 7.9).

To calculate the stiffness-matrix elements, we need to know the gradients of the basis
functions,

∇φi =

(
∂φi

∂x
,
∂φi

∂y

)

.

The gradient is constant at each triangle since φi is composed of planar surfaces. Letting
the x and y directions be oriented in the horizontal and vertical directions, respectively, the
values of the gradient at the support of the basis function are indicated in figure 7.10. Note
that the basis function is equal to one at the filled dot and equal to zero at the open dots,
which means that the gradient can simply be read off as the slope of the “tent” function
along the sides of the triangles. With the aid of the gradients given in figure 7.10, we can
compute the diagonal elements in the stiffness matrix,

Aii =
∫

Ω
∇φi · ∇φi dΩ =

∑6
i=1

∫

Tk
∇φi · ∇φi dΩ

= 1
h2 |T1|+ 2 1

h2 |T2|+ 1
h2 |T3|+ 1

h2 |T4|+ 2 1
h2 |T5|+ 1

h2 |T6|
= 8 1

h2
h2

2 = 4.

To compute Ai,i+1, note that ∇φi · ∇φi+1 6= 0 only in two triangles (figure 7.11), thus

on T1 : ∇φi =
(
− 1

h , 1
h

)
∇φi+1 =

(
1
h , 0
)

on T2 : ∇φi =
(
− 1

h , 0
)

∇φi+1 =
(

1
h ,− 1

h

)
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Figure 7.8: There is no overlap in the sup-
port for basis functions φi and φi+2.

i

Figure 7.9: The nearest neighbours to node
i are the six nodes marked with black dots.
Thus, Aij can be nonzero only when j cor-
responds to one of the black dots.
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Figure 7.10: The gradient of basis function
φi is piecewise constant on each triangle.
The x- and y-coordinates are given as the
pair (·, ·) at each triangle of the support of
the function.
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T1 and T2.
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and thus
Ai,i+1 =

∫

Ω∇φi · ∇φi+1 dΩ =
∑2

k=1

∫

Tk
∇φi · ∇φi+1 dΩ

= − 1
h2 |T1| − 1

h2 |T2| = − 2
h2

h2

2 = −1.

Similar calculations yield that

Ai,i−1 = Ai,i+J = Ai,i−J = −1, Ai,i+J+1 = Ai,i−J−1 = 0.

Also note that the matrix A is symmetric: Aij = Aji. Altogether, we obtain the block
triangular structure (empty space means zeros!)

A =










T −I
−I T −I

. . .
. . .

. . .

−I T −I
−I T










where T and I are the J-by-J matrices

T =










4 −1
−1 4 −1

. . .
. . .

. . .

−1 4 −1
−1 4










, I =










1
1

. . .

1
1.










,

Thus, the ith row of the matrix-vector product Au will be

4ui − ui+1 − ui−1 − ui+J − ui−J . (7.18)

Node i + 1 and i− 1 is located to the right and left, respectively, of node i, whereas nodes
i+J and i−J are above and below node i. Thus, expression (7.18) is precisely the classical
five-point, finite-difference formula. We reach the remarkable conclusion that the finite-
element discretisation of the Laplace operator using continuous, piecewise-linear functions
on the structured mesh of figure 7.6 reduces to a standard finite-difference formula for the
Laplacian. Note, however, that this does not hold in general; finite-element discretisations
are not always easy to interpret as a finite-difference method.

7.9 Properties of the Stiffness Matrix

Consider the stiffness matrix A with components

Aij =

∫

Ω

∇φi · ∇φj dΩ,

which was obtained by discretising the Poisson problem (7.1). This matrix has some very
particular properties, which will be discussed in this section: it is symmetric, positive definite,
sparse, and ill conditioned. All these properties, except the sparsity, reflects the nature of the
boundary-value problem (7.1). Some or all of these properties may change if the equation
or the boundary conditions are altered. For instance, if an additional term containing first
derivatives of u is added to equation (7.1), the stiffness matrix will no longer be symmetric.
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The sparsity is a consequence of the fact that the chosen piecewise-linear approximations
allow a compact basis, the “tent” functions of figure 7.5.

The symmetry of the matrix is immediate,

Aij =

∫

Ω

∇φi · ∇φj dΩ =

∫

Ω

∇φj · ∇φi dΩ = Aji.

Moreover, the matrix is sparse, since Aij = 0 whenever i and j are not nearest neighbours.
The number of neighbours to each point does not increase when the mesh is made finer, as
long as the mesh refinements are made in a sensible way, see the discussion in section 7.10.
Thus, the number of nonzero elements on each row does not increase with the order of the
stiffness matrix, that is, the matrix in a sense becomes sparser and sparser with increasing
matrix order.

Recall that a real matrix A is positive definite if vT Av > 0 whenever v 6= 0.

Theorem 20 The stiffness matrix is positive definite.

Proof
Let vh ∈ Vh. Expanding vh in the “tent” basis functions yields

vh =

N∑

i=1

viφi(x).

Setting
v = (v1, v2, . . . , vN )T ,

yields that

vT Av =
∑N

i=1

∑N
j=1 vi

∫

Ω
∇φi · ∇φj dΩvj

=
∫

Ω

N∑

i=1

∇ (viφi)

︸ ︷︷ ︸

=∇vh

·
N∑

j=1

∇ (vjφj)

︸ ︷︷ ︸

=∇vh

dΩ =
∫

Ω
|∇vh|2 dΩ ≥ 0, (7.19)

with equality if and only if ∇vh = 0, that is, if vh is constant. However, since vh is zero
on the boundary (by definition of Vh), it follows that the constant must be zero. Thus
expression (7.19) is zero only if vh ≡ 0, that is, when v = 0. Q.E.D.

One important consequence of Theorem 20 is that equation (7.17) has a unique solution.
This follows from the fact that positive-definite matrices are nonsingular: For a singular
matrix A, there would be nonzero vector v so that Av = 0, and thus vT Av = 0. Thus,
singular matrices cannot be positive definite, and positive-definite matrices must therefore
be nonsingular.

The condition number of the stiffness matrix depends strongly on h. In fact, if the
quotient between the size of the smallest and largest triangle in the mesh is kept bounded as
the mesh is refined, one can show that the condition number grows like cond(A) = O(h−2).
The stiffness matrix is thus ill conditioned for fine meshes.

7.10 Accuracy

We have shown how to define a finite-element approximation of the Poisson problem (7.1),
that this yields the linear system (7.17), and that this has a unique solution. The question
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how good the finite-element solution is as an approximation of the original problem will be
discussed in this section.

For finite-difference discretisations, accuracy questions are usually addressed indirectly
by applying the Lax–Richtmyer Theorem. The crucial steps is then to derive truncation
errors and to check stability. If the method is consistent, that is, if the truncation error
vanishes as the mesh is refined, the method is convergent if and only if it is stable. For
finite-element discretisations, this approach is hardly ever used, since it is possible to study
the error in the discretisation directly. The easiest and most natural way is to work with
integral norms of the difference between the weak solution u of problem (7.8) and the finite-
element solution uh of problem (7.14). The L2(Ω) norm of a function,

|v|L2(Ω) =

(∫

Ω

v2 dΩ

)1/2

,

is the analogue for functions of the vector 2-norm. The perhaps most important norm for
solutions of the Poisson problem is the energy norm

|v|V =

(∫

Ω

|∇v|2 dΩ

)1/2

, (7.20)

that is, the L2(Ω)-norm of the first derivatives; recall that weak solutions were defined
among functions with bounded energy norm (the space of functions defined by (7.7)). The
importance of the energy norm is that the finite-element solution is optimal in the energy
norm. That is, no other function in Vh yields a smaller error in energy norm:

Theorem 21 Let u be the solution to variational problem (7.8) and uh the finite-element
solution (7.14). Then

|u− uh|V ≤ |u− vh|V ∀vh ∈ Vh, (7.21)

Proof
By equation (7.14), the finite-element solution uh satisfies

∫

Ω

∇uh · ∇vh dΩ =

∫

Ω

fvh dΩ ∀vh ∈ Vh. (7.22)

From equation (7.8) follows that the weak solution u satisfies
∫

Ω

∇u · ∇vh dΩ =

∫

Ω

fvh dΩ ∀vh ∈ Vh, (7.23)

since Vh ⊂ V . Subtracting equations (7.22) and (7.23) yields that
∫

Ω

∇(u − uh) · ∇vh dΩ = 0 ∀vh ∈ Vh. (7.24)

Let vh be an arbitrary element of Vh. Then

|u− uh|2V =
∫

Ω |∇(u − uh)|2 dΩ =
∫

Ω[∇(u− uh)] · [∇(u− uh)] dΩ

=
∫

Ω∇(u − uh) · ∇u dΩ−
∫

Ω

∇(u − uh) · ∇uh dΩ

︸ ︷︷ ︸

= 0 by (7.24)

=
∫

Ω
∇(u − uh) · ∇u dΩ−

∫

Ω

∇(u − vh) · ∇vh dΩ

︸ ︷︷ ︸

= 0 by (7.24)
=
∫

Ω∇(u − uh) · ∇(u− vh) dΩ ≤ |u− uh|V |u− vh|V ,

(7.25)
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Figure 7.12: A strategy to maintain mesh quality is to subdivide each triangle into four new
triangles by joining the edge midpoints.

where the last inequality follows from the Cauchy–Schwarz inequality. Dividing through
with |u− uh|V yields the conclusion. Q.E.D.

The optimality property (7.21) does not hold for all elliptic boundary-value problems.
For the finite-element solution to be optimal, it is necessary that the variational problem
yields a symmetric stiffness matrix.

The next step in an analysis of the error is a pure approximation problem. Typically,
one considers the interpolant, that is, a piecewise-linear function agreeing with u at the node
points; note that the interpolant is an element of Vh. The difference between the interpolant
and u can be estimated by a type of Taylor expansion. From Theorem 21 follows that
the error in the finite-element solution smaller or equal to the error in the interpolant. The
precise magnitude of this error depends of course on how fine the mesh is, but it also depends
on the quality of the mesh. Loosely speaking, one should avoid very thin triangles.

Altogether, estimating the interpolation error and utilising Theorem 21, it can be shown
that the error in the finite-element solution is of second order, that is,

|uh − u|L2(Ω) = O(h2). (7.26)

Note that the norm above is not the energy norm; the error is of first order if measured in
the energy norm. For estimate (7.26) to hold, assumptions have to be made on the mesh
quality and on the smoothness of the solution to the variational problem (7.8). Following
conditions are sufficient.

(i) (Mesh quality.) The smallest angle of any of the triangles is bounded below as the
mesh is refined. This means that no triangle successively can become infinitely thin.

(ii) (Smoothness.) The boundary of Ω is smooth. Alternatively, the boundary is polygonal
and the domain is convex. (If Ω is not polygonal to start with, it is typically approxi-
mated with a succession of polygonal domains Ωh such that Ωh → Ω as h→ 0).

The mesh quality condition above is maintained if the triangles, as the mesh is refined, are
subdivided into four triangles in the way indicated in figure 7.12. Refining each triangle in
the mesh in this way reduces all triangular sides with a factor 1/2. The error will thus be
reduced with a factor 1/4 (for problems on convex domains at least).
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Higher accuracy can thus be obtained through refinement of the mesh (“h method”).
This should preferably be done adaptively, in the parts of the domain where it is needed, to
prevent the size of the stiffness matrix to become too large. There are automatic methods
for this. Higher accuracy can also be obtained through higher order on the polynomials on
each triangle (“p method”). For instance, the error in the sense (7.26) can be improved to
third order if Vh consists of continuous functions that are quadratic on each element.

7.11 Alternative Elements

Quadrilaterals, that is, a geometric figure obtained by connecting four points in the plane
by straight lines, can be used to partition the domain instead of triangles, see figure 7.13.
In this case will the approximating space Vh contain globally continuous functions who vary
linearly along the edges of each quadrilateral. However, the functions will no longer be linear
within the elements. In the special case when the quadrilaterals are rectangles oriented in
the coordinate directions, a function vh ∈ Vh will be bilinear, that is, of the form

vh(x, y) = a + bx + cy + dxy

on each element. The nodal values of vh (the values of vh at the four corners of the rectangle)
uniquely determine the four coefficients above.

Quadrilaterals and, in particular, rectangular elements yields a regular structure that
may give high solution accuracy and allow efficient solutions of the associated linear systems.
It is, however, harder to generate such meshes automatically on complicated geometries
compared to triangular meshes.

For three space dimensions, triangular and quadrilateral meshes generalise to tetrahedral
and hexahedral meshes (figure 7.14) with advantages and limitations as for corresponding
meshes in two space dimensions.

For higher order equations, such as the Euler-Bernoulli model of a bending beam

y′′′′(x) = −f(x)

or the biharmonic equation
∆2u = 0

it is necessary to use smoother elements for which the derivatives are continuous continuous
across element boundaries. So, for example, in the one-dimensional beam bending problem
it is possible to define vh ∈ Vh as Hermite piecewise cubic polynomials:

φ0(s) = (s− 1)2(2s + 1)
φ1(s) = s2(3− 2s)
ϕ0(s) = (s− 1)2s
ϕ1(s) = s2(s− 1)







to define a cubic polynomial, p(s), s ∈ [0, 1] that interpolates v(0), dv(0)
ds , v(1) and dv(1)

ds
can be written as

p(s) = v(0)φ0(s) + v(1)φ1(s) +

(
dv(0)

ds

)

ϕ0(s) +

(
dv(1)

ds

)

ϕ1(s).

The nodal values of vh are the values of the solution at the nodes and the values of the
derivative at the node.
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Figure 7.13: A quadrilateral mesh.

Figure 7.14: Meshes in three space dimensions can be composed of non-overlapping tetra-
hedra (left) or hexahedra (right).
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Chapter 8

Iterative Solution of
Simultaneous Equations

8.1 Banded Systems

Matrices that arise in practice from applications such as Finite Element Analysis are typically
very large, a matrix of size 106 is not uncommon, but the coefficient matrix may have no
more than 100 nonzeros in any row, i.e. over 99.9% of the matrix is zero. In such cases
Guass Elimination involes a lot of wasted arithmetic i.e. 0− 0× 0. Such matrices typically
have properties (Symmetric, Positive Definite, Sparse) that make them readily solvable, if
the appropriate methods are used.

Definition 22 • Matrices with a large number of zero elements are Sparse Matrices

• Band Matrices are particularly simple sparse matrices, with all the non-zeros near the
main diagonal,

max
(i)
{i−min

j
{aij 6= 0}}

is the semi-bandwidth, i.e. the maximum distance along a row from the diagonal to a
non-zero component.

• Gauss Elimination of Sparse matrices leads to fill-in, that is components that are zero
in A are not zero in L + U

In general when solving banded systems, by Gauss Elimination, zeros within the band
are filled in, but no computation is necessary outside the band of non-zeros, so for matrices
with a small and constant bandwidths (e.g. figure 8.1) for which no pivoting is required (e.g.
symmetric, positive definite matrices), in particular tridiagonal matrices (semi-bandwidth
= 1), banded GE is highly efficient. Any form of pivoting interchanges the rows and hence
modifies the structure of the matrix, in particular it changes the value of the semi-bandwidth.
A banded GE algorithm for an n×N matrix positive definite matrix (for which no pivoting
is required) with semi-bandwidth M can be written as in figure 8.2. So the computational
cost is O(NM2) and not O(N3).

8.2 Jacobi iteration

Example 9 To solve
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Figure 8.1: Non-zeros in a small sparse matrix, from a 2D discretisation problem

do k = 1 : N − 1
do i = k + 1 : min{k + M, N}

mik = aik/akk

do j = k + 1 : min{k + M, N}
aij = aij −mikakj

enddo j
bi = bi −mikbk

enddo i
enddo k

Figure 8.2: Banded Elimination

10 x1 − x2 + 2 x3 = 6
− x1 + 11 x2 − x3 + 3 x4 = 25
2 x1 − x2 + 10x3 − x4 = −11

3x2 − x3 + 8 x4 = 15

(the solution is x =
(

1 2 −1 1
)T

) write the equations as

x1 = 1
10 (6 + x2 − 2x3)

x2 = 1
11 (25 + x1 + x3 − 3x4)

x3 = 1
10 (−11− 2x1 + x2 + x4)

x4 = 1
8 (15− 3x2 + x3)
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Starting from x(0) =
(

0 0 0 0
)T

we generate a sequence of approximate solutions

x(n), n = 0, 1, 2, · · · such that

x
(n+1)
1 = 1

10 (6 + x
(n)
2 − 2x

(n)
3 )

x
(n+1)
2 = 1

11 (25 + x
(n)
1 + x

(n)
3 − 3x

(n)
4 )

x
(n+1)
3 = 1

10 (−11− 2x
(n)
1 + x

(n)
2 + x

(n)
4 )

x
(n+1)
4 = 1

8 (15− 3x
(n)
2 + x

(n)
3 )

(8.1)

Hence

x(0) =







0
0
0
0







, x(1) =







0.6
2.2727
−1.1000
1.875







, x(2) =







1.0473
1.17159
−0.8052
0.8852







, x(3) =







0.9326
2.0533
−1.0493
1.1309







, · · ·

· · · , x(8) =







1.0006
1.9987
−0.9990
0.9989







, x(9) =







.9997
2.0004
−1.0004
1.0006







The method in the example is known as Jacobi iteration, in order to solve Ax = b we
partition the matrix as

A = D + (A−D)

where the matrix D contains only the diagonal components of A, hence

A =











a11 · · · a1i · · · a1N

...
...

...
ai1 · · · aii · · · aiN

...
...

...
aN1 · · · aNi · · · aNN











, D =











a11

. . .

aii

. . .

aNN











and

A−D =











0 · · · a1i · · · a1N

...
. . .

...
...

ai1 · · · 0 · · · aiN

...
...

. . .
...

aN1 · · · aNi · · · 0











We can then write
Ax = b

as
Dx = (D −A)x + b.

Since D is a diagonal matrix with components aii, i = 1, · · · , N , it follows that D−1 is a
diagonal matrix with components 1

aii
, i = 1, · · · , N and hence the rearrangement in the

example corresponds to
x = D−1 ((D −A)x + b)

and the iteration can be written as

x(n+1) = D−1
(

(D −A)x(n) + b
)
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In general iterative schemes can be written as

x(n+1) = Mx(n) + g

for Jacobi we have M ≡ D−1(D − A) and g ≡ D−1b. Note there are two Jacobi Iterative
methods the second method is for computing eigenvalues.

Frequently the matrix A is partitioned as A = D + L + U where L and U denote the
lower and upper triangle terms respectively, this partition is not to be confused with the LU
factorisation defined earlier, here with

A =











a11 · · · a1i · · · a1N

...
...

...
ai1 · · · aii · · · aiN

...
...

...
aN1 · · · aNi · · · aNN











then

L =











0
...

. . .

ai1 · · · 0
...

...
. . .

aN1 · · · aNi · · · 0











and U =











0 · · · a1i · · · a1N

. . .
...

...
0 · · · aiN

. . .
...
0











Then
x(n+1) = D−1

(

−(L + U)x(n) + b
)

As with the power method, we generate a sequence of approximate solution and we
need to know when to stop the sequence, say when the components of of the difference
x(n+1) − x(n) are sufficiently small e.g.

|x(n+1)
i − x

(n)
i | ≤ 0.001 |x(n)

i | i = 1, 2, · · · , N

Iterative methods do not always work, i.e. the sequence x(n), n = 0, 1, · · · does not always
converge to the solution of Ax = b, the sequence can diverge (it cannot converge to the
wrong answer) and so an additional termination condition such as n ≥ 100 is essential. If
all the eigenvalues of the matrix M are less than 1 in modulus, the method will converge.
In the case of the Jacobi iteration a more simple interpretation is that if A is diagonally
dominant the method works, i.e. if

|aii| ≥
N∑

j=1
j 6=i

|aij |.

In the example 9

10 ≥ 1 + 2 + 0
11 ≥ 1 + 1 + 3
10 ≥ 2 + 1 + 1
8 ≥ 0 + 3 + 1
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or

M =







0 1
10 − 1

5 0
1
11 0 1

11 − 3
11

− 1
5

1
10 0 1

10
0 − 3

8
1
8 0







which has eigenvalues -.4264, .1860, -.1040 and .3445 (found using Matlab). This explains
why the error in each component in the above example oscillates in sign (the dominant
eigenvalue is negative).

Note that it is the matrix components that determine whether the iteration converges,
the right hand side vector b does not affect the convergence.

Example 10 bad example
If we had written the equations of the example 9 in a different order (i.e. interchanging

equations 2 and 3) and solved them as

x1 = 1
10 (6 + x2 − 2x3)

x2 = 11 + 2x1 + 10x3 − x4

x3 = −25− x1 + 11x2 + 3x4

x4 = 1
8 (15− 3x2 + x3)

we would have obtained

x(0) =







0
0
0
0







, x(1) =







0.6
11
−25
1.875







, x(2) =







6.7
−239.6
101.0
−5.37







, x(3) =







−43.57
1040.0
−2684.2
104.4







8.3 Gauss-Seidel iteration

In the Jacobi iteration (8.1) we updated all the values using only x
(n)
i , i = 1, 2, · · · , N i.e.

we did not make use of (say) the new value of x1 when computing the new value of x2 and
so on. We could use the iteration

x
(n+1)
1 = 1

10 (6 + x
(n)
2 − 2x

(n)
3 )

x
(n+1)
2 = 1

11 (25 + x
(n+1)
1 + x

(n)
3 − 3x

(n)
4 )

x
(n+1)
3 = 1

10 (−11− 2x
(n+1)
1 + x

(n+1)
2 + x

(n)
4 )

x
(n+1)
4 = 1

8 (15− 3x
(n+1)
2 + x

(n+1)
3 )

(8.2)

then we have

x(0) =







0
0
0
0







, x(1) =







0.6
2.3227
−.9873
.8789







, x(2) =







1.030
2.037
−1.014
0.9844







,

x(3) =







1.0065
2.0036
−1.0025
.9983







, x(4) =







1.0009
2.0003
−1.0003
.9999






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This method is known as Gauss-Seidel iteration and, when it works, usually converges
faster than the Jacobi iteration. In terms of the matrix splitting A = L + D + U the
Gauss-Seidel iteration can be written as:

x(n+1) = D−1
(

−Lx(n+1) − Ux(n) + b
)

or
x(n+1) = (D + L)−1

(

−Ux(n) + b
)

In general the speed of convergence depends on the eigenvalues of the iteration matrix
M since if

x(n+1) = Mx(n) + g (8.3)

is the iteration, then the exact solution satisfies

x = Mx + g

and the error e(n) ≡ x(n) − x satisfies

e(n+1) = Me(n) (8.4)

which is the formula used in the power method. Again for a bad ordering (with the largest
eigenvalue of the iteration matrix M being greater than 1 in modulus), the error cannot
decrease and the iteration diverges.

8.4 Successive Overrelaxation:SOR

In the Gauss-Seidel iteration (8.2) we could use the iteration in the form

x
(n+1)
1 = x

(n)
1 + 1

10 (6− 10x
(n)
1 + x

(n)
2 − 2x

(n)
3 )

x
(n+1)
2 = x

(n)
2 + 1

11 (25 + x
(n+1)
1 − 11x

(n)
2 + x

(n)
3 − 3x

(n)
4 )

x
(n+1)
3 = x

(n)
3 + 1

10 (−11− 2x
(n+1)
1 + x

(n+1)
2 − 10x

(n)
3 + x

(n)
4 )

x
(n+1)
4 = x

(n)
4 + 1

8 (15− 3x
(n+1)
2 + x

(n+1)
3 − 8x

(n)
4 )

(8.5)

This is known as the correction form and can be written as

x(n+1) = x(n) + D−1r

where the residual r = b − Ax is evaluated component-by-component using the most
recent values so

ri = bi −
i−1∑

j=1

aijx
(n+1)
j −

N∑

j=i

aijx
(n)
j

The SOR can be written as
x(n+1) = x(n) + ωD−1r

where ω is the relaxation parameter, ω > 1 is over relaxation. In term of the partition
of A the iteration can be written as

x(n+1) = (D + ωL)−1
(

(1 − ω)Dx(n) − ωUx(n) + ωb
)

The Jacobi iteration can also be written in correction form as

x(n+1) = x(n) + D−1r(n)
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8.5 Extrapolation

Given the form of the error equation (8.4) for linear iterative methods, eventually the error
vector e(n) will approximate an eigenvector of the iteration matrix M , but more importantly,
the error equation (8.4) can be approximated by

e(n+1) ≈ λe(n) (8.6)

hence
x(n) = e(n) + x

and
x(n+1) = e(n+1) + x

≈ λe(n) + x

so eliminating e(n) gives

x ≈ 1

1− λ
(x(n+1) − λx(n)) (8.7)

The formula (8.7) can be used to be compute a more accurate approximate solution iff we
can estimate the value of λ. But we can replace n by n− 1 in (8.7) thus

x ≈ 1

1− λ
(x(n) − λx(n−1))

and hence
x(n+1) − λx(n) ≈ x(n) − λx(n−1)

so
x(n+1) − x(n) ≈ λ(x(n) − x(n−1))

and defining δδδ(n) ≡ x(n+1) − x(n) gives the approximation

λ̃ =
δδδ(n)T

δδδ(n−1)

δδδ(n−1)T
δδδ(n−1)

(8.8)

substituting in (8.7) leads to an improved approximation

x̃ = x(n+1) − λ̃

1− λ̃
δδδ(n) (8.9)
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Chapter 9

Large Linear Systems

9.1 Theory of Gradient Methods

For a more general sparse matrix, that does not have a narrow regular band structure
GE is not efficient and it is necessary to use iteration. Unfortunately, simple iteration
such as Jacobi or Gauss-Seidel converge rapidly for matrices that are strongly diagonally
dominant (|aii| ≫

∑

j 6=i |aij |) and matrices from (say) finite element analysis are not strongly
diagonally dominant, so alternatives methods that convergence faster are required. To
cut down on the subscripts/superscripts in this chapter we adopt the following simplifying
notation: x ≡ x(i) is the current approximation and x+ ≡ x(i+1) is the next iterate, etc..,
and the exact solution is x∗.

At each iteration, given a search direction p, then the approximate solution is updated
as

x+ = x + αp (9.1)

where α is computed by a local minimisation that will be explained below. The residual
r = b − Ax is also updated rather than computed explicitly and so from (9.1) multiplying
by A

Ax+ = Ax + αAp

and it follows that
r+ = r − αAp (9.2)

If the matrix A is symmetric and positive definite then the quadratic form xT Ax can be
used to define a norm for the vector x as

‖x‖A =
(
xT Ax

)1/2
.

When A is symmetric positive definite then A−1 is also symmetric positive definite and
hence the quadratic form xT A−1x also defines a norm. For conjugate gradients, the at each
iteration the parameter α is computed by local minimisation of the residual in terms of such
a norm, i.e.

min
α

rT
+A−1r+ = min

α
(b − Ax+)T A−1(b − Ax+)

where as A = AT and so xT Ay = yT Ax and from the update formula (9.2)

rT
+A−1r+ = (r − αAp)T A−1(r − αAp)

= rT A−1r − 2αpT r + α2pT Ap
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the gradient is zero at minimum hence differentiating w.r.t. α gives

α =
(b − Ax)T p

pT Ap
=

rT p

pT Ap
(9.3)

The error can be written in terms of the residual as e = x∗ − x = A−1r and the norm to
be minimised can be rewritten as

rT
+A−1r+ = eT

+Ae+

Thus conjugate gradients requires

min
α

eT
+Ae+.

For any symmetric positive definite matrix B other methods are derived with

min
α

eT
+Be+

i.e. minimising any error norm

‖e‖B =
(
eT Be

)1/2
.

9.1.1 Computing the Search Direction

At each iteration of conjugate gradients we must compute the value of α (9.3), update the
approximation (9.1), update the residual (9.2) but first it is necessary to compute the new
search direction.

At each step define the matrix P in which the columns are the search directions, so P+ =
[

P p+

]
. Similarly define R in which the columns are the residuals, so R+ =

[
R r

]
.

Then span{P} as the space spanned by the search directions. If we require that x+ is also
optimal in the whole space spanned by the search directions so far, i.e. a global minimum
not just a local minimum, then writing x as a linear combination of all the search directions
gives

x+ = Pa + αp

where the coefficients a and α solve the minimisation problem

min
a, α

rT
+A−1r+ = min

a, α
(b − APa − αAp)T A−1(b − APa − αAp)

then expanding the quadratic form,

rT
+A−1r+ = (b − APa − αAp)T A−1(b − APa − αAp)

= bT A−1b − 2αpT b + α2pT Ap

− 2aT PT b + aT PT APa

+ 2αaT PT Ap

The two minimisations, w.r.t. α and w.r.t. a are uncoupled iff

aT PT Apα = 0
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as α and a are arbitrary this condition becomes

PT Ap = 0 (9.4)

that is, the search directions are conjugate (or A-orthogonal),

pT Aq = 0 for any p 6= q

The matrix A is symmetric positive definite so we can interpret (xT Ax)1/2 as a norm and
hence pT Aq as an inner product.

9.1.2 Convergence

The minimisation w.r.t. α leads to (9.3) and the other minimisation

min
a

(b − APa)T A−1(b − APa)

after differentiating leads to

PT (b − APa) = PT r = 0. (9.5)

If in addition,
PT

+ r = pT
+b− pT

+APa = pT
+b = 0

then b ∈ span{AP} and
x∗ = A−1b ∈ span{P}

⇒ x∗ = x = PAa

⇒ r = 0

so that either the iteration has converged or pT r 6= 0.
Given that p(1) = r(0) = b it can be proved by induction from (9.4) and (9.5) that

span{R} = span{P+}.

Thus there exists a nonsingular triangular matrix S corresponding to the change in basis
R = P+S, so from (9.5),

PT r+ = 0 = RT r+ (9.6)

and the residuals are orthogonal, i.e. rT s = 0.

9.1.3 Recurrence Relation for the search direction

We assume that the update for p can be written in the form

p+ = r+ + βp (9.7)

The recurrence (9.2) for the residual is

r+ = r − αAp

Reducing subscript values in (9.7) gives

r = p − β−p−
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then substituting for r

r+ = p − β−p− − αAp

and substituting for r+ using the original (9.7)

p+ = − αAp + (1 + β)p − β−p−,

this is a 3-term recurrence relation for updating the search direction and it is sometimes used
as an alternative to (9.7) in the computation. From (9.7) the conjugacy condition pT

+Ap = 0
gives

β = − rT
+Ap

pT Ap
(9.8)

The update formulae (9.2) and (9.8) involve 3 different inner products so the efficiency of
the method can be improved using the orthogonality of the residuals rT

+r = 0 with

r+ = r − αAp

gives

rT
+r+ = − αrT

+Ap.

Similarly rT
+p = 0 and so from (9.7)

rT
+p+ = rT

+r+

and from (9.2)

rT r = αpT Ap.

So (9.8) becomes

β = −rT
+r+

rT r
(9.9)

with (9.2) becoming

α =
rT r

pT Ap
. (9.10)

Hence with these modifications to the computations of the scalars the Basic CG Algo-
rithm becomes as shown in figure 9.1.

9.2 Preconditioning

The key to rapid convergence of iterative methods is the preconditioning, that is in order to
solve Ax = b, then the iteration is applied to the system

Ãx = b̃

where Ã = M−1A and b̃ = M−1b. Alternatively with M = MLMR solve

M−1
L AM−1

R y = M−1
L b.

The two solutions are connected by MRx = y. If the matrix M−1
L AM−1

R is to be symmetric,
when A is symmetric, then ML = MT

R .
The matrix M = MLMR is an approximation to A
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x(0) = 0; r(0) = p(0) = b

i = 0; ρ(0) = r(0)T
r(0)

while not converged do

v(i) = Ap(i)

α = ρ(i)/p(i)T
v(i)

x(i+1) = x(i) + αp(i)

r(i+1) = r(i) − αv(i)

ρ(i+1) = r(i+1)T
r(i+1)

β = ρ(i+1)/ρ(i)

p(i+1) = r(i+1) + βp(i)

i = i + 1

enddo

Figure 9.1: Basic Conjugate Gradients

9.2.1 Preconditioned Conjugate Gradients (PCG)

The algorithm for PCG requires one linear solve

MLMRz = r

per iteration, the conjugacy conditions become

r(j)T
M−1

R M−1
L r(i) = 0

p(j)T
M−1

R AM−1
L p(i) = 0

The derivation is straightforward with the substitutions

r → MLr

v → MLv

x → M−1
R x

p → M−1
R p

The PCG Algorithm can be written as in figure 9.2. The choice of a good preconditioner
can have a dramatic effect upon the rate of convergence. Popular choices are
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x(0) = 0; r(0) = b

i = 0; z(0) = p(0) = M−1
R M−1

L b ρ(0) = r(0)T
z(0)

while not converged do

v(i) = Ap(i)

α = ρ(i)/p(i)T
v(i)

x(i+1) = x(i) + αp(i)

r(i+1) = r(i) − αv(i)

z(i+1) = M−1
R M−1

L r(i+1) ie Solve MLMRz(i+1) = r(i+1)

ρ(i+1) = r(i+1)T
z(i+1)

β = ρ(i+1)/ρ(i)

p(i+1) = z(i+1) + βp(i)

i = i + 1

enddo

Figure 9.2: Preconditioned Conjugate Gradients

• Diagonal Preconditioning

M = diag(A) so ML = MR = M1/2

• Incomplete Cholesky Factorisation

– By position: e.g. ICCG(0), the position of the nonzeros in M is governed by the
position of the nonzeros in A.

– By value: Components of M are nonzero if component of L in A = LLT is large
enough
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Chapter 10

Monte Carlo Methods

Introduction

The problem is to compute an approximation to

I(f) =

∫

Ω

f(x)dx

where the region Ω = Id, the unit hypercube in R
d. The classical Monte Carlo method is

to evaluate the function f at n points that are chosen at random in Ω so that

I(f) ≈ In(f) =
|Ω|
n

n∑

k=1

f(xk)

Monte Carlo methods have become popular in the financial calculations, for example collater-
alized mortgage obligations, involving very high dimensional integrals e.g. 30 year mortgages
implies d = 360.

Low Discrepancy Sequences

The problem with random numbers is - they are random - they can cluster in some regions
and leave gaps in other regions (see figure 10.1(a)). However a completely regular pattern
such as figure 10.1(b) has serious drawbacks if depends strongly on one variable, say f(x, y) ≈
f(x), as there are essentially only 4 distinct points at which evaluate the function. A
structured, but nonuniform, pattern gives a better coverage (see figure 10.1(b)). Matlab
versions of the quasirandom number generator, [1], [5], are available from the website [2].

Pseudo Random Number Generators

The numbers used in figure 10.1(a) are not random. Computers generate pseudorandom
numbers which are generated by a deterministic algorithm, but which appear to be random,
i.e. there is no identifiable sequence in either the short term or long term and the numers
are uniformily distributed over the given range. The most common algorithm is a l inear
congruence generator,

Xn+1 = (aXn + c)modm (10.1)
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Figure 10.1: Distributing Points

(this is read as Xn+1 is cogruent to aXn +c modulo m) where a, 0 ≤ a < m is the multiplier,
c, 0 ≤ c < m is the increment and X0 is the seed. For example a = 11, b = 0 and m = 101
with X0 = 17 gives

• X1 = 11× 17mod101 = 187mod101 = 86

• X2 = 11× 86mod101 = 946mod101 = 37

• The series is 17, 86, 37, 3, 33, 60, 54, . . .

The period is m if c an m are relatively prime and a− 1 is divisible by all the prime factors
of m. The generator is extremely sensitive to the choice of m, a and c. The choice of a =
16807, c = 0, m = 2147483647 is a very good set of parameters for this generator. These
parameters were published in [3]. This generator often known as the minimal standard
random number generator. For more information on this and the more recent Mersenne
Twister type of generator consult Wikipedia [7]. Often a sequence is normalised to lie in
the range [0, 1], in the sequence above this is by dividing by 101 to give

0.16832, 0.85148, 0.36634, 0.02970, 0.32673, 0.59406, 0.53465, . . .

Example 11 To compute the area of a quadrant of the unit circle
∫ 1

0

√
1− x2dx.

• Hit-or-miss Monte Carlo
Construct a sequence of n cordinate pairs 0 ≤ x, y ≤ 1 compute the number k that
lie inside the circle, this gives the ratio k/n as an approximation of the area of the
quadrant to the area of the unit square. In two examples with n = 1000, k = 809 with
n = 10000, k = 7847 with π/4 = 0.78540.

• Crude Monte Carlo
Construct sequence of x values evaluate the height y =

√
1− x2 estimate quadrant as

a rectangle with the mean height y = 1
n

∑n
i=1 yi, with the same sequences of x-values

as above with n = 1000, y = 0.79177 and with n = 10000 y = 0.78522.

The pseudo random numbers generated by the normalised (10.1) correspond to a uniform
distribution on [0,1]. If any other distribution is required (e.g. exponential or normal) then
a simple transformation is required.

Theorem 23 The Central Limit Theorem
As the the sample size increases, the distribution of the sample mean tends to a normal
distribution even if the original population is not normally distributed.
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In the example above, the sample size in N and the sample mean is n/N , the sampled values
are either 0 or 1. The mean of n numbers x1, x2, . . . , xn is the sample mean x = 1

n

∑n
i=1 xi.

The population mean is denoted by µ. The sample variance is s2 = 1
n

∑n
i=1(xi − x)2 =

1
n

∑n
i=1 x2

i − x2, the population variance is denoted by σ2. From the central limit theorem
it follows that for large n, the sample mean is from a normal distribution:

• The mean of the distribution of sample means for samples of size n is the population
mean µ.

• The variance of the distribution of sample means for samples of size n is σ2/n where
σ2 is the population variance

It is then possible to use properties of the normal distribution to compute confidence intervals
for the approximate value. For a normal distribution it is possible to find an interval about
the mean such that (say) 95% of all values lie within the interval, his interval is known as
the 95% confidence interval. It can be shown that

P (µ− 1.96σ ≤ X ≤ µ + 1.96σ) = 0.95

different confidence intervals:

90 95 99 99.9
1.645 1.960 2.326 3.291

The confidence interval is estimated using the sample mean and variance as
[

x− 1.96s√
n

, x +
1.96s√

n

]

Example 11 continued To compute the area of a quadrant of the unit circle
∫ 1

0

√
1− x2dx.

• Hit-or-miss Monte Carlo
With n = 1000, s2 = 0.15452 so s = 0.39309 and the 95% confidence interval is
[0.78464, 0.83336], n = 10000, s2 = 0.16895 so s = 0.41103 and the 95% confidence
interval is [0.77664, 0.79276].

• Crude Monte Carlo
With n = 1000, s2 = 0.22517 so s = 0.050701 and the 95% confidence interval is
[0.77782, 0.80573], n = 10000, s2 = 0.050064 so s = 0.22375 and the 95% confidence
interval is [0.78083, 0.7896].

Reducing the Variance

In the example it was clear that a significant increase the size of the sample and hence
increase the computation does not necessarily significantly decrease the variance and hence
reduce the confidence interval. There are two standard techniques for reducing the variance.

Extracting the regular part
Write the integrand as f = g+h where g can be integrated analytically and where h exhibits
little variation.

Example 11 continued To compute the area of a quadrant of the unit circle
∫ 1

0

√
1− x2dx.

Write
√

1− x2 = 1− x2 + (
√

1− x2 − 1 + x2) = g + h, then
∫ 1

0 1− x2dx = 2
3 and using

the same sequence of x values as before, with N = 1000 h +
∫

g = 0.78084, s2 = 0.0074034
and the confidence interval is [0.7755, 0.78617], with N = 10000 h +

∫
g = 0.78525, s2 =

0.0078776 and the confidence interval is [0.78351, 0.78699].
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Antithetic Variables
The variance can be reduced by choosing two related sets of random numbers, computing
two estimates of the integral and then combining them in a particular way. These sets of
random number are xi and 1 − xi. The variable 1 − xi is the antithetic variable to xi. So
∫

fdx =
∫

(f1 + f2)dx with
∫

f1dx estimated using xi and
∫

f2dx estimated using 1− xi so
f1(x) = 1

2f(x) and f2(x) = 1
2f(1−x) and for each xi compute f3(xi) = 1

2f(xi)+ 1
2f(1−xi)

and the corresponding sample mean and sample variance.

Example 11 continued To compute the area of a quadrant of the unit circle
∫ 1

0

√
1− x2dx.

Write f1 =
√

1− x2 and f2 =
√

1− (1− x)2, using the same sequence of x values as before,
with N = 1000 f1 + f2 = 0.78715, s2 = 0.0068569 and the confidence interval is [0.78202,,
0.79228], with N = 10000 f1 + f2 = 0.78492, s2 = 0.0068149 and the confidence interval is
[0.78331, 0.78654].

Low Discrepancy Sequences

Given a set X of points xk, k = 1, . . . , N in the hypercube Id ⊂ R
d.

Definition 24 Counting function: For any G ⊂ Id define the counting function SN (G) as
the number of points of X in G.

For any x = (x1, · · · , xd)
T ∈ Id, define

Gx = [0, x1)× · · · × [0, xd)

Definition 25 Discrepancy: The discrepancy of set X is

D∗(X) = sup
x∈Id

|SN (Gx)−Nx1 · · ·xd|

This discrepancy measures how much the clusters and the gaps differ from the “mean”
density of points.

Definition 26 Primitive Polynomial:

P ≡ xd + a1x
d−1 · · ·+ ad−1x

1 + 1

with ak ∈ {0, 1} and P is irreducible (mod 2)

Example 12 1. (1 + x)(1 + x) = 1 + 2x + x2 = (1 + x2)mod2 so 1 + x2 is reducible

2. (1 + x)(1 + x + x2) = 1 + 2x + 2x2 + x3 = (1 + x3)mod2 so 1 + x3 is reducible

3. 1 + x, 1 + x + x2, 1 + x + x3 and 1 + x2 + x3 are all irreducible.

Definition 27 XOR: The operator ⊕ is the bitwise exclusive-or (bitwise addition modulo
2).

Example 13
a = 13 = 11012

b = 9 = 10012

a⊕ b = 01002 = 4
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Assume that mi is an odd integer 0 < mi < 2i, and define vi = mi/2i then {mi} or
equivalently {vi} are define by the recurrence

vi = a1vi−1 ⊕ a2vi−2 · · · ⊕ ad−1vi−d+1 ⊕ vi−d ⊕ vi−d/2d

mi = 2a1mi−1 ⊕ 22a2mi−2 · · · ⊕ 2d−1ad−1mi−d+1 ⊕ 2dmi−d ⊕mi−d

then
xn = b1v1 ⊕ abv2 · · ·

where n = (· · · b3b2b1)2. Full details can be found in [1] and for example [4].

Example 14 Take polynomial: x3 + x + 1 and the initial values Then

i 1 2 3
mi 1 3 7
vi 0.1 0.11 0.111

Table 10.1: Direction numbers

mi = 4mi−2 ⊕ 8mi−3 ⊕mi−3

m4 = 12⊕ 8⊕ 1
= 1100⊕ 1000⊕ 0001
= 0101
= 5

m5 = 28⊕ 24⊕ 3
= 11100⊕ 11000⊕ 00011
= 00111
= 7

m6 = 20⊕ 56⊕ 7
= 010100⊕ 111000⊕ 000111
= 101011
= 43

Then
n = 1 x1 = v1 = 0.12

n = 102 x2 = v2 = 0.112

n = 112 x3 = v1 ⊕ v2
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