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Chapter 1

Preliminaries

1.1 Notation

In Rn assume that u = u(x1, . . . , xn) then the partial derivatives w.r.t. xi (assuming
xj , j 6= i are constant) can be denoted by ∂u

∂xi
, uxi

or ∂xi
u and the differential operator

can be denoted by ∂
∂xi

or ∂xi
. A second derivative can be ∂2u

∂x2 , uxx or ∂xxu. The operator
notation is often extended to the multi-index notation, where for x = (x1, . . . , xn) and
α = (α1, . . . , αn) with xi ∈ R and αi non-negative integers,

∂α =
∂α1

∂x1
α1
· · · ∂αn

∂xn
αn

The gradient operator is denoted by the vector ∇ ≡
(

∂

∂x1
· · · ∂

∂xn

)T

.

These notes include material taken from on-line lecture notes [9], [3] and from Wikipedia
[11]

1.2 Fourier Series

Any reasonable function that is periodic with period 2l, can be written as a infinite linear
combination of sin and cos functions

f(x) =
1

2
B0 +

∞∑

n=1

(
An sin

(nπx
l

)
+Bn cos

(nπx
l

))
(1.1)

Given the identities
1

l

∫ l

−l

sin
(nπx

l

)
sin
(mπx

l

)
= δmn

1

l

∫ l

−l

cos
(nπx

l

)
cos
(mπx

l

)
= δmn

1

l

∫ l

−l

sin
(nπx

l

)
cos
(mπx

l

)
= 0

1
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It follows that

An =
1

l

∫ l

−l

f(x) cos
(nπx

l

)
dx.

and

Bn =
1

l

∫ l

−l

f(x) sin
(nπx

l

)
dx.

Assume the f(−x) = −f(x) (f is an odd function) then Bn = 0 and (1.1) becomes

f(x) =

∞∑

n=1

An sin
(nπx

l

)
(1.2)

with

An =
2

l

∫ l

0

f(x) cos
nπx

l
dx.

if f is even then An = 0 and

f(x) =
1

2
B0 +

∞∑

n=1

Bn cos
(nπx

l

)
(1.3)

and

Bn =
2

l

∫ l

0

f(x) sin
nπx

l
dx.

Theorem 1 Parseval’s1 Theorem: If

A(x) =
∞∑

n=−∞
ane

inx and B(x) =
∞∑

n=−∞
bne

inx

respectively. Then
∞∑

n=−∞
anbn =

1

2π

∫ π

−π

A(x)B(x)dx

1.3 Fourier Transforms

The Fourier Transform of function φ is

Fφ(ξ) = φ̂(ξ) =

∫

Rn

e−ix·ξφ(x)dx

and the inverse transformation is

F−1ψ(x) =
1

(2π)n

∫

Rn

eix·ξψ(ξ)dξ

These are also known as continuous Fourier transforms to distinguish them from the
discrete Fourier transforms mentioned later.

1Marc-Antoine Parseval des Chênes (April 27, 1755 – August 16, 1836) was a French mathematician
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1.3.1 Table of important Fourier transforms

a · g(t) + b · h(t) a ·G(ξ) + b ·H(ξ)
g(t− a) e−iaξG(ξ)
eiatg(t) G(ξ − a)
g(at) 1

|a|G
(

ξ
a

)

G(t) g(−ξ)
dng(t)

dtn (iξ)nG(ξ)

tng(t) in dnG(ξ)
dξn

(g ∗ h)(t)
√

2πG(ξ)H(ξ)

g(t)h(t) (G∗H)(ξ)√
2π

e−αt2 1√
2α
· e− ξ2

4α

eiat2 1√
2a
· e−i

“

ξ2

4a
−π

4

”

cos(at2) 1√
2a

cos
(

ξ2

4a − π
4

)

sin(at2) −1√
2a

sin
(

ξ2

4a − π
4

)

e−a|t|
√

2
π · a

a2+ξ2

1√
|t|

1√
|ξ|

Theorem 2 Plancherel’s2 theorem:
∫

Rn

|f(t)|2 dt =

∫

Rn

|F (ξ)|2 dξ.

Fourier transforms are often used to prove stability, i.e. boundedness, of the solution by
invoking Plancherel’s theorem once the boundedness of the Fourier transform has been
established (see sections 3.4 and 9.4.1). Chapters 7 and 8 also require Fourier transforms.
These sections and chapters can be omitted if Fourier transforms have not been studied
previously.

1.4 The Divergence theorem

The fundamental theorem of calculus states that:

∫ b

a

f ′ dx = [f ]ba

with f = vw, leads to integration parts

∫ b

a

(vw)′ dx = [vw]ba

hence ∫ b

a

vw′ dx = −
∫ b

a

v′w dx + [vw]ba

2Michel Plancherel (16 January 1885 – 4 March 1967) was a Swiss mathematician
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if w = u′ then

∫ b

a

vu′′ dx = −
∫ b

a

v′u′ dx + [vu′]ba

In higher dimensions there is the divergence theorem, which in its simplest form is:

Theorem 3 ∫

Ω

∇ · F dΩ =

∫

Γ

F · n ds

with F = vw and w = ∇u this leads to
∫

Ω

∇ · (v∇u) dΩ =

∫

Γ

v∇u · n ds

as ∇u · n = ∂nu, the outward normal derivative this can be written as

∫

Ω

v∇ · ∇u dΩ = −
∫

Ω

∇v · ∇u dΩ +

∫

Γ

v∂nu ds



Chapter 2

Introduction to PDEs

2.1 1st order Equations

Definition 4 A partial differential equation[7] is a relation of the form

F (x, y, . . . , u, ux, uy, . . . , uxx, uxy, . . .) = 0 (2.1)

where F is a function of the variables x, y, . . . , u, ux, uy, . . . , uxx, uxy, . . .; a function
u(x, y, . . .) of the independent variables x, y, . . . is sought such that (2.1) is identically
satisfied in these independent variables if u(x, y, . . .) and its derivatives are substituted
in F .

Ordinary differential equations are typically satisfied by a family of functions that depend
on a number of arbitrary parameters, for example the general solution of u′′−4u−sin(x) =
0 is u(x) = Ae2x +Be−2x− 1

5 sin(x) where A and B are arbitrary. The solution of partial
differential equations is not so straightforward. Consider first the solution of a 1st order
linear homogeneous equation with constant coefficients in R2.

aux + buy = 0 ≡ (a, b) · ∇u = 0 (2.2)

That is the directional derivative of u along the direction v = (a, b) is specified. This
means that the function u(x, y) on any line of direction (a, b) remains constant (different
constant for different lines). The direction v = (a, b) is along a line

bx− ay = c c ∈ R

these are known as the characteristic lines for (2.2). Alternatively the lines define y(x)
such that d

dxy = b
a or dx

a = dy
b . If u does not change along these lines then

u(x, y)|bx−ay=c = f(c)

so
u(x, y) = f(bx− ay)

to be more precise about the form of the solution, it is necessary to specify additional
conditions (see below).

5
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Example 5 Consider the case of variable coefficients

yux − xuy = 0 (2.3)

this means that u is constant along curves that have tangent vectors (y, x) so if as for
the line this curve is represented by y = y(x) then

d

dx
y = −x

y
⇔ d

dx

(
1

2
y2

)
= −x ⇔ 1

2
y2 = −1

2
x2 + c

hence the characteristic curves are y2 + x2 = c and so

u(x, y) = f(y2 + x2)

In order to define a well posed problem, that is a problem for which there exists a unique
solution, it is necessary to impose supplementary conditions. For example, if the solution
of (2.3) also satisfies u(0, y) = e−y2

then

f(y2) = e−y2 ⇒ f(t) = e−t ∀t

so
u(x, y) = e−y2−x2

.

In general, the equation
a(x, y)ux + b(x, y)uy = 0

can be solved as long as
dy

dx
=
b(x, y)

a(x, y)

can be solved as an ODE to give the characteristic curves.

To solve aux + buy = c first find a particular solution. For simplicity, look for a
solution of the form u0(x, y) = αx

aα+ b.0 = c ⇒ α =
c

a
⇒ u0(x, y) =

c

a
x

so the general solution is

u(x, y) = f(bx− ay) +
c

a
x

To solve aux + buy + cu = 0 find the set of solutions, assuming u 6= 0,

a
ux

u
+ b

uy

u
+ c = 0

Now define v = log u then vx = ux

u and vy =
uy

u so

avx + bvy + c = 0

from the previous example

v(x, y) = f(bx− ay)− c

a
x
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now u = ev so
u(x, y) = ef(bx−ay)− c

a
x

= ef(bx−ay) 1

e
c
a

x

The solution of the general linear equation

a(x, y)ux + b(x, y)uy = c(x, y)

is not constant along the characteristics which satisfy dx
a(x,y) = dy

b(x,y) . If s is the tangential

variable then ds =
dx

a(x, y)
, ds =

dy

b(x, y)
and so as a(x, y)ux + b(x, y)uy is the tangential

derivative ds =
du

c(x, y)
and hence

dx

a(x, y)
=

dy

b(x, y)
=

du

c(x, y)

assuming a, b, c 6= 0, in this formulation a, b and c could be also functions of u.

Example 6
ut + xux = 0

with u(x, 0) = f(x) =

{
1 0 ≤ x ≤ 1
0 otherwise

dt =
dx

x

and the characteristics are curves xe−t = constant.

ũ(x, 0) = f(x) ⇒ u(x, t) = f(xe−t) =

{
1 0 ≤ x ≤ et

0 otherwise
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Exercises

Exercise 2.1

• What are the characteristic curves for the equation xyux +uy = 0, assuming x, y >
0?

• What is the general solution?

• What is the general solution of the equation xyux + uy = 1

• Is
xyux + uy = 0, y > 0,−∞ > x >∞

u(x, 0) = f(x), x > 0
u(0, y) = g(y), y > 0

a well posed problem for any functions f and g?

• Is
xyux + uy = 0, y > 0

u(x, 0) = f(x)

}
−∞ > x >∞

a well posed problem for any function f?

Exercise 2.2 A first order system of p.d.e.s such as

ut + cvx = 0
vt + cux = 0

(2.4)

Writing w =

(
u
v

)
, the system (2.4) can be written in terms of matrices as

wt +Awx = 0

Assume that λ is an eigenvalue of A and u is the corresponding eigenvector. Show that
for any differentiable function f ,

w = f(x− λt)u

is a solution. What are the characteristics for (2.4)?

Exercise 2.3 Given first order system of p.d.e.s

ut + 2ux + vx = 0
vt + ux + 2vx = 0

(2.5)

• What are the characteristics?

• What is the general solution?

• What is the solution such that

u(x, 0) = φ(x)
v(x, 0) = ψ(x)

}
−∞ < x <∞



Chapter 3

Well posed problems

3.1 Applications of PDEs

Physical problems have in general 3 characteristics which should be reflected in the
mathematical equations:

1. Existence - The phenomenon exists

2. Uniqueness - Given the same conditions, the physical process is repeatable at a
later time

3. Stability - A small change in the initial conditions should lead to a small change in
the output

Example 7 The transport equation:
Assume a drop of ink in a pipe full of water moving a velocity c the concentration is

denoted by u(x, t). The amount of ink in a fixed length x of pipe at time t is
∫ x

0 u(z, t)dz at

a later time t+h the ink has moved, with velocity c so the same ink is now
∫ x+ch

ch
u(z, t+

h)dz thus ∫ x

0

u(z, t)dz =

∫ x+ch

ch

u(z, t+ h)dz

differentiating w.r.t. x

u(x, t) = u(x+ ch, t+ h)

differentiating w.r.t. h at h = 0

ut(x, t) + cux(x, t) = 0

In general equations written in the form

ut(x, t) +
∂

∂x
F (u(x, t)) = 0

are know as conservation laws

9
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Example 8 The wave equation:
Consider the motion of a string of length l, fixed at the endpoints. From Newton’s

law of motion, the force of the tension is balanced by the acceleration, so considering two
neighbouring points x0 and x1

Tux|x1
x0

=

∫ x1

x0

ρuttdx

differentiate w.r.t x

(Tux)x = ρutt → utt = c2uxx

Diffusion (Heat Conduction):
Given a region Ω ∈ R3, the amount of heat at time t is denoted by H(t) then

H(t) =

∫

Ω

cρu dΩ

where

• c is the specific heat

• ρ is the density

• u is the temperature

• k is the conductivity

then

dH
dt =

∫
Ω cρ∂tu dΩ

= heat flux out of Ω

=
∫
Γ
k∂nu ds (∂nu = n · ∇u the outward normal derivative)

=
∫
Ω∇ · (k∇u)dΩ The divergence theorem

so

cρ∂tu = ∇ · (k∇u)

Example 9 Laplace’s Equation: Consider small displacements of a membrane, whose
energy difference from no displacement is approximated by

I(ϕ) =
1

2

∫

Ω

|∇ϕ|2 dΩ,

The functional I is to be minimised among all trial functions ϕ that assume prescribed
values on the boundary Γ of Ω. If u is the minimising function and v is an arbitrary
smooth function that vanishes on Γ, then the first variation of I[u+ v] must vanish:

d

dǫ
I(u+ ǫv)

∣∣∣∣
ǫ=0

=

∫

Ω

∇u · ∇v dΩ = 0.
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Provided that u is sufficiently differentiable, it is possible to apply the divergence theorem
to obtain ∫

Ω

∇ · (v∇u) dΩ =

∫

Ω

(∇u · ∇v + v∇ · ∇u) dΩ +

∫

Γ

v∂nuds,

where s is arc-length along Γ. Since v vanishes on Γ and the first variation vanishes, the
result is ∫

Ω

v∇u · ∇u dΩ = 0

for all smooth functions v that vanish on Γ. It then follows that

∇2u = 0 in Ω,

assumption that the minimising function u has two derivatives.

Frequently first order (nonlinear) systems are written in conservation form

Example 10

•
∂i
∂x + C ∂v

∂t = −Gv
∂v
∂x + L ∂i

∂t = −Ri
where i(x, t) is current in amperes, v(x, t) is voltage
R - resistance
L - inductance
C - capacitance
G - leakage

is a hyperbolic system

• Flow of an ideal gas in one dimension (Euler’s Equations)

∂

∂t
U +

∂

∂x
F (U) = 0

where

U =




U1

U2

U3


 =




ρ
ρu
E


 , F (U) =




ρu
ρu2 + p
(E + p)u




and where ρ is the density, u is the velocity, p is the pressure and E is the total
energy per unit mass. Given that

E =
1

2
ρu2 + ρe, p = (γ − 1)ρe

where e is the internal energy per unit mass and γ is the specific heat (γ = 1.4 for
air). This is aslo a hyperbolic system.

Example 11 The linearised shallow water equations

ut = A1ux +A2uy + f
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are hyperbolic, with

u =




u
v
φ


 and f =




0 −f 0
f 0 0
0 0 0


u,

A1 =




U 0 1
0 V 0
Φ 0 U


 and A2 =




0 V 1
U 0 0
0 Φ V




3.2 Initial and Boundary Conditions

In order to obtain exactly one solution, it it is necessary to impose certain assumptions
on the problem. Assumptions that can be justified by the physical meaning of the PDE
are of two types:

• Initial Conditions: In the case of the wave, it is reasonable to specify the shape of
the wave at t = 0 thus

u(x, 0) = g(x) is given

for the wave equation it is also necessary to specify the velocity at t = 0 (does the
wave start from rest?) so

∂tu(x, 0) = f(x) is also known

• Boundary Conditions: For the heat equation (stationary or not) it is necessary to
specify what happens on the boundary Γ, there are three well known boundary
conditions

– u|Γ Dirichlet boundary condition, where the surface temperature is specified

– ∂nu|Γ Neumann boundary condition, where the heat flux out of the body is
specified

– (∂nu+au)|Γ where a is given, Robin boundary condition, the heat flux depends
on the surface temperature (the body loses heat by conduction)

Definition 12 : If the boundary condition is constantly equal to zero, then the condition
is said to be homogeneous. If not then it is inhomogeneous.

The heat conduction problem for which the heat distribution is known for t = 0 (an initial
condition) and for which the surface temperature is specified (a boundary condition) is
an example of an initial-boundary value problem or I.-B.V.P.

3.3 Well Posed Problems

3.3.1 Heat Equation

Assuming that all the data is continuous, consider the problem where Ω ⊂ R2 is a simple
connected open region with boundary Γ

{
∂tu−∆u = q x ∈ Ω, 0 < t < T

u(x, 0) = f, x ∈ Ω; u(x, t) = h, x ∈ Γ, 0 < t < T
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If there are two solutions u1 and u2 then w = u1 − u2 satisfies
{

∂tw −∆w = 0 x ∈ Ω, 0 < t < T
w(x, 0) = 0 x ∈ Ω; w(x, t) = 0 x ∈ Γ, 0 < t < T

multiply by w and integrate over the space domain

0 =

∫

Ω

w (∂tw −∆w) dΩ =
1

2

d

dt

∫

Ω

|w|2dΩ +

∫

Ω

|∇w|2dΩ−
∫

Γ

w∂nwdΓ

since w = 0 on Ω

0 =
1

2

d

dt

∫

Ω

|w|2dΩ +

∫

Ω

|∇w|2dΩ ≥ 1

2

d

dt

∫

Ω

|w|2dΩ 0 < t < T (3.1)

The initial condition implies 0 =
∫
Ω
|w|2dΩ at t = 0 so the only way that (3.1) can be

satisfied is if 0 =
∫
Ω |w|2dΩ for all t < T so from the continuity this implies that w ≡ 0

for all x ∈ Ω and all 0 ≤ t < T . So assuming a solution exits, it is unique.

3.4 Well Posed Cauchy Problems

Consider the Cauchy Problem for a linear system
{

ut = Aux u ∈ Rn −∞ < x <∞, t > 0
u(x, 0) = f , −∞ < x <∞. (3.2)

Taking Fourier transforms, this leads to

ût = −iξAû (3.3)

assume that the n× n matrix A has eigenvalues and eigenvectors λj , vj respectively for
j = 1, . . . , n then a solution of (3.3) can be written as

û =

n∑

j=1

aje
−iλjξtvj (3.4)

where the coefficients aj are determined from the initial condition

n∑

j=1

ajvj = f̂

Consider u ∈ R2 with A =

(
0 1
−1 0

)
, the eigenvalues are λ = ±i hence (3.4) becomes

û = a1

(
1
−i

)
eξt + a2

(
1
i

)
e−ξt

which shows that in this case (3.2) has solutions that grow exponentially, as eRt for
arbitrarily large R. This does not correspond to the behaviour of any physical system.

Alternatively consider A =

(
0 1
1 0

)
, the eigenvalues are λ = ±1, then

û = a1

(
1
1

)
eiξt + a2

(
1
−1

)
e−iξt
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then

a1

(
1
1

)
+ a2

(
1
−1

)
= f̂ =

(
f̂1

f̂2

)

and

û =

(
û1

û2

)
=

1

2
(f̂1 + f̂2)

(
1
1

)
+

1

2
(f̂1 − f̂2)

(
1
−1

)

hence
|û|2 = |û1|2 + |û2|2 = |f̂1|2 + |f̂2|2 = |f̂ |2

which from Parseval’s identity gives

‖u(, t)‖2 = ‖u(, 0)‖2

Definition 13 : Consider the problem (3.2) for all initial values f for which ‖f‖ <∞.
The problem is well posed if there are constants K and α such that

‖u(, t)‖ ≤ Keαt‖u(, 0)‖ ∀t

The equation in (3.2) is said to be hyperbolic if the eigenvalues of A are all real.

There is a straightforward extension of this definition to systems in higher dimensions,
given

ut =
d∑

j=1

Ajux

applying Fourier transforms in Rd leads to

ût = −i
d∑

j=1

ξjAjûx

Then the system is hyperbolic if all the eigenvalues of

P =
d∑

j=1

ξjAj

are real for all ξj , j = 1, . . . , d.
Consider the system ut + Aux = 0. If A can be diagonalised and all the eigenvalues

are real then there exists P such that

PAP−1 = Λ =




λ1

. . .

λn




then
Put + PAPP−1ux = 0

wt + Λwx = 0

a set of uncoupled equations. A system such as ut +Aux +Bu = 0 would still be coupled
after the transformation as B would not be diagonalised.
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3.5 Discontinuities

Consider the equation

ut + uux = 0,

{
−∞ < x <∞

t > 0

which has a general solution that can be written as

u(x, t) = f(x− ut),

with the initial condition

u(x, 0) = f(x) ≡
{
A x < 0
B x > 0

i.e. a jump discontinuity in the initial condition. If A < B then from the characteristics,
which are straight lines,

u(x, t) =

{
A x < At
B x > Bt

and in the gap (see figure 3.1a), by interpolation,

x− ut = 0, At ≤ x ≤ Bt

x = At
x = Bt shock line

Figure 3.1: (a) (b)

However, if A > B, then the characteristics overlap in the region Bt ≤ x ≤ At. From
the characteristics,

u(x, t) =

{
A x < Bt
B x > At

Within the overlap region the solution there are two possibilities, so the solution is not
uniquely defined without some additional information. If the equations are modelling
gas dynamics then it is known that a shock wave exists and there is a jump discontinuity
along the shock ( in this example the shock would be x = A+B

2 t, see figure 3.1b). Further
study of this topic is beyond the scope of this course, see for example Wikipedia [12].
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Chapter 4

Classification of PDEs

4.1 Equations of Second Order

Consider

auxx + buxy + cuyy = 0 (4.1)

write as a 1st order system with w = ux and v = uy then equations are

wx + b
awy + c

avy = 0
vx − wy = 0

or wx +Awy = 0,

A =

(
b
a

c
a

−1

)

so eigenvalues λ satisfy aλ2 − bλ+ c = 0 roots are real if b2 − 4ac ≥ 0, in which case the
equation is hyperbolic.

In general in R2 consider

0 = a11uxx + 2a12uxy + a22uyy + a1ux + a2uy + a0u

note uxy = uyx hence a12 + a21 = 2a12. Then the second order part of the differential
operator is

a11∂xx + 2a12∂xy + a22∂yy

w.l.o.g. assume a11 = 1 then

∂xx + 2a12∂xy + a22∂yy = (∂x + a12∂y)2 + (−a2
12 + a22)∂yy

consider 3 cases depending on the sign of the second coefficient!

17
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4.1.1 (a22 − a
2
12) > 0

Change variables
x = αξ + βζ

y = γξ + δζ

∂ξu = ux
∂x
∂ξ + uy

∂y
∂ξ

∂ζu = ux
∂x
∂ζ + uy

∂y
∂ζ

so that the operator becomes
∂2

ξ + ∂2
ζ

such equations are known as Elliptic Equations. But

∂x
∂ξ = α ∂y

∂ξ = γ

∂x
∂ζ = β ∂y

∂ζ = δ

so
∂ξ = α∂x + γ∂y

∂ζ = β∂x + δ∂y

}
⇒

{
α = 1 γ = a12

β = 0 δ =
√
a22 − a2

12

hence the condition (a22 − a2
12) > 0 is essential and then

x = ξ y = a12ξ +

(√
(a22 − a2

12)

)
ζ

4.1.2 (a22 − a
2
12) < 0

Using the transformation with δ =
√
a2
12 − a22 leads to the operator

∂ξξ − ∂ζζ ≡ (∂ξ − ∂ζ)(∂ξ + ∂ζ)

such equations are known as Hyperbolic Equations.

4.1.3 (a22 − a
2
12) = 0

The transformation leads to
∂ξξ + first order terms (4.2)

such equations are known as Parabolic Equations.

4.1.4 Higher Dimensions

In Rd a second order equation can be written as

d∑

i,j=1

aijuxixj
+

d∑

i=1

aiuxi
+ a0u = c

assume aij = aji, i.e. coefficient matrix A is symmetric.



4.2. WAVE EQUATION (IN R2) 19

Definition 14

• Equation (4.2) is Elliptic iff A or −A is positive definite

• Equation (4.2) is Hyperbolic if all eigenvalues are non zero and all but one have
the same sign.

• Equation (4.2) is Parabolic iff there is exactly one zero eigenvalue and all others
have the same sign

In R2,

A =

(
a11 a12

a12 a22

)

eigenvalues λ satisfy

det(A− λI) = (a11 − λ)(a22 − λ)− a2
12 = 0

λ2 − (a11 + a22)λ+ (a11a22 − a2
12)

so λ = 1
2

(
(a11 + a22)±

√
(a11 + a22)2 − 4(a11a22 − a2

12)
)

both roots are positive iff

a11a22 − a2
12 < 0, with a11 = 1 this leads to the same condition as before. In R3,

Laplace’s Equation
uxx + uyy + uzz = 0

defines A =




1
1

1


 and hence is elliptic, whereas the wave equation

uxx − uyy − uzz = 0

defines A =




1
−1

−1


 and hence is hyperbolic. The heat equation

ut − uxx − uyy = 0

defines A =




0
−1

−1


 and hence is parabolic.

4.2 Wave Equation (in R2)

utt − c2uxx = 0

(∂t − c∂x)(∂t + c∂x)u = 0

Change variables

ξ = x+ ct, ζ = x− ct
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then {
∂xu = ∂ξu

∂ξ
∂x + ∂ζu

∂ζ
∂x

∂tu = ∂ξu
∂ξ
∂t + ∂ζu

∂ζ
∂t

so
∂x = ∂ξ + ∂ζ ∂t = c∂ξ − c∂ζ

and
∂t − c∂x = −2c∂ζ ∂t + c∂x = 2c∂ξ

and
4c∂ξζu = 0 ⇒ u(ξ, ζ) = g(ξ) + f(ζ)

so
u(x, t) = g(x+ ct) + f(x− ct)

Both g(x+ct) and f(x−ct) are waves that travel along the lines x+ct = α and x−ct = β.
Assume c > 0, then f(x− ct) travels to the right with speed c.

4.2.1 Initial Value Problem
{

utt − c2uxx = 0

u(x, 0) = φ(x) ∂tu(x, 0) = ψ(x)

then
u(x, t) = g(x+ ct) + f(x− ct)

∂tu(x, t) = cg′(x+ ct)− cf ′(x− ct)
so at time t = 0

g(x) + f(x) = φ(x)

cg′(x) − cf ′(x) = ψ(x)

g′(x) + f ′(x) = φ′(x)

g′(x)− f ′(x) = 1
cψ(x)

and
g′(x) = 1

2

(
φ′(x) + 1

cψ(x)
)

f ′(x) = 1
2

(
φ′(x) − 1

cψ(x)
)

so
g(z) =

∫ z

0
1
2

(
φ′(x) + 1

cψ(x)
)
dx+ g(0)

f(z) =
∫ z

0
1
2

(
φ′(x)− 1

cψ(x)
)
dx+ f(0)

g(z) = 1
2φ(z) + 1

2c

∫ z

0 ψ(x)dx +A

f(z) = 1
2φ(z)− 1

2c

∫ z

0
ψ(x)dx +B

where A+B = 0 since φ(x) = f(x) + g(x) hence

u(x, t) = 1
2φ(x + ct) + 1

2c

∫ x+ct

0 ψ(z)dz

+ 1
2φ(x − ct)− 1

2c

∫ x−ct

0
ψ(z)dz

= 1
2φ(x + ct) + 1

2φ(x− ct) + 1
2c

∫ x+ct

x−ct
ψ(z)dz
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Example 15 



uxx + 2uxt − 20utt = 0

u(x, 0) = φ(x)
ut(x, 0) = ψ(x)

a22 = −20, a12 = 1 a11 = 1
⇒ a22 − a2

12 = −20− 1 < 0
⇒ Hyperbolic

change of variables x = ξ, t = ξ + (
√

21)ζ so ∂ξ = ∂x + ∂t and ∂ζ =
√

21∂t so

∂2
xx + 2∂2

xt − 20∂2
tt = (∂ξ + ∂ζ)(∂ξ − ∂ζ)

and

u(ξ, ζ) = f(ξ − ζ) + g(ξ + ζ)

and

u(x, y) = f(x+
x− t√

21
) + g(x− x− t√

21
)

4.2.2 Laplace’s Equation

The characteristics of an elliptic equation in R2 are complex for example those for

uxx + uyy = (∂x + i∂y)(∂x − i∂y)u = 0

are x+ iy = constant and x− iy = constant. Consider the change of variables

ξ = x+ iy, ζ = x− iy

then 



∂xu = ∂ξu
∂ξ
∂x + ∂ζu

∂ζ
∂x

∂yu = ∂ξu
∂ξ
∂y + ∂ζu

∂ζ
∂y

so

∂x = ∂ξ + ∂ζ , ∂y = i∂ξ − i∂ζ

and

∂y − i∂x = −2i∂ζ, ∂y + i∂x = 2i∂ξ

and

4i∂2
ξζu = 0 ⇒ u(ξ, ζ) = g(ξ) + f(ζ)

so

u(x, t) = g(x+ iy) + f(x− iy)

In particular ek(x+iy) ± ek(x−iy) = ekx
(
eiky ± e−iky

)
is a solution for any k (real or

complex).
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Exercises

Exercise 4.1 What is the solution of the initial value problem

{
utt − 4uxx = 0 −∞ < x <∞, t > 0

u(x, 0) = e−x2

, ∂tu(x, 0) = 0 −∞ < x <∞
?

Exercise 4.2

Consider the differential equation

uxx − 6uxt − 7utt = 0.

• What are the characteristics of the equation?

• What is the general solution?

• Given the initial conditions

u(x, 0) = e−x2

, −∞ < x <∞
ut(x, 0) = 0, −∞ < x <∞

what is the solution?

Exercise 4.3 Consider the differential equation

uxx − 8uxt + 15utt = 0.

• What are the characteristics of the equation?

• What is the general solution?

• Given the initial conditions

u(x, 0) = 0, −∞ < x <∞
ut(x, 0) =

{
1 0 < x < 1
0 otherwise

what is the solution?



Chapter 5

Energy

5.1 Causality and Energy

Consider the wave equation posed as an initial value problem for:





utt − c2uxx = 0, t > 0,−∞ < x <∞
u(x, 0) = φ(x), −∞ < x <∞
∂tu(x, 0) = ψ(x), −∞ < x <∞.

Definition 16 Principle of Causality: An initial condition (φ, ψ) at the point (x0, 0)
can effect the solution u(x, t), t > 0 only in the set S(x0, c) = {|x− x0| ≤ ct, t > 0}. The
causality principle in R3 is known as Huygens’s Principle.

5.1.1 Consequence 1

If φ||x|>R = 0 and ψ||x|>R = 0 then the solution is u(x, t) = 0 for |x| > R+ ct.

5.1.2 Consequence 2

• If φ ≡ 0 ≡ ψ then u = 0.

• If φ1 = φ2, ψ1 = ψ2 and

{
utt − c2uxx = 0

u|t=0 = φ1 ∂tu|t=0 = ψ1

and

{
vtt − c2vxx = 0

v|t=0 = φ2 ∂tv|t=0 = ψ2

then u = v as w = u− v solves

{
wtt − c2wxx = 0

w|t=0 = 0, ∂tw|t=0 = 0

Definition 17 : The Domain of Dependence or past history of the point (x0, t0) is the
region of (x, t) on which the value of u(x0, t0) depends.

23
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In particular from the formula

u(x, t) =
1

2
φ(x + ct) +

1

2
φ(x − ct) +

1

2c

∫ x+ct

x−ct

ψ(z)dz

it follows that the value of u at a point (x0, t0) is influenced only by the value of φ at
(x0− ct0) and (x0 + ct0) and the value of ψ on [x0− ct0, x0 + ct0]. Analogously, if t1 ≤ t0
then the value of u(x0, t0) is only influenced by u(x0 − c(t1 − t0)) and u(x0 + c(t1 − t0))
and by ∂tu on [x0 − c(t1 − t0), x0 + c(t1− t0)].

5.2 The Conservation of Energy

Consider an infinite string with constant density ρ and constant tension T so
∫

(ρutt − Tuxx) = 0

the kinetic energy of the string is

ke =
l

2
ρ

∫ ∞

∞
u2

tdx

the potential energy is

Pe =
1

2
T

∫ ∞

∞
u2

xdx

E(t) = ke + Pe

Assume that the initial data φ and ψ are zero outside [−R,R]. From consequence 1 it
follows that u, ∂tu ≡ 0 for |x| > R + ct. It is necessary to show that E(t) = E(0), to
prove this it is sufficient to show that d

dtE(t) = 0,

d
dtke = l

2ρ
d
dt

∫∞
∞ u2

tdx

= ρ
∫∞
∞ ututtdx using utt = t

ρuxx

= T
∫∞
∞ utuxxdx

On the other hand
d

dt
Pe = T

∫ ∞

∞
uxuxtdx

so
d
dtE(t) = T

∫∞
∞ (uxuxt + utuxx)dx

= T
∫∞
∞ ∂x(utux)dx

= 0 limx→±∞ utux = 0

5.3 The Diffusion Equation

Consider
ut = κuxx κ = constant (5.1)
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5.3.1 Maximum Principle

Definition 18 Maximum Principle: If u solves (5.1) in a rectangle (0 ≤ x ≤ l, 0 ≤ t ≤
T ) then the maximum value of u(x, t) is assumed either at t = 0 or x = 0 or x = l. The
same applies to the minimum value.

Assume maximum is at an interior point (x0, T0) within R = [0, l]× [0, T ] so

ux(x0, t0) = ut(x0, t0) = 0 uxx(x0, t0) ≤ 0.

If uxx(x0, t0) 6= 0 then κuxx(x0, t0) = ut(x0, t0) < 0 which is a contradiction. Consider
the function v(x, t) = u(x, t) + ǫx2 (ǫ > 0) if the maximum of v is at an interior point
(x0, T0) then

vx(x0, t0) = vt(x0, t0) = 0 vxx(x0, t0) ≤ 0

and
0 ≤ vt − κvxx = ut − κuxx − 2ǫκ = −2ǫκ < 0

another contradiction so the maximum of v must be on the boundary. Assume the
maximum of u on the boundary is M , then the maximum of v cannot exceed M + ǫl2

in the limit as ǫ tends to zero v tends to u so the maximum of u must also be on the
boundary.

One immediate consequence of the maximum principle is the uniqueness of the solu-
tion, since if u and v are both solutions w = u− v satisfies zero boundary conditions and
hence must be zero everywhere.

5.3.2 Energy

Assume u(l, t) = u(0, t) = 0

E =
1

2

∫ l

0

u2(x, t)dx

then
d
dtE =

∫ l

0
utudx

=
∫ l

0 κuxxudx

= κ
∫ l

0
∂x(uux)dx − κ

∫ l

0
u2

xdx

= κuux|l0 − κ
∫ l

0 u
2
xdx

≤ 0

Thus it is possible to prove uniqueness via energy as

0 ≤ E(t) ≤ E(0) =
1

2

∫ l

0

w2(x, 0)dx = 0

and
E(t) = 0 ⇒ w = 0

Definition 19 Stability: In general a system is stable if close initial data generate close
solutions.
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Define distance in terms of the L2 norm

‖f − g‖2 =

(∫ l

0

(f − g)2dx
)1/2

Consider two solution u1 and u2 of the diffusion equation, with the initial conditions
u1(x, 0) = φ1 and u2(x, 0) = φ2. Note that w = u1 − u2 solves the equation subject to
the initial condition w|t=0 = φ1 − φ2, then from the energy inequality

E(w)1/2 =

(∫ l

0

(u1 − u2)
2dx

)1/2

≤
(∫ l

0

(φ1 − φ2)
2dx

)1/2

So if φ1 and φ2 are close in the sense of the L2 norm then u1 and u2 are close uniformly
in time in the same norm.

It is possible to define distance in term of the maximum or L∞ norm

‖f − g‖∞ = max
[0,l]
|f − g|

Assume that the solutions u1 and u2 satisfy the same boundary conditions

u1(0, t) = u2(0, t) = g, u1(l, t) = u2(l, t) = f

then w(0, t) = w(l, t) = 0 and by the maximum principle

maxw = max{max
[0,l]

(φ1 − φ2), 0}

and
max{−w} = max{max

[0,l]
(φ2 − φ1), 0}

so
max
[0,l]
|u1 − u2|(t) ≤ max

[0,l]
|φ1 − φ2|

for all t.

5.4 Solution of Diffusion Equation

Consider only the initial value problem

{
ut = κuxx,=

dy
b(x,y) , t > 0

u|t=0 = φ(x),= dy
b(x,y)

(5.2)

5.4.1 Properties of the solution

• Translation invariance, if u(x, t) is a solution of (5.2) so is u(x− y, t) for any value
y.

• If u(x, t) is a solution of (5.2) then all derivatives of any order are solutions of (5.2).
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• A linear combination of solutions of (5.2) is a solution of (5.2).

• If w(x, t) is a solution of (5.2) then for any smooth function g(y)

v(x, t) =

∫
w(x − y, t)g(y)dy

• If u(x, t) is a solution of (5.2), the u(λx, λ2t) is a solution of (5.2).

is a solution of (5.2)

5.5 Fundamental Solutions (Green’s Functions)

Consider the IVP 



ut = κuxx

u|t=0 = q(x) =

{
1 for x > 0
0 for x < 0

(5.3)

Note that under dilation

q(x) → q(λx) =

{
1 for x > 0
0 for x < 0

= q(x)

So it may be assumed that the solution Q does not change under dilation

Q(x, t) = Q(λx, λ2t)

Assume the solution is of the form

Q(x, t) = g

(
x

2
√
κt

)

Now define p = x
2
√

κt
then

Qt = dg
dp ·

dp
dt = q′(p)

(
− 1

2tp
)

Qx = dg
dp ·

dp
dx = q′(p)

(
− 1

2
√

κt

)

Qxx = dQx

dp ·
dp
dx = q′′(p)

(
1

4κt

)

0 = Qt − κQxx =
1

t

(
−1

2
pg′(p)− 1

4
g′′(p)

)

which is an ode with a solution

g(p) = c1

∫ p

0

e−z2

dz + c2

so

Q(x, t) = c1

∫ x

2
√

κt

0

e−z2

dz + c2 ∀t > 0

To check on the behaviour in the limit as t→ 0,
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• If x > 0

lim
t→0+

c1

∫ x

2
√

κt

0

e−z2

dz + c2 = c1

∫ ∞

0

e−z2

dz + c2 = c1

√
π

2
+ c2

• If x < 0

lim
t→0+

c1

∫ x

2
√

κt

0

e−z2

dz + c2 == −c1
∫ 0

−∞
e−z2

dz + c2 = −c1
√
π

2
+ c2

• But

Q(x, 0) =

{
1 for x > 0
0 for x < 0

so
c1

√
π

2 + c2 = 1

−c1
√

π
2 + c2 = 0

}
⇒

{
c1 = 1√

π

c2 = 1
2

Q(x, t) =
1

2
+

1√
π

∫ x

2
√

κt

0

e−z2

dz

Now define the fundamental solution S = ∂Q
∂x

• S is a solution

• lim
t→0+

∂Q

∂x
(t) = δx

Note

S(x, t) = ∂x

(
1
2 + 1√

π

∫ x

2
√

κt

0

e−z2

dz

)

= 1√
π
e−

x2

4κt
1

2
√

κt

So if x 6= 0 then

lim
t→0+

1√
2πκt

e−
x2

4κt = 0

as an exponential decays faster than a polynomial. If x = 0 then

∂xQ(0, t) =
1

2πκt
∀t 6= 0

this appears to be singular and needs to be interpreted using the theory of distributions.
If the given initial condition is u(x, 0) = φ(x) s.t. lim|x|→∞ φ(x) = 0 then

u(x, t) =

∫ ∞

−∞
S((x − y), t)φ(y)dy ∀t > 0

It can be shown that this solution is unique. An integral of the form

h(x) =

∫ ∞

−∞
f(x− y)g(y)dy

is known as a convolution and is denoted by h = f ∗ g.
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Example 20 Solve
ut = κuxx

u(x, 0) = x2

Define p = x−y

2
√

κt
then dp = − 1

2
√

κt
dy then

u(x, t) =
∫∞
−∞

1
2
√

πκt
e−

(x−y)2

4κt y2dy

= 1√
π

∫∞
−∞ e−p2

(x− p
√

4κt)2dp

= x2
√

π

∫∞
−∞ e−p2

dp− 2√
π

∫∞
−∞ e−p2

pdp+ 4κt√
π

∫∞
−∞ e−p2

p2dp.

(Given
2√
π

∫ ∞

−∞
e−p2

p2dp = 1,

2√
π

∫ ∞

−∞
e−p2

pdp = 0,

2√
π

∫ ∞

−∞
e−p2

dp = 2)
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Chapter 6

Separation of Variables

6.1 Solution using Fourier series

Consider the initial-boundary value problem1





ut = κuxx ∀x ∈ [0, l], ∀t > 0
u(x, 0) = f(x) ∀x ∈ [0, l]

u(0, t) = 0 = u(l, t) ∀t > 0
(6.1)

A solution is required with the following property: u is a product in which the dependence
of u on x, t is separated, that is:

u(x, t) = X(x)T (t) (6.2)

This solution technique is called separation of variables. Substituting u into the heat
equation,

T ′(t)

κT (t)
=
X ′′(x)

X(x)

Since the right hand side depends only on x and the left hand side only on t, both sides
are equal to some constant value −λ. Thus:

T ′(t) = −λκT (t) (6.3)

and
X ′′(x) = −λX(x) (6.4)

1. Suppose that λ < 0. Then there exist real numbers B, C such that

X(x) = Be
√
−λ x + Ce−

√
−λ x.

From the boundary conditions

X(0) = 0 = X(l)

and therefore B = 0 = C which implies u is identically 0.

1The following solution technique for the heat equation was proposed by Joseph Fourier in his treatise
Theorie analytique de la chaleur, published in 1822.

31
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2. Suppose that λ = 0. Then there exist real numbers B, C such that

X(x) = Bx+ C

From the boundary conditions, conclude that u is identically 0.

3. Therefore, it must be the case that λ = β2 > 0. Then there exist real numbers A,
B, C such that

T (t) = Ae−λκt

and

X(x) = B cos(βx) + C sin(βx)

A, B and C are determined by the data

u(0, t) = u(l, t) = 0 ⇒ X(0) = X(l) = 0

X(0) = 0 ⇒ B = 0 ⇒ X(x) = C sin(βx)

X(l) = 0 ⇒ C sin(βl) = 0 ⇒ β =
πn

l

for some positive integer n.

So in general from the linearity any finite sum

uk(x, t) =

k∑

n=1

Cn sin
(nπx

l

)
e
−
n2π2κt

l2

is a solution of the PDE and the boundary conditions. To be a solution of the I-BVP it
follows that, assuming the infinite sum converges,

u(x, t) =
+∞∑

n=1

Cn sin
(nπx

l

)
e
−
n2π2κt

l2

it must also satisfy the the initial condition so

u(x, 0) =
∞∑

n=1

Cn sin
(nπx

l

)
= f(x)

From the theory of Fourier Series it follows that

Cn =
2

l

∫ l

0

f(x) sin
(nπx

l

)
dx.

This solves the heat equation in the special case that the dependence of u has the special
form (6.2).
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6.2 Wave Equation

Consider the initial-boundary value problem




utt − c2uxx = 0, ∀x ∈ [0, l], ∀t > 0
u(x, 0) = φ(x), ∀x ∈ [0, l]
ut(x, 0) = ψ(x), ∀x ∈ [0, l]
u(0, t) = 0 = u(l, t) ∀t > 0.

(6.5)

A solution of the form (6.2) leads to

T ′′(t)

kT (t)
= c2

X ′′(x)

X(x)

so

T ′′(t)

c2T (t)
=
X ′′(x)

X(x)
= −λ

as for the diffusion equation λ 6= 0. If 0 < λ = β2 then
{

T ′′(t) = −c2β2T (t)
X ′′(x) = −β2X(x)

these are uncoupled ODEs with the solutions
{
T (t) = A cos(βct) +B sin(βct)
X(x) = C cos(βx) +D sin(βx)

A, B, C and D are determined by the data

u(0, t) = u(l, t) = 0 ⇒ X(0) = X(l) = 0

X(0) = 0 ⇒ C = 0 ⇒ X(x) = D sin(βx)

X(l) = 0 ⇒ D sin(βl) = 0 ⇒ β =
πn

l

So in general from the linearity any finite sum

uk(x, t) =
k∑

n=1

(
An cos(

nπct

l
) +Bn sin(

nπct

l
)

)
sin(

nπx

l
)

is a solution of the PDE and the boundary conditions. To be a solution of the I-BVP it
follows that, assuming the infinite sum converges,

u(x, 0) =

∞∑

n=1

An sin(
nπx

l
) = φ(x)

and

∂tu(x, 0) =

∞∑

n=1

Bn
nπc

l
sin(

nπx

l
) = ψ(x)

These are two uncoupled Fourier Series from which it is possible to compute the values
of the coefficients An and Bn.
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6.2.1 Neumann Conditions

The wave equation can be specified subject to different boundary conditions:




utt − c2uxx = 0, ∀x ∈ [0, l], ∀t > 0
u(x, 0) = φ(x), ∀x ∈ [0, l]
ut(x, 0) = ψ(x), ∀x ∈ [0, l]

ux(0, t) = 0 = ux(l, t) ∀t > 0.

(6.6)

The ODE BVP for X now becomes
{
X ′′(x) = −λX(x)
X ′(0) = X ′(l) = 0

It is no longer guaranteed that λ > 0

• λ = 0 ⇒ X ′′ = 0 ⇒ X(x) = Ax +B ⇒ X ′ = 0 ⇒ A = 0

• λ = β2 > 0
The possible solutions are then of the form:

X(x) = C cos(βx) +D sin(βx)
X ′(x) = −Cβ sin(βx) +Dβ cos(βx)
X ′(0) = Dβ = 0 ⇒ D = 0
X ′(l) = −Cβ sin(βl) = 0 ⇒ β = πn

l
Xn(x) = cos

(
πn
l

)

• λ < 0 not possible

Thus returning to T ′′(t) = −c2λT (t)

• λ = 0 leads to T (t) = A+Bt so u(x, t) = A+Bt

• λ > 0 from the linearity any finite sum

uk(x, t) =

k∑

n=1

(
An cos(

nπct

l
) +Bn sin(

nπct

l
)

)
cos(

nπx

l
)

is a solution.

So assuming the infinite sum converges the general solution is

u(x, t) =
1

2
A0 +

1

2
B0t+

∞∑

n=1

(
An cos(

nπct

l
) +Bn sin(

nπc

l
)

)
cos(

nπx

l
)

The factor 1
2 is for normalisation and

u(x, 0) =
1

2
A0 +

∞∑

n=1

An cos(
nπx

l
) = φ(x)

and

∂tu(x, 0) =
1

2
B0 +

∞∑

n=1

Bn
nπct

l
cos(

nπx

l
) = ψ(x)
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6.2.2 Mixed Boundary Conditions

If the boundary conditions are

u(0, t) = ux(l, t) = 0

A solution of the form (6.2) leads to

{
X ′′(x) = −λX(x)
X(0) = X ′(l) = 0

for which λn = (n+
1

2
)2
π2

l2
.

6.2.3 Robin Boundary Conditions

If the boundary conditions are

{
ux(0, t)− a0u(0, t) = 0
ux(l, t) + alu(l, t) = 0.

A solution of the form (6.2) for the diffusion equation leads to





X ′′ = −λX
X ′(0)− a0X(0) = 0
X ′(l) + alX(l) = 0.

The solutions are again of the form

X(x) = C cos(βx) +D sin(βx)

with λ = β2 > 0, the boundary conditions lead to D =
a0C

β
and (β2 − ala0) tan(βl) =

β(a0 + al), which latter has to be solved for β assuming that β2 − a0al 6= 0. There are
different eigenvalues λ depending on the signs of a0al and a0 + al.

6.2.4 Sturm-Liouville Theory

The general problem





d
dx (KX ′) = −(q + λg)X, 0 ≤ x ≤ l
a0X

′(0)− b0X(0) = 0,
alX

′(l)− blX(l) = 0

is known as a Sturm-Liouville2 problem, values λ for which there is a non-trivial solution
are known as eigenvalues. In general there are no explicit solutions.

2After the French mathematician Joseph Liouville (1809-1882) and the Swiss mathematician François
Sturm (1803-1855) who collaborated on the solution of boundary value problems.
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6.3 Laplace’s Equation

It was earlier observed that for Laplace in R2, ekx
(
eiky ± e−iky

)
is a solution so ekx cos(ky)

and ekx sin(ky) are both solutions, other solutions can be obtained interchanging the rôles
of x and y.

Assume that a solution can be obtained by multiplying two functions of each one
of the two variables only, i.e. it is separable, so: u(x, y) = X(x)Y (y). Substitute this
product into the PDE:

∂2XY

∂x2
+
∂2XY

∂y2
= 0

As Y (y) does not depend on x and X(x) does not depend on y

Y X ′′ +XY ′′ = 0

hence
X ′′

X
+
Y ′′

Y
= 0.

The left term depends on x only, while the right term depends on y only. This is only
possible if both of them are in fact constant and equal (but with opposite sign). Thus
for some constant λ

X ′′

X
= −Y

′′

Y
= −λ

• An x-ODE : X ′′ = −λX

• A y-ODE : Y ′′ = λY

Consider the boundary value problem





uxx + uyy = 0, ∀x, y ∈ (0, l),
u(x, 0) = φ(x), ∀x ∈ [0, l]
u(x, l) = ψ(x), ∀x ∈ [0, l]

u(0, y) = 0 = u(l, y), ∀y ∈ [0, l].

(6.7)

Considering the first equation and the boundary condition u(0, y) = 0 = u(l, y) becomes
X(0) = 0 = X(l) assuming thta Y (y) is not identically zero, it is clear that there are no
non-trivial solutions for λ ≤ 0, so assume λ = β2 > 0.

A solution of the first equation is then

X(x) = A cos(βx) +B sin(βx)

applying the boundary conditions X(0) = 0 = X(l), gives A = 0 and βl = nπ. A solution
of the second equation is then

Y (y) = Ceβy +De−βy

so a solution is

u(x, y) = sin
nπx

l

(
Cne

nπy
l +Dne

−nπy
l

)
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and hence the general solution is

u(x, y) =

+∞∑

n=1

sin
nπx

l

(
Cne

nπy
l +Dne

−nπy
l

)

The remaining boundary conditions give, for y = 0

φ(x) =

+∞∑

n=1

sin
nπx

l
(Cn +Dn)

so

Cn +Dn =
2

l

∫ l

0

φ(x) sin
nπx

l
dx.

and for y = l

Cne
nπ +Dne

−nπ =
2

l

∫ l

0

ψ(x) sin
nπx

l
dx.

from which it is possible to determine Cn and Dn.

6.3.1 Boundary Conditions

If the boundary conditions are changed to:





u(0, y) = φ(y), ∀y ∈ [0, l]
u(l, y) = ψ(y), ∀y ∈ [0, l]

u(x, 0) = 0 = u(x, 0), ∀x ∈ [0, l].

The boundary conditions u(x, 0) = 0 = u(x, 0) lead to Y (0) = 0 = Y (l) so there are no
non-trivial solutions for λ ≥ 0, so assume λ = −β2 < 0. Then

Y (y) = A cos(βy) +B sin(βy)

and

X(x)) = Ceβx +De−βx

and the solution is found in terms of a Fourier series for y. If the boundary conditions
are 




u(x, 0) = φ0(x), ∀x ∈ [0, l]
u(x, l) = φ1(x), ∀x ∈ [0, l]
u(0, y) = ψ0(y), ∀y ∈ [0, l]
u(l, y) = ψ1(y), ∀y ∈ [0, l]

then as the problem is linear we seek u(x, y) = v(x, y) + w(x, y) such that ∇2v = 0,
∇2w = 0 and





v(x, 0) = φ0(x), w(x, 0) = 0, ∀x ∈ [0, l]
v(x, l) = φ1(x), w(x, l) = 0, ∀x ∈ [0, l]
v(0, y) = 0, w(0, y) = ψ0(y), ∀y ∈ [0, l]
v(l, y) = 0, w(l, y) = ψ1(y), ∀y ∈ [0, l]
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Exercises

Exercise 6.1 What is the solution of the boundary value problem





uxx + uyy = 0, ∀x, y ∈ (0, 1),
u(x, 0) = 0, ∀x ∈ [0, 1]
u(x, 1) = sin(πx), ∀x ∈ [0, 1]
u(0, y) = 0 ∀y ∈ [0, 1]
u(1, y) = y(1− y) ∀y ∈ [0, 1]

(6.8)

Exercise 6.2 Derive the solution of the boundary value problem





uxx + uyy = 0, ∀x, y ∈ (0, 1),
u(x, 0) = x, ∀x ∈ [0, 1]
u(x, 1) = x+ sin(πx), ∀x ∈ [0, 1]
u(0, y) = 0 ∀y ∈ [0, 1]
u(1, y) = 1 ∀y ∈ [0, 1]

(6.9)

Exercise 6.3 What is the solution of the b.v.p.

∇2u = 2, x, y ∈ (0, 1)
u(x, 0) = u(x, 1) = 0, x ∈ [0, 1]
u(0, y) = u(1, y) = 0, y ∈ [0, 1]

(6.10)

Hint: The general solution of ∇2u = g is u = u1 + u2 where u1 is a particular solution
and u2 is the general solution of ∇2u = 0.



Chapter 7

Fourier Transforms and PDEs

7.1 Diffusion Equation

Consider the initial value problem
{

ut = κuxx

u|t=0 = φ(x) (lim|x|→∞ φ(x) = 0)
(7.1)

It was shown that the unique solution for this problem is

u(x, t) =
∫∞
−∞ S(x− y, t)φ(y)dy ∀t > 0

= S(t) ∗ φ(x)

where

S(x, t) =
1

2
√
πκt

e−
|x|2
4κt ∀t > 0

and S(x, t) was first derived by solving the IVP




Qt = κQxx

Q|t=0 = q(x) =

{
1 for x > 0
0 for x < 0

(7.2)

then S = ∂Q
∂x and {

St = κSxx

S|t=0 = δ0
(7.3)

Now start from (7.3) and construct S using Fourier Transforms. The Fourier transform
is in the variable x so

FSt = (FS)t = (Ŝ)t

so from (7.2) {
Ŝt = κŜxx

Ŝ|t=0 = δ̂0 ≡ 1

and
Ŝxx(ξ) = (iξ)2Ŝ(ξ) = −ξ2Ŝ(ξ)

39
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so {
Ŝt = κξ2Ŝ

Ŝ|t=0 = δ̂0 ≡ 1

For fixed ξ this is an ODE with solution

Ŝ(ξ, t) = e−ktξ2

as √
π

a
e−

1
4a

ξ2

= ê−x2a(ξ)

hence take a = (4κt)−1 then as before

S(x, t) =
1

2
√
πκt

e−
|x|2
4κt ∀t > 0

7.2 Wave Equation
{

utt − c2uxx = 0

u(x, 0) = ut(x, 0) = φ(x)

The solution was shown to be

u(x, y) = S(t) ∗ φ(x)

where

S =

{
0 |x| > ct
1
2c |x| < ct

Now start from {
Stt − c2Sxx = 0

S|t=0 = 0 St|t=0 = δ0

and apply Fourier Transforms to give

{
Ŝtt − c2Ŝxx = 0

Ŝ|t=0 = 0 Ŝt|t=0 = 1

The differential equation leads to

Ŝtt + c2ξ2Ŝ = 0

which is an ODE with solutions of the form Ŝ(ξ, t) = A sin(cξt) from the initial conditions
A = 1

cξ so

Ŝ(ξ, t) =
1

cξ
sin(cξt) =

1

2icξ

(
eicξt − e−icξt

)

hence

S(x, t) =

{
0 |x| > ct
1
2c |x| < ct
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7.3 Laplace’s Equation

To define fundamental solutions, search for functions that solve in the half-plane:

{
uxx + uyy = 0 y > 0

u(x, 0) = δ(x) y = 0
(7.4)

Take a Fourier Transform w.r.t. x, define

u(ξ, y) = Fx(u(x, y))(ξ) =

∫ ∞

−∞
e−ixξu(x, y)dx

then
uyy(ξ, y) = ∂yy

∫∞
−∞ e−ixξu(x, y)dx

=
∫∞
−∞ e−ixξuyy(x, y)

= Fx(uyy)(ξ)

and the equation becomes

{ −ξ2u(ξ, y) + uyy(ξ, y) = 0

u(ξ, 0) = 1

For fixed ξ this is an ODE that can be solved w.r.t. y as

u(y) = ceαy ⇒ uyy = cα2eαy

thus
−ξ2eαy + α2eαy = 0 ⇒ α2 = ξ2 ⇒ α = ±ξ

thus there are two possible solutions u1 = ce−|ξ|y and u2 = ce|ξ|y and u1(0) = u2(0) =
0⇒ c = 1 but u2 →∞ so it is not possible and hence

u(x, y) = 1
2π

∫∞
−∞ eixξe−|ξ|ydξ

= 1
2π

∫∞
0 eξ(ix−y)dξ + 1

2π

∫ 0

−∞ eξ(ix+y)dξ

= 1
2π

(
eξ(ix−y)

ix−y

∣∣∣
∞

0
+ eξ(ix+y)

ix+y

∣∣∣
0

−∞

)

= 1
2π

(
− 1

ix−y + 1
ix+y

)

= 1
2π

2y
x2+y2

So the fundamental solution in this case is

S(x, y) =
y

x2 + y2

Given the problem {
uxx + uyy = 0 y > 0

u(x, 0) = φ(x) y = 0
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the solution is

u(x, y) =

∫ ∞

−∞
S(x− z, y)φ(z)dz

that is u = S ∗ φ.

No known problems in science or engineering lead to initial value problems for Laplace’s
equation. A well-posed problem for Laplace’s equation on a simply connected open re-
gion Ω with a closed boundary Γ requires exactly one condition on the function value,
the normal derivative or a combination of both at each point on Γ. If all or part of the
boundary is at infinitiy, then the solution must be finite there.



Chapter 8

Distributions

If the pointwise definition of a function is replaced by a definition using locally aver-
aged values then it is possible to define Dirac delta functions and to model impulses in
mechanics and poles in electromagnetics.

Assume that X ⊂ H where H is a complete inner product space (Hilbert1 Space). For
example, given an open set Ω ⊂ Rn, if H = L2(Ω), X = C∞

0 and the inner product is
(u, v) =

∫
Ω uv dΩ then X is very much smaller than H and the dual space X ′, the space

of distributions on Ω, is very much larger than H.
A test function is any function f ∈ C∞

0 with compact support, for example

T (x) =





ke

“

− 1
1−|x|2

”

|x| < 1

0 |x| ≥ 1





∀x ∈ R
n

the constant k is chosen to normalise T . The space of test functions on Ω is denoted by
D(Ω). Point evaluations and integrals I1(f) = f(a) and I2 =

∫
Ω
f dΩ are examples are

continuous linear functionals on D. A continuous linear functional on D(Ω) is called a
distribution on Ω the space of distributions is denoted by D′(Ω). The notations I(f) and
〈I, f〉 will be use interchangeably. Note that the distribution I(f) = f(a)∀f ∈ D defines
the action of the Dirac delta function concentrated at the point a

∫

R

δ(x− a)f(x)dx = f(a)

Two distributions I1 and I2 are equal if I1(f) = I2(f)∀f ∈ D. The support of a distribu-
tion I is the complement of the largest open set on which I = 0. Then, for example the
support of the delta function is the point {0}. A regular distribution is defined is, given
a locally integrable function f , If (g) =

∫
Ω
fg dΩ ∀g ∈ D. If the function f has compact

support S than the support of the distribution If is S. For a regular distribution If
defined by a locally integrable function f the derivative is defined as the distribution
generated by the derivative f ′ which can be defined formally using integration by parts

〈dIf
dx

, g〉 =
∫

R

f ′g dx = −
∫

R

fg′ dx

1David Hilbert (January 23, 1862, Königsberg, East Prussia (now Kaliningrad, Russia) - February
14, 1943, Göttingen, Germany) was a German mathematician
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where it follows from the compactness of the support of f that the boundary terms are
zero.

Example 21 Let H(x) be the Heaviside function

H(x) =

{
1 x > 0
0 x ≤ 0

so reversing the integration by parts

〈dIH

dx , g〉 = −
∫∞
0
g′ dx ∀g ∈ D

= −g(x)|∞0
= g(0)
=

∫∞
−∞ δ(x)g(x) dx

so the derivative in the sense of distributions is

H ′(x) = δ(x)

Example 22 Consider the function

f(x) =

{
|x| |x| < 1
0 |x| < 1

so reversing the integration by parts

〈dIf

dx , g〉 = −
∫ 1

0 xg
′ dx−

∫ 0

−1(−x)g′ dx ∀g ∈ D
= −(xg(x))|10 +

∫ 1

0
g dx+ (xg(x))|0−1 −

∫ 0

−1
g dx

= −g(1) + g(−1) +
∫ 1

0
g dx−

∫ 0

−1
g dx

= −〈δ(x− 1), g(x)〉+ 〈δ(x + 1), g(x)〉
+
∫ 1

0
f ′g dx+

∫ 0

−1
f ′g dx+

∫
|x|>1

f ′gdx
∫∞
0
g′ dx

so the derivative in the sense of distributions is

δ(x + 1)− δ(x− 1) + f ′(x)

where f ′ denotes the derivative in the classical sense, if it exists.

8.1 Sobolev Spaces

For Ω ⊂ Rn define2

H1(Ω) = {u ∈ L2(Ω) : ∂xi
u ∈ L2(Ω), i = 1, . . . , n}

where the derivative ∂xi
u is interpreted in the sense of distributions. The inner product

on H1(Ω) is defined as

(u, v)1 =

∫

Ω

(uv +∇u · ∇v) dΩ

2Sergei L’vovich Sobolev, born in St. Petersburg 6 October 1908 and died in Moscow 3 January 1989
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Theorem 23 (Lemma) H1(Ω) is a Hilbert space with norm ‖u‖1 = (u, u)
1/2
1

The space H1(Ω) is an example of a Sobolev space.

Definition 24 Dirichlet’s Principle: The boundary value problem3

{
∆u− u = 0 in Ω

u = g in ∂Ω

has at most one solution and if a function u is a solution, it minimises the Energy
E(u) ≡ ‖u‖1 over all functions that satisfy the boundary condition.

It is possible to define an inner product

(u, v)m =
∑

|α|≤m

∫

Rn

∂αu∂αv dx

then a norm

‖u‖m =


 ∑

|α|≤m

∫

Rn

|∂αu| dx




1/2

This defines a Sobolev space Hm(R) for integer values m, but if the space is defined using
Fourier transforms, then for any s ∈ R it is possible to define an inner product

(u, v)s =

∫
(1 + |ξ|2)sû(ξ)v̂(ξ)dξ (8.1)

and a norm

‖u‖s =

(∫
(1 + |ξ|2)s|û(ξ)|2dξ

)1/2

(8.2)

in order to define Hs(R). These two definitions are equivalent from Plancherel’s theorem,
because ∂αu ∈ L2 iff ξα ∈ L2 and the observation that there exist constants c and C
such that

c(1 + |ξ|2)m ≤
∑

|α|≤m

|ξα|2 ≤ C(1 + |ξ|2)m

3The German mathematician Georg Friedrich Bernhard Riemann (November 17, 1826 – July 20, 1866)
named this idea Dirichlet’s principle in honour of his teacher Dirichlet. Johann Peter Gustav Lejeune
Dirichlet (February 13, 1805 - May 5, 1859) was a German mathematician whose family originated in
Richelet in Belgium
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Chapter 9

Finite Difference Methods

9.1 Forward, backward and central differences

A forward difference is an expression of the form

D+f(x) = f(x+ h)− f(x).

A backward difference arises when h is replaced by −h:

D−f(x) = f(x)− f(x− h).

Finally, the central difference is the average of the forward and backward differences. It
is given by

D0f(x) =
D+f(x) +D−f(x)

2
=
f(x+ h)− f(x− h)

2
.

The derivative of a function f at a point x is defined by the limit

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
.

Assuming that f is continuously differentiable, it is possible to estimate the truncation
error using Taylor’s series1

f(x) = f(a) +
f ′(a)

1!
(x− a) +

f (2)(a)

2!
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n +Rn

The Lagrange form of the remainder term states that there exists a number ξ between a
and x such that

Rn =
f (n+1)(ξ)

(n+ 1)!
(x − a)n+1.

Then
D+f(x)

h
− f ′(x) = O(h)

1Brook Taylor (August 18, 1685 - November 30, 1731), although the result was first discovered in
1671 by James Gregory
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D−f(x)

h
− f ′(x) = O(h)

and
D0f(x)

h
− f ′(x) = O(h2)

Similarly the central difference approximation of the second derivative of f is

f ′′(x) ≈ D+D−f(x)

h2
=
f(x+ h)− 2f(x) + f(x− h)

h2
.

and

f ′′(x) − D+D−f(x)

h2
= O(h2)

9.2 Some Finite Difference schemes

The original problem in terms of a continuous function u(x, t) is replaced by a numerical
problem in terms of a sequence of discrete values Un

m at the mesh points xm, tn such
that Un

m ≈ u(xm, tn). To begin with, assume that tn+1 − tn = k, known as the time
step is constant and that xm+1 − xm = h, known as the mesh length is constant. The
Difference operators D+, etc. are used to denote differences with respect to the variable
x only. The alternative notation U(x, t) for the numerical solution at fixed values of x
and t (using steps of size h and k) in order to emphasise the dependence on the values of
x and t rather than the values of m and n the numbers of steps needed. Given a mesh
size h and a time step k define a mesh ratio r = k

h . Then, given the p.d.e

Lu = f

for example ut + aux = 0, U(xm, tn) ≡ Un
m is the solution of a difference approximation

of the form
LhkU = fhk

where

Lh,k(U(x, t)) ≡ Q−1U(x, t+ k)−
p∑

j=0

QjU(x, t− jk) (9.1)

where Qn, n = −1, 0, . . . , p are difference operators.

Forward Difference Scheme

1
k (Un+1

m − Un
m) + a

hD+U
n
m = 0

becomes
Un+1

m = (1− arD+)Un
m



 (9.2)

Backward Difference Scheme

1
k (Un+1

m − Un
m) + a

hD−Un
m = 0

becomes
Un+1

m = (1− arD−)Un
m



 (9.3)
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Central Difference Scheme
1
k (Un+1

m − Un
m) + a

hD0U
n
m = 0

becomes
Un+1

m = (1− arD0)U
n
m



 (9.4)

Lax-Friedrichs Scheme
1
k (Un+1

m − 1
2 (Un

m+1 + Un
m−1)) + a

hD0U
n
m = 0

becomes
Un+1

m = 1
2 (Un

m+1 + Un
m−1)− arD0U

n
m



 (9.5)

Lax-Wendroff Scheme
1
k (Un+1

m − Un
m) + a

hD0U
n
m − ak

2h2D+D−Un
m = 0

becomes

Un+1
m = (1− arD0 + ar2

2 D+D−)Un
m



 (9.6)

Leap-Frog Scheme

1
2k (Un+1

m − Un−1
m ) + a

hD0U
n
m = 0

becomes
Un+1

m = Un−1
m − 2arD0U

n
m



 (9.7)

Example 25 It is possible to apply the schemes to equations written in conservation
form, thus given

ut + (f(u))x = 0

the forward difference scheme would be

Un+1
m = Un

m − r(f(Un
m+1)− f(Un

m))

9.3 Truncation Error

Definition 26 Truncation Error: If u is the solution of the problem Lu = f and from
(9.1) U is the solution of LhkU = fhk then if

‖Lh,ku(x, t)− fhk‖ ≤ kC(t) (hq1 + kq2)

and
‖u(x, jk)− U(x, jk)‖ ≤ Cj (hq1 + kq2)

the method is accurate of order (q1, q2)

Alternatively,assuming that fhk = f(x, t) we could define the truncation error as Lh,kv−
Lv for any function v.

Definition 27 Consistency: Given that u(x, t) a solution of a p.d.e Lu = f and U(x, t)
is a solution of a finite difference scheme LhkU = fhk The scheme is consistent if Lhku−
fhk → 0 as h, k → 0.

An alternative definition is that the scheme is consistent if, for any function v, Lhkv −
Lv → 0 as h, k → 0, assuming that fhk = f(x, t). If the approximation is accurate of
order (q1, q2) and q1, q2 > 0 the method is consistent.
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Forward Difference Scheme Using Taylor series, if ut + aux = g(x, t) is denoted by
Lu = f , then if the forward difference scheme is denoted by LhkU = fhk it should be
written as

1

k
(Un+1

m − Un
m) +

a

h
D+U

n
m = gn

m

or with t = nk and x = mh,

1

k
(U(x, t+ k)− U(x, t)) +

a

h
D+U(x, t) = g(x, t)

then the truncation error is

1
k (u(x, t+ k)− u(x, t)) + a

hD+u(x, t)− g(x, t)

= 1
k (u(x, t) + kut(x, t) + k2

2 utt(x, t) +O(k3)− u(x, t))

+a 1
h(u(x, t) + hux(x, t) + h2

2 uxx(x, t) +O(h3)− u(x, t))− g(x, t)

= ut(x, t) + k
2utt(x, t) +O(k2) + a(ux(x, t) + h

2uxx(x, t) +O(h2))− g(x, t)

= k
2utt(x, t) +O(k2) + a(h

2uxx(x, t) +O(h2))

= O(k) +O(h)

so the method is order (1,1) and hence it is consistent.

Example 28 Lax-Wendroff Scheme: Consider the equation ut = aux the Lax-Wendroff
scheme is

U(x, t+ k) =

(
1 + raD0 +

a2r2

2
D+D−

)
U(x, t)

if ut = aux + f then with

gm,n =
1

2
(f(x, t+ k) + f(x, t))− ak

4h
(f(x+ h, t)− f(x, t))

the method is order (2,2), if gm,n = f(x, y) the scheme is only order (2,1).

9.4 Stability, Consistency and Convergence

9.4.1 Example of Instability

Consider the Cauchy problem

ut = ux, t > 0
u(x, 0) = f(x)

}
−∞ < x <∞ (9.8)

Using the centred difference scheme, (9.8) can be approximated by

1
k (U(x, t+ k)− U(x, t)) = 1

2h (U(x + h, t)− U(x− h, t)
t = tn = nk, n = 0, 1, 2, . . .

U(x, 0) = f(x)





x = xm = mh,
m = 0,±1, . . .

(9.9)
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that is
U(x, t+ k) = (1 + rD0)U(x, t), U(x, 0) = f(x) (9.10)

From the inverse transform formula

f(x) = (2π)−1/2

∫ ∞

−∞
eiξxf̂(ξ)dξ

it follows that

U(x, t) = (2π)−1/2

∫ ∞

−∞
eiξxÛ(ξ, t)dξ, Û(ξ, 0) = f̂(ξ)

given that
D0e

iξx = 2i sin(ξh)eiξx

it follows by applying the inverse formula to both sides of (9.10), that

Û(ξ, t+ k) = (1 + ir sin(ξh))Û(ξ, t),

so
Û(ξ, t) = (1 + ir sin(ξh))nf̂(ξ), t = nk

Hence
Û(ξ, t) = κnf̂(ξ)

where there are frequencies ξ such that |κ| > 1 and the growth of those components in
Û is unbounded. Since from Plancherel’s theorem ‖Û(ξ, t)‖ = ‖U(x, t)‖, it follows that
the growth in U is unbounded so the solution is unstable.

A stable difference formula is obtained if (9.10) is replaced by the Lax-Friedrichs
scheme

U(x, t+ k) =
1

2
(U(x+ h, t) + U(x− h, t)) + rD0U(x, t), U(x, 0) = f(x) (9.11)

assuming 0 < r0 ≤ r = k/h ≤ 1. By analogy with the previous results

Û(ξ, t) = (cos(ξh) + ir sin(ξh))nf̂(ξ), t = nk

it is obvious that
|κ| = | cos(ξh) + ir sin(ξh)| ≤ 1

and the scheme is stable.

9.4.2 Stability

Given that u(x, t) a solution of a p.d.e Lu = f and U(x, t) is a solution of a finite
difference scheme LhkU = fhk.

Definition 29 Stability: A difference approximation of the form

Lh,k(U(x, t)) ≡ Q−1U(x, t+ k)−
p∑

j=0

QjU(x, t− jk) = 0 (9.12)

where Qn, n = −1, 0, . . . , p are difference operators, is stable as h, k → 0 if

‖Û(, t)‖ ≤ Keα(t−t0)‖Û(, t0)‖
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A more readily accessible test is derived from Theorem 30.

Theorem 30 von Neumann condition: A necessary condition for the stability of the
difference approximation is that (9.12) has no exponentially growing solutions, that is all
solutions of

det


Q̂−1κ

p+1 −
p∑

j=0

Q̂jκ
j


 = 0 (9.13)

must satisfy |κ| ≤ 1 (this is not a sufficient condition).

In a simple application of this von Neumann (Fourier) method it can be assumed that
the solution can be expressed as a Fourier series, that is the sum of components such as

U(x, t) = κt/keiξx, x = mh, t = nk

for different frequencies ξ and the scheme is stable if it only permits solutions with |κ| ≤ 1.
In particular Un+1

m = κUn
m and κ is known as the amplification factor and Un

m+1 = eiθUn
m

where θ = hξ.

Forward Difference Scheme

Un+1
m = (1− arD+)Un

m

leads to
κUn

m = Un
m − ar(eiθUn

m − Un
m)

κ = 1− ar(eiθ − 1)

= 1 + ar(1 − cos θ)− iar sin θ

|κ|2 = (1 + 2ar sin2 θ
2 )2 + a2r2 sin2 θ

= 1 + 4ar sin2 θ
2 + a2r2(sin2 θ + 4 sin4 θ

2 )

= 1 + 4ar sin2 θ
2 + 4a2r2 sin2 θ

2

= 1 + 4ar sin2 θ
2 (ar + 1)

so
a > 0 ⇒ |κ| > 1 ⇒ unstable

a < 0, ar + 1 > 0 ⇒ |κ| < 1 ⇒ stable if r < 1
|a|

So upwind schemes are conditionally stable while downwind schemes are always unstable.

Central Difference Scheme

Un+1
m = (1− arD0)U

n
m

leads to
κUn

m = Un
m − ar

2 (eiθUn
m − e−iθ)Un

m

κ = 1− ar
2 (eiθ − e−iθ)

= 1 + iar sin θ

|κ|2 = 1 + a2r2 sin2 θ

≥ 1
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So the centred scheme is always unstable.

Lax-Friedrichs Scheme

Un+1
m =

1

2
(Un

m+1 + Un
m−1)− arD0U

n
m

leads to
κUn

m = 1
2 (eiθUn

m + e−iθ)Un
m − ar

2 (eiθUn
m − e−iθ)Un

m

κ = 1
2 (eiθUn

m + e−iθ)− ar
2 (eiθ − e−iθ)

= cos θ + iar sin θ

|κ|2 = cos2 θ + a2r2 sin2 θ

< 1 if ar < 1

So the method is conditionally stable and the condition is the same as for the upwind
scheme, namely r < 1

a .

Leap-Frog Scheme
Un+1

m = Un−1
m − 2arD0U

n
m

Leap-Frog is a two step method given Un+1
m = κUn

m it is also true that Un
m = κUn−1

m and
hence Un+1

m = κ2Un−1
m which leads to

κ2Un−1
m = Un−1

m − ar(κeiθUn−1
m − κe−iθUn−1

m )

κ2 = 1− arg(eiθ − e−iθ)

κ2 = 1− 2arκi sin θ

roots of κ2 + 2arκi sin θ− 1 = 0 are κ = −ari sin θ±
√
−a2r2 sin2 θ + 1 assuming ar < 1

it follows that |κ| = 1 so the method is stable and there is no decay in the solution.

Definition 31 Convergence If for any u(x, t) such that U(x, 0) converges to u(x, 0) as
h, k → 0 it follows that U(x, t) converges to u(x, t) for all (x, t) as h, k → 0 then the
scheme is convergent.

In general, convergence is a difficult property to test directly, but convergence is associ-
ated with stability for which there is a more straightforward test.

Theorem 32 Lax-Richtmeyer Equivalence Theorem: Given a properly posed linear initial-
value problem and a linear finite-difference approximation to it that satisfies the consis-
tency condition, stability is a necessary and sufficient condition for convergence

9.4.3 Dissipation and Dispersion

Definition 33 Dissipation: If all solutions of (9.13) satisfy

|κ| ≤ 1− δ|ξh|p, 0 ≤ |ξh| ≤ π

for some constant δ then p is called the order of dissipation.
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Example 34 Leap-Frog: Consider the hyperbolic equation ut = aux, the leap-frog scheme
is

U(x, t+ k) = U(x, t− k) + 2raD0U(x, t)

The order is (2, 2) and the characteristic equation is

(κ2 − 1)− 2κira sin(ξh) = 0

or

κ = ira sin(ξh)±
√

1− r2a2 sin2(ξh)

so |κ| = 1 for ra ≤ 1 and so the approximation is not dissipative.
The Lax-Friedrichs2 scheme is

U(x, t+ k) =
1

2
(U(x+ h, t) + U(x− h, t)) + kaD0U(x, t)

the characteristic equation is

κ = cos(ξh) + ira sin(ξh)

this is not dissipative as |κ| = 1 when ξh = π.
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(a) Lax-Friedrichs
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(b) Leap-Frog

Figure 9.1: Solution of ut + ux = 0 at t = 0.8 with r = 0.8

The solution of the problem

ut + aux = 0, t > 0
u(x, 0) = f(x)

}
−∞ < x <∞ (9.14)

satisfies
ût + iξaû = 0

û(ξ, 0) = f̂

}
⇒ û = e−iξatf̂

2Peter David Lax (born May 1, 1926, Budapest), his PhD supervisor was Kurt Otto Friedrichs (born
28 Sept 1901 in Kiel, died 31 Dec 1982 in New Rochelle, New York)
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so in particular
û(ξ, t+ k) = e−iξakû(ξ, t)

In general a difference solution satisfies

Û(ξ, t) = g(ξk)nf̂(ξ)

so
Û(ξ, t+ k) = g(ξah)Û(ξ, t)

= |g(ξah)|e−iξα(ξh)kÛ(ξ, t)

If α = a for all frequencies ξ then all frequencies are propagated with the correct speed.

Definition 35 Dispersion: Dispersion is the phenomenon whereby different frenquencies
are propagated at different speeds. The quantity α(ξh) is known as the phase speed.

9.4.4 Courant Friedrichs Lewy (CFL) Condition

Assume that a first order hyperbolic differential equation has been approximated by a
difference equation so that U(x, t + k) is computed in terms of U(x, t), U(x + h, t) and
U(x− h, t) in addition assume that the characteristic through (x, t + k) passes through
the point (x + α, t)3.

x+ α
x− h x x+ h

t

t+ k

Then the domain of dependence (c.f. Definition 17) of the difference solution must include
the domain of dependence of the differential equation, if not, the solution U cannot
converge to u as h, k → 0. Thus the point (x + α, t) must lie between U(x + h, t) and
U(x − h, t). Given the differential equation ut = aux the characteristics are x + at =
constant so the characteristic through (x, t + k) passes through (x + ak, t) so the CFL
condition[1] is

|ak| ≤ h ⇒ |a|r ≤ 1

where r = k
h . This shows that for a > 0 the forward difference scheme

U(x, t+ k) = (1− ar)U(x, t) + arU(x + h, t)

will converge but

U(x, t+ k) = (1 + ar)U(x, t) − arU(x − h, t)
will converge if a < 0. In each case the scheme that will converge is known as an upwind
scheme.

3Hans Lewy born 20 Oct 1904 in Breslau, died 23 Aug 1988 in Berkeley
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9.4.5 Stability

The CFL condition is concerned with convergence but it is closely associated with sta-
bility problems for the difference schemes. Again consider the first order equation

ut = aux (9.15)

The coefficient a is the propagation velocity and is assumed constant. Then discretising
the time derivative using a forward difference and expanding by Taylor’s series (centred
on x, t) gives

ut =
1

k
(u(x, t+ k)− u(x, t))− k

2
utt +O(k2) (9.16)

using a central difference for the space derivative gives

ux =
1

2h
(u(x+ h, t)− u(x− h, t)) +O(h2) (9.17)

Substituting into (9.15) gives

U(x, t+ k) = U(x, t) +
ak

2h
(U(x+ h, t)− U(x− h, t)) (9.18)

this is first order accurate (in time), but substituting back with (9.16), shows that the
difference equation (9.17) is a O(k2 + h2) replacement (i.e. order (2,2)) of

ut − aux = −k
2
utt (9.19)

from (9.15) this is equivalent to

ut − aux = −k
2
a2uxx (9.20)

as the diffusion coefficient in (9.20) is negative this means that the solution is unstable.
This explains the derivation of the Lax-Wendroff scheme that incorporates a difference
approximation to the term k

2a
2uxx. If the centred difference (9.17) is replaced by either

a forward difference which, expanding by Taylor’s series gives

ux =
1

h
(u(x+ h, t)− u(x, t))− h

2
uxx +O(h2) (9.21)

or backward difference which, expanding by Taylor’s series about (x, t), gives

ux =
1

h
(u(x, t)− u(x− h, t)) +

h

2
uxx +O(h2) (9.22)

These give respectively

U(x, t+ k) = U(x, t) + a
k

h
(U(x+ h, t)− U(x, t)) (9.23)

and

U(x, t+ k) = U(x, t) + a
k

h
(U(x, t) − U(x− h, t)) (9.24)
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as second order replacements of respectively

ut − aux =
a

2
(h− ak)uxx (9.25)

and

ut − aux = −a
2

(h+ ak)uxx (9.26)

Thus for stability, with positive diffusion, the forward difference (9.23) is needed when a
is positive and the backward difference (9.24) when a is negative (i.e. upwind or upstream
differences), in addition to the CFL condition |a|k ≤ h.

9.5 Finite Volume Methods

Consider the equation

ut + ux = 0,

define

u(t) =
1

h

∫ x+h

x

u(x, t) dt

then

∫ x+h

x

∫ t+k

t

(ut + ux) dtdx =

∫ x+h

x

∫ t+k

t

ut dtdx +

∫ t+k

t

∫ x+h

x

ux dxdt

and so

∫ x+h

x

(u(x, t+ k)− u(x, t)) dx +

∫ t+k

t

(u(x+ h, t)− u(x, t)) dt = 0

which can be written as

u(t+ k) = u(t)−
∫ t+k

t

u(x+ h, t) dt+

∫ t+k

t

u(x, t) dt

the integrals on the right represent flow across the boundaries of the cell (the finite
volume), for further details see for example[6].

x x+ h

t

t+ k
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9.6 Parabolic Equations

Consider the initial boundary value problem




ut = uxx 0 < x < l, t > 0
u(x, 0) = f(x) 0 < x < l

u(0, t) = g0, u(l, t) = g1 t > 0
(9.27)

Parabolic equations typically model heat conduction or diffusion processes, so if there is
no input into the model, the typical solution exhibits an exponential decay. The proof is
not restricted to one space dimension so rewrite (9.27) as





ut = ∇2u in Ω; t > 0
u = f in Ω; t = 0
u = g on Γ; t > 0

(9.28)

The space L2(Ω) is defined with the inner product

(u, v) =

∫

Ω

uv dΩ

and hence the norm

‖u‖ = (u, u)1/2 =

(∫

Ω

u2 dΩ

)1/2

.

Theorem 36 Stability: . Given that u is the solution of (9.28), it follows that if g = 0
then

d

dt
‖u‖ < 0

and hence for any t ≥ 0, ‖u(., t)‖ ≤ ‖f‖.
Proof
For any fixed t > 0, using the divergence theorem

ut = ∇2u in Ω,

utu = u∇2u in Ω,
∫

Ω

utu dΩ =
∫
Ω u∇2u dΩ,

∫

Ω

utu dΩ = −
∫
Ω
|∇u|2 dΩ,

1
2

d
dt

∫

Ω

u2 dΩ = −
∫
Ω
|∇u|2 dΩ < 0

Hence ‖u(., t)‖ is a decreasing function of t so

‖u(., t)‖ < ‖u(., 0)‖ = ‖f‖

Q.E.D.

There are two standard ways of investigating the stability of finite difference approxima-
tions
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• The matrix method where the scheme can be written as

U(t+ k) = AU (t) + b

and the stability depends on the eigenvalues of A.

• The Fourier Method (a.k.a. The von Neumann method4) is easier to apply, but from
the von Neumann condition (Theorem 30), in general it only provides a necessary
condition for stability.

In either case, assume that the finite difference equations are solved for two different
initial conditions f1(x) and f2(x) to give two different solutions U1 and U2 the scheme
is stable if the difference w = U1 − U2 remains bounded. The difference w satisfies the
same finite difference equations as the solutions U1 and U2 so

w(t+ k) = Aw(t)

and it remains bounded if ‖A‖ ≤ 1.

9.6.1 Crank-Nicolson

A simple explicit method for the diffusion equation in (9.27) can be written as

U(x, t+ k) = U(x, t) + rD+D−U(x, t)

= rU(x− h, t) + (1− 2r)U(x, y) + rU(x + h, t)

where now r = k
h2 . The Crank-Nicolson method[2] for (9.27) is implicit and can be

written as

U(x, t+ k) = U(x, t) + r
2D+D− (U(x, t+ k) + U(x, t))

− r
2U(x− h, t+ k) + (1 + r)U(x, t + k)− r

2U(x+ h, t+ k)

= r
2U(x− h, t) + (1− r)U(x, t) + r

2U(x+ h, t)

Substituting w for U in the explicit scheme gives

w(x, t + k) = rw(x − h, t) + (1− 2r)w(x, t) + rw(x + h, t)

κn+1eiξx = rκneiξ(x−h) + (1− 2r)κneiξx + rκneiξ(x+h)

κ = re−iξh + (1− 2r) + reiξh

= 1 + 2r (cos(ξh)− 1)

= 1− 4r sin2
(

ξh
2

)

hence the method is stable for all frequencies such that

−1 ≤ 1− 4r sin2

(
ξh

2

)

4John von Neumann first used the method during world war II
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and is stable for all frequencies if

r ≤ 1

2

In order to apply the matrix method it is necessary to write out the full set of difference
equations, including the boundary conditions, in the form U(t + k) = AU(t) + b, for
problem (9.27) it follows that the explicit scheme with the mesh length h = l/m leads to
the (m− 1)× (m− 1) matrix

A =




1− 2r r
r 1− 2r r

. . .
. . .

. . .

r 1− 2r r
r 1− 2r




with

b =




rU(0, t)
0
...
0

rU(mh, t)




U(t) =




U(h, t)
U(2h, t)

...
U((m− 2)h, t)
U((m− 1)h, t)




where U(0, t) and U(mh, t) ≡ U(l, t) are defined by the boundary conditions in (9.27).
It is known5 that the eigenvalues of the (m− 1)× (m− 1) matrix

A =




a b
c a b

. . .
. . .

. . .

c a b
c a




are
λs = a+ 2

√
bc cos

(sπ
m

)

where a, b and c may be real or complex. With h = l
m by writing ξ = sπ

l the condition
λ ≤ 1 gives the same condition as for the Fourier method which is necessary and sufficient
in this case. for Crank-Nicolson the equation is

A1U(t+ k) = A0U(t) + b

where

A0 =




1− r r
2

r
2 1− r r

2
. . .

. . .
. . .

r
2 1− r r

2
r
2 1− r




and A1 =




1 + r − r
2

− r
2 1 + r − r

2
. . .

. . .
. . .

− r
2 1 + r − r

2
− r

2 1 + r




5A proof is given in [8] and the proof of the eigenvalues for more general symmetric tridiagonal
matrices is given in [13].
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and A = A−1
1 A0 as A0 and A1 have the same eigenvectors, the eigenvalues of A are

λs =
1− 2r sin2

(
ξh
2

)

1 + 2r sin2
(

ξh
2

)

which clearly satisfies λs ≤ 1 for all ξ and all r > 0. So the stability of the Crank-Nicolson
method is unrestricted. For other boundary conditions it may be necessary to bound the
eigenvalues using:

Theorem 37 Gershgorin’s first theorem: The largest of the moduli of the eigenvalues
cannot exceed the largest sum of the moduli of the elements in any row or column.

Theorem 38 Gershgorin’s circle theorem: Let Ps be the sum of the moduli of the ele-
ments along the s-th row, excluding the diagonal ass. Then each eigenvalue lies inside
or on at least one of the circles |λ− ass| = Ps.

.

9.7 Elliptic Equations

Any numerical solution must preserve the property that the solution depends continu-
ously on the boundary data and cannot have maxima or minima at interior points (i.e.
Dirichlet’s Principle). At the present time, in most practical computation finite ele-
ment methods are preferred to finite differences. Currently work is focused primarily on
solution methods, either fast direct solvers or efficient iterative methods.

9.7.1 Fast Poisson Solver

Consider solving numerically the heat conduction problem





uxx + uyy = 0, ∀x, y ∈ (0, 1),
u(x, 0) = g0(x), ∀x ∈ [0, 1]
u(x, 1) = g1(x), ∀x ∈ [0, 1]

ux(0, y) = 0 = ux(1, y) ∀y ∈ [0, 1].

(9.29)

(compare this with (6.7) where the solution was determined in terms is Fourier series in
x) This corresponds to computing a temperature distribution on the unit square, with
two edges thermally insulated and with prescribed temperatures on the others. A second
order accurate finite difference approximation to the p.d.e. is

2(1+α)U(x, y)−U(x−h1, y)−U(x+h1, y)−α(U(x, y−h2)+U(x, y+h2)) = 0 (9.30)

where α =

(
h1

h2

)2

. If h1 = h2 = h this reduces to the 5-point Laplacian

4U(x, y)− U(x− h, y)− U(x+ h, y)− U(x, y − h)− U(x, y + h) = 0
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To discretise the problem, use a uniform mesh of (m1 + 2)× (m2 + 2) nodes defined by:

xj = (j − 1
2 )h1, h1 = 1/m1, j = 0, . . . ,m1 + 1,

yk = kh2, h2 = 1/(m2 + 1), k = 0, . . . ,m2 + 1.

Note that the mesh is centred at the boundaries with Neumann boundary conditions
(x = 0, 1). This method clearly becomes complicated if the boundaries are not parallel
to the grid, which is one reason why the finite element method with an unstructured grid
is often preferred for irregular domains. Order the nodal values row-wise as

U(y) =




U(h1

2 , y)
...

U(1− h1

2 , y)


 , U =




U(h2)
...

U(1− h2)




A simple discrete solution satisfies finite difference equations can be written in the form

AU = b (9.31)

where

b(0) =




g0(x1)
...

g0(xm1)


 , b(1) =




g1(x1)
...

g1(xm1)


 and b =




b(0)
0
...
0

b(1)



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x0 x1 xm1 xm1+1

y0

ym2+1

y1

ym2

The coefficient matrix
is a block-tridiagonal (m1m2)× (m1m2) matrix with m2 block rows

A =




Ã T

T Ã T
. . .

. . .
. . .

T Ã T

T Ã




where for Ã is the m1 ×m1 tridiagonal matrix

Ã =




2α+ 1 −1
−1 2α+ 2 −1

. . .
. . .

. . .

−1 2α+ 2 −1
−1 2α+ 1




and T = −αI. It is known that the eigenvectors of the matrix Ã have the form v(k) =

(v
(k)
1 , . . . , v

(k)
m1)

T where

v
(k)
l =





√
1

m1
, l = 1, . . . ,m1; k = 1

√
2

m1
cos
(
(k − 1)(l − 1

2 )πh1

)
, l = 1, . . . ,m1; k = 2, . . . ,m1

Hence
Ãv(k) = λkv(k), k = 1, . . . ,m1
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where λk is the kth eigenvalue of Ã and

V T ÃV = Λ = diag(λk) =




λ1

λ2

. . .

λm1


 .

Then define the m1 ×m1 matrix

V =
(
v(1), . . . ,v(m1)

)

and the block-diagonal (m1m2)× (m1m2) matrix with m2 block rows

Q =




V
. . .

V


 = I ⊗ V

where I is the m2 ×m2 unit matrix. The Kroneker (tensor) product A⊗B is defined as

A⊗B =




a11B · · · a1nB
...

...
an1B · · · annB




Then as Q is orthogonal, the system of equations can be written as

QQTAQQT U = b

or (
QTAQ

)
QT U = QT b

the matrix A is therefore replaced by

QTAQ =




Λ
Λ

. . .

Λ


+




0 T
T 0 T

. . .
. . .

. . .

T 0




= I ⊗ Λ + T2 ⊗ I
where the unit matrices are respectively of size m2 and m1 and where T2 is the m2×m2

matrix

T2 = α




−1
−1 −1

. . .
. . .

. . .

−1 −1
−1




Assuming this corresponds to ordering is initially by rows, reordering by columns leads
to the matrix

N = Λ⊗ I + I ⊗ T2 =




λ1I + T2

. . .

λm1I + T2



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and the m2 ×m2 matrix Nj = λjI + T2 is tridiagonal and so a direct solution by Gauss
Elimination is straightforward. Computationally, the solution can be split into three
phases.

Phase 1:
v ← QT b

This is multiplication of the row-wise data b by the matrix V , i.e. it is a cosine
transform of type 2 (see section on discrete transforms). A cosine transform of
length n can be performed efficiently in O(n logn) operations, hence as it is only the
first and last blocks of b that contain non-trivial data, the computational complexity
of this phase is O(m1 logm1).

Phase 2: Solve
Nz = v

This is a sequence of tridiagonal solves on the column-wise data (so a reordering of
the data is required), the matrix corresponding to block row j is

Nj =




λj −α
−α λj −α

. . .
. . .

. . .

−α λj −α
−α λj




The tridiagonal matrices are m2 × m2 and hence each system can be solved in
O(m2) operations. There are m1 systems, so the overall computational complexity
of the second phase is O(m1m2)

Phase 3:
u← Qz

This is multiplication of the row-wise data z by the matrix V T , i.e. it is an inverse
cosine transform of type 2, i.e. a cosine transform of type 3 as defined later, is
required after the data has been reordered back to the original row-wise ordering.
I this phase the computation is again O(m1 logm1) for each block but now there
are m2 non-trivial blocks so the cost for this phase is O(m1m2 logm1)

The third phase cost dominates so the total cost is O(m1m2 logm1). In the original form
the solution was defined by an m2m1 ×m2m1 matrix with O(m1) bandwidth hence a
full solution using Guass elimination would cost O(m3

1m2) operations.

9.8 Spectral Methods

Given the equation
−uxx − uyy = f.

Apply a Discrete Fourier Transform (DFT) (9.42) in both x and y to give

j2Uj,k + k2Uj,k = Fj,k
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using the coefficients

Uj,k =
Fj,k

j2 + k2

apply an IDFT in each direction to obtain U . Only finite number of terms in both DFT
and IDFT are used so the solution is approximate. An efficient solution implments the
DFT as an FFT.

9.9 Theory of Gradient Methods

For a more general sparse matrix A, that does not have a narrow regular band structure
Guass elimination is even less efficient and it is necessary to use iteration. Unfortunately,
simple iterations such as Jacobi or Gauss-Seidel can only converge rapidly for matrices
that are strongly diagonally dominant (|aii| ≫

∑
j 6=i |aij |) and matrices that are not

strongly diagonally dominant require alternative methods that converge faster. To cut
down on the subscripts/superscripts in this section the following simplifying notation is
used: x ≡ x(i) is the current approximation and x+ ≡ x(i+1) is the next iterate, etc.,
and the exact solution is x∗.

At each iteration, given a search direction p, then the approximate solution is updated
as

x+ = x + αp (9.32)

where α is computed by a local minimisation that will be explained below. The resid-
ual r = b − Ax is also updated rather than computed explicitly and so from (9.32)
multiplying by A

Ax+ = Ax + αAp

and it follows that
r+ = r − αAp (9.33)

If the matrix A is symmetric and positive definite then the quadratic form xTAx can be
used to define a norm for the vector x as

‖x‖A =
(
xTAx

)1/2
.

When A is symmetric positive definite then A−1 is also symmetric positive definite and
hence the quadratic form xTA−1x also defines a norm. For conjugate gradients, at each
iteration, the parameter α is computed by local minimisation of the residual in terms of
such a norm, i.e.

min
α

rT
+A

−1r+ = min
α

(b − Ax+)TA−1(b − Ax+)

where as A = AT and so xTAy = yTAx and from the update formula (9.33)

rT
+A

−1r+ = (r − αAp)TA−1(r − αAp)

= rTA−1r − 2αpT r + α2pTAp

the gradient is zero at minimum hence differentiating w.r.t. α gives

α =
(b − Ax)T p

pTAp
=

rT p

pTAp
(9.34)
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The error can be written in terms of the residual as e = x∗ − x = A−1r and the norm
to be minimised can be rewritten as

rT
+A

−1r+ = eT
+Ae+

Thus conjugate gradients requires

min
α

eT
+Ae+.

For any symmetric positive definite matrix B other methods are derived with

min
α

eT
+Be+

i.e. minimising any error norm

‖e‖B =
(
eTBe

)1/2
.

9.9.1 Computing the Search Direction

At each iteration of conjugate gradients it is essential to: compute the value of α from
(9.34), update the approximation from (9.32), update the residual from (9.33), but first
it is necessary to provide the new search direction p.

At each step define the matrix P in which the columns are the search directions,
so P+ =

[
P p+

]
. Similarly define R in which the columns are the residuals, so

R+ =
[
R r

]
. Then define span{P} as the space spanned by the search directions. If

we require that x+ is also optimal in the whole space spanned by the search directions
so far, i.e. a global minimum not just a local minimum, then writing x as a linear
combination of all the search directions gives

x+ = Pa + αp

where the coefficients a and α solve the minimisation problem

min
a,α

rT
+A

−1r+ = min
a,α

(b − APa − αAp)TA−1(b − APa − αAp)

then expanding the quadratic form,

rT
+A

−1r+ = (b − APa − αAp)TA−1(b − APa − αAp)

= bTA−1b − 2αpT b + α2pTAp

− 2aTPT b + aTPTAPa

+ 2αaTPTAp

The two minimisations, w.r.t. α and w.r.t. a are uncoupled iff

aTPTApα = 0
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as α and a are arbitrary this condition becomes

PTAp = 0 (9.35)

that is, the search directions are conjugate (or A-orthogonal),

pTAq = 0 for any p 6= q

The matrix A is symmetric positive definite so we can interpret (xTAx)1/2 as a norm
and hence pTAq as an inner product.

9.9.2 Convergence

The minimisation w.r.t. α leads to (9.34) and the other minimisation

min
a

(b − APa)TA−1(b − APa)

after differentiating leads to

PT (b − APa) = PT r = 0. (9.36)

If in addition,
PT

+ r = pT
+b− pT

+APa = pT
+b = 0

then b ∈ span{AP} and
x∗ = A−1b ∈ span{P}

⇒ x∗ = x = PAa

⇒ r = 0

so that either the iteration has converged or pT r 6= 0.
Given that p(1) = r(0) = b it can be proved by induction from (9.35) and (9.36) that

span{R} = span{P+}.

Thus there exists a nonsingular triangular matrix S corresponding to the change in basis
R = P+S, so from (9.36),

PT r+ = 0 = RT r+ (9.37)

and the residuals are orthogonal, i.e. rT s = 0.

9.9.3 Recurrence Relation for the search direction

Assume that the update for p can be written in the form

p+ = r+ + βp (9.38)

From (9.38) the conjugacy condition pT
+Ap = 0 gives

β = − rT
+Ap

pTAp
(9.39)
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The update formulae (9.33) and (9.39) involve 3 different inner products so the efficiency
of the method can be improved using the orthogonality of the residuals rT

+r = 0 with

r+ = r − αAp

gives

rT
+r+ = − αrT

+Ap.

Similarly rT
+p = 0 and so from (9.38)

rT
+p+ = rT

+r+

and from (9.33)

rT r = αpTAp.

So (9.39) becomes

β = −rT
+r+

rT r
(9.40)

with (9.33) becoming

α =
rT r

pTAp
. (9.41)

Hence with these modfications to the computations of the scalars the Basic CG Algo-
rithm becomes:

x(0) = 0; r(0) = p(0) = b

i = 0; ρ(0) = r(0)T
r(0)

while not converged do

v(i) = Ap(i)

α = ρ(i)/p(i)T
v(i)

x(i+1) = x(i) + αp(i)

r(i+1) = r(i) − αv(i)

ρ(i+1) = r(i+1)T
r(i+1)

β = ρ(i+1)/ρ(i)

p(i+1) = r(i+1) + βp(i)

i = i+ 1

enddo
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9.9.4 Preconditioning

The key to rapid convergence of iterative methods is the preconditioning, that is in order
to solve Ax = b, then the iteration is applied to the system

Ãx = b̃

where Ã = M−1A and b̃ = M−1b. Alternatively with M = MLMR solve

M−1
L AM−1

R y = M−1
L b.

The two solutions are connected by MRx = y. If the matrix M−1
L AM−1

R is to be
symmetric, when A is symmetric, then ML = MT

R .
The matrix M = MLMR is an approximation to A

9.9.5 Preconditioned Conjugate Gradients (PCG)

The algorithm for PCG requires one linear solve

MLMRz = r

per iteration, the conjugacy conditions become

r(j)T
M−1

R M−1
L r(i) = 0

p(j)T
M−1

R AM−1
L p(i) = 0

The derivation is straightforward with the substitutions

r → MLr

v → MLv

x → M−1
R x

p → M−1
R p

The PCG Algorithm can be written as:
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x(0) = 0; r(0) = b

i = 0; z(0) = p(0) = M−1
R M−1

L b ρ(0) = r(0)T
z(0)

while not converged do

v(i) = Ap(i)

α = ρ(i)/p(i)T
v(i)

x(i+1) = x(i) + αp(i)

r(i+1) = r(i) − αv(i)

z(i+1) = M−1
R M−1

L r(i+1) ie Solve MLMRz(i+1) = r(i+1)

ρ(i+1) = r(i+1)T
z(i+1)

β = ρ(i+1)/ρ(i)

p(i+1) = z(i+1) + βp(i)

i = i+ 1

enddo

The choice of a good preconditioner can have a dramatic effect upon the rate of
convergence. Popular choices are

• Diagonal Preconditioning

M = diag(A) so ML = MR = M1/2

• Incomplete Cholesky Factorisation

– By position: e.g. ICCG(0), the position of the nonzeros in M is governed by
the position of the nonzeros in A.

– By value: Components of M are nonzero if component of L in A = LLT is
large enough

9.9.6 Discrete Transforms

The sums

Xk =
1√
N

N−1∑

n=0

xn exp

(
−i2πkn

N

)
, k = 0, 1, . . . , N − 1 (9.42)

are known as the discrete Fourier transform (DFT) of the data xn, n = 0, 1, . . . , N − 1.
It is a linear, invertible function F : RN → RN . The inverse discrete Fourier transform
(IDFT) of the data Xk, k = 0, 1, . . . , N − 1 gives

xn =
1√
N

N−1∑

k=0

Xk exp

(
i
2πnk

N

)
, n = 0, 1, . . . , N − 1 (9.43)
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without the factor 1√
N

the symmetry of formulae (9.42) and (9.43) is lost. The DFT

can be implemented in an efficiently so the the transform takes O(n logn) arithmetic
operations. This is known as a fast Fourier transform (FFT), assuming N = 2n, the
FFT can be implemented using explicit recursion (as in the FFTW package [4]) a simple
MATLAB implementation is below.

function xhat=myfft(x,n,z)

if n==1

xhat=x;

else

uhat=myfft(x(1:2:n-1), n/2, z(1:2:n-1));

vhat=myfft( x(2:2:n), n/2, z(1:2:n-1));

xhat=[uhat+z(1:n/2).*vhat;uhat+z(n/2+1:n).*vhat];

end

The discrete cosine transform (DCT) is also a linear, invertible function F : RN →
RN . There are several variants of the DCT with slightly modified definitions. The N real
numbers x0, . . . , xN−1 are transformed into the N real numbers X0, . . . , XN−1 according
to one of the formulae:

DCT-II

Xk =

N−1∑

n=0

xn cos

[
π

N

(
n+

1

2

)
k

]

The DCT-II is probably the most commonly used form, and is often simply referred
to as “the DCT”.

This transform is exactly equivalent (up to an overall scale factor of 2) to a DFT of
4N real inputs of even symmetry where the even-indexed elements are zero. That
is, it is half of the DFT of the 4N inputs yn, where y2n = 0, y2n+1 = xn, 0 ≤ n < N ,
and y4Nn = yn, 0 < n < 2N .

DCT-III

Xk =
1

2
x0 +

N−1∑

n=1

xn cos

[
π

N
n

(
k +

1

2

)]

Because it is the inverse of DCT-II (up to a scale factor), this form is sometimes
simply referred to as “the inverse DCT” .



9.9. THEORY OF GRADIENT METHODS 73

Exercises

Exercise 9.1 Consider the following problem





ut = ux, 0 < x < 1, t > 0,
u(0, t) = u(1, t), t > 0,
u(x, 0) = f(x), 0 < x < 1,

(9.44)

which is approximated by





1
k (Un+1

j − Un
j ) = 1

2h (Un+1
j+1 − Un+1

j−1 ), j = 0, . . . , N − 1, n = 0, 1, . . .

Un
N = Un

0 , n = 0, 1, . . .

U0
j = fj , j = 0, . . . , N − 1,

(9.45)

• Derive the local truncation error

• Show that (9.45) is a consistent approximation to (9.44)

• Verify the stability of the method

Exercise 9.2 Consider the heat conduction equation

ut = uxx, 0 < x < 1, t > 0. (9.46)

1. It is approximated by the Leap-Frog Scheme:

1
2k (Un+1

j − Un−1
j ) = 1

h2 (Un
j+1 − 2Un

j + Un
j−1),

{
j = 1, . . . , N − 1,
n = 1, 2, . . .

(9.47)

• Derive the local truncation error

• Show that (9.47) is a consistent approximation to (9.46)

• Verify that the method is unconditionally unstable!

2. It is approximated by the Du Fort-Frankel Scheme:

1
2k (Un+1

j − Un−1
j ) =

1
h2 (Un

j+1 − (Un+1
j + Un−1

j ) + Un
j−1),

{
j = 1, . . . , N − 1,
n = 1, 2, . . .

(9.48)

• Derive the local truncation error

• Under what conditions is (9.48) a consistent approximation to (9.46)?

• Verify that the method is unconditionally stable!
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Exercise 9.3 Solve the equation

ut + (1 + αx)ux = 0

on the interval x ∈ [−3, 3] and 0 ≤ t ≤ 2 with the initial data

u(x, 0) =

{
1− |x| |x| ≤ 1,

0 otherwise

using the Lax-Friedrichs scheme, use α = 0.5 and r = k
h = 1. Demonstrate that the

instability phenomena occur where |(1 + αxm)r| > 1.

Exercise 9.4 The initial-boundary value problem

ut + aux = 0, x > 0, t > 0
u(x, 0) = g(x), u(0, t) = f(t),

(9.49)

is approximated on a grid (xj , tn) = (jh, nk), j = 0, . . . , N ; t = 0, 1, . . ..

1. Derive the truncation error for the following difference approximation6

Un+1
j + Un+1

j+1 = Un
j + Un

j+1 − ar(Un+1
j+1 − Un+1

j + Un
j+1 − Un

j )

where r = k
h .

2. Write down the system of equations that must be solved at each time step. How is
it solved?

3. Verify the system is stable if ar < 1.

4. How could the method be modified to solve the initial-boundary value problem

ut − aux = 0, x < 0, t > 0
u(x, 0) = g(x), u(0, t) = f(t),

(9.50)

5. Why is it important that x > 0 in (9.49) but x < 0 in (9.50)?



Chapter 10

Finite Element Methods

10.1 Introduction

The finite-element method was originally introduced in the 1950’s as a method to calcu-
late elastic deformations in solids. Later the method has been developed and generalised
for all kinds of partial differential equations. It is the dominating technique for solid-
mechanics problems such as estimating stresses and strains in elastic material under pre-
scribed loads. CAD (Computer Aided Design) systems typically provides finite-element
solvers in a highly integrated fashion. The engineer can typically with a few clicks on the
computer screen estimate the deformations and stresses of, say, a machine part during
the design. Finite-element methods are also commonly applied to other areas, such as
calculations of electromagnetic fields and fluid flows.

In order to provide a brief introduction to the ideas, this note concentrates on a
standard model problem for elliptic boundary-value problems, the Poisson problem. Only
homogeneous Dirichlet boundary conditions are covered here.

10.2 FEM for the Poisson Problem in Two Space
Dimensions

We consider the boundary-value problem

−∆u = f in Ω,
u = 0 on Γ,

(10.1)

where Ω is an open, bounded and connected domain in the plane, and Γ is its boundary.
The Laplacian ∆ is the sum of second derivatives

∆u =
∂2u

∂x2
+
∂2u

∂y2
.

Letting u represent a temperature field, equation (10.1) models steady heat conduc-
tion in a homogeneous, isotropic material, such as a metal, in which the temperature is
held at zero on the boundary. The function f can be used to model heat sources such as
electric heaters embedded in the material.

75
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10.3 Green’s Formula

.

We need some definitions and formulae from vector calculus. For any differentiable
function v from Rm to R, the gradient is the vector

∇v =

(
∂v

∂x1
,
∂v

∂x2
, . . . ,

∂v

∂xm

)
,

and for any differentiable vector-valued function w = (w1, w2, . . . , wm) from Rm to Rm,
the divergence is

∇ ·w =

m∑

i=1

∂wi

∂xi
.

By the product rule of differentiation, the formula

∇ · (v∇u) = ∇v · ∇u+ v∆u, (10.2)

that is,
m∑

i=1

∂

∂xi

(
v
∂u

∂xi

)
=

m∑

i=1

∂v

∂xi

∂u

∂xi
+

m∑

i=1

v
∂2u

∂x2
i

,

holds for differentiable functions v and twice differentiable functions u.

Also recall the divergence theorem (or Gauss’ theorem) which identifies the integral
of a vector-field divergence over a domain with the integral of the normal component of
the field along the boundaries:

∫

Ω

∇ ·w dΩ =

∫

Γ

n ·w ds, (10.3)

Here, n denotes the outward-directed unit normal on Γ. Identity (10.3) holds for func-
tions w and boundaries Γ that are sufficiently smooth.

Combining the divergence theorem (10.3) with formula (10.2) yields Green’s formula

∫

Γ

v
∂u

∂n
ds =

∫

Ω

∇v · ∇u dΩ +

∫

Ω

v∆u dΩ, (10.4)

where

∂u

∂n
= n · ∇u =

m∑

i=1

ni
∂u

∂xi
,

denotes the directional derivative of u in the normal direction. Green’s formula is a
generalisation to higher dimensions of the integration-by-parts formula

∫ 1

0

u′v′ dx = u′(1)v(1)− u′(0)v(0)−
∫ 1

0

u′′v dx.
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10.4 The Variational Form

A classical solution to the Poisson problem (10.1) is a smooth function u satisfying
equation (10.1). The precise requirements for u to be a classical solution is that it
should be twice continuously differentiable, and its first and second derivatives should
be functions that can be continuously extended up to the boundary. This assures that
Green’s formula (10.4) can be applied on u. Let v be a smooth function from Ω = Ω∪ Γ
to R such that v(x) = 0 for each x ∈ Γ. Multiply both sides of equation (10.1) with v,
integrate over Ω, and apply Green’s formula (10.4) to obtain

∫
Ω
fv dΩ = −

∫
Ω
v∆u dΩ

= −
∫
Γ
v ∂u

∂n ds+
∫
Ω
∇v · ∇u dΩ =

∫
Ω
∇v · ∇u dΩ, (10.5)

where the fact that v vanishes on the boundary has been used in the last equality. From
expression (10.5) immediately follows

Theorem 39 If u is a classical solution to the Poisson problem (10.1), then u satisfies
∫

Ω

∇u · ∇v dΩ =

∫

Ω

fv dΩ, (10.6)

for each smooth function v vanishing on the boundary.

Equation (10.6) is called the variational form of the Poisson equation. Theorem 39
refers to the original problem (10.1), but the variational form can be used to define a
function u without reference to the differential equation. For this purpose, we introduce
the function space

V =

{
v :

∫

Ω

|∇v|2 dΩ < +∞ and v|Γ = 0

}
, (10.7)

where

|∇v|2 =

(
∂v

∂x1

)2

+

(
∂v

∂x2

)2

.

The condition ∫

Ω

|∇v|2 dΩ < +∞

corresponds in many applications to demanding that the energy should be bounded, for
instance when the Poisson equation is used to model steady heat conduction. Note that
V is a linear space, that is, if v, w ∈ V , then αv + βw ∈ V for each α, β ∈ R. The space
V is a so-called Sobolev space, and is often denoted H1

0 (Ω) in the literature.
The variational problem, now formulated without reference to the differential equation

(10.1) is
Find u ∈ V such that∫
Ω∇u · ∇v dΩ =

∫
Ω fv dΩ ∀v ∈ V. (10.8)

Solutions to variational problem (10.8) are called weak solutions of the partial differential
equation (10.1). From Theorem 39 follows that classical solutions are weak solutions.
As the label “weak” suggests, there are weak solutions that are not classical solutions.
However, one can show that weak solutions are classical solutions provided that the
function f and the boundary Γ are sufficiently smooth.
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10.5 The Minimisation Problem

The variational form above is all that is needed to define a finite-element discretisation.
However, a classical solution to the particular problem that we consider, equation (10.1),
also satisfies a certain minimisation problem, that is, the classical solution minimises the
quadratic form

F (v) =
1

2

∫

Ω

|∇v|2 dΩ−
∫

Ω

fv dΩ.

Similarly as was done for the variational problem, we can also consider the problem of
minimising F within the function space V without reference to classical solutions, that
is, consider the problem:

find u ∈ V such that
F (u) ≤ F (v) ∀v ∈ V. (10.9)

In fact, the variational problem (10.8) and the minimisation problem (10.9) are equiva-
lent:

Theorem 40 The element u ∈ V minimises F if and only if it is a solution to the
variational problem (10.8)

Remark 1 The proof below may appear long, but in essence it is really no more compli-
cated than showing that the parabola F (x) = 1

2x
2 − xf has its minimum at x = f

Proof
For any u, v ∈ V , we have

F (u+ v) = 1
2

∫
Ω |∇u +∇v|2 dΩ−

∫
Ω f(u+ v) dΩ

= 1
2

∫
Ω

[
|∇u|2 + 2∇u · ∇v + |∇v|2

]
dΩ−

∫
Ω
f(u+ v) dΩ.

(10.10)

(i) Assume that u ∈ V is a solution to the variational problem (10.8). Then expression
(10.10) reduces to

F (u+ v) = 1
2

∫
Ω |∇u|2 dΩ−

∫
Ω fu dΩ + 1

2

∫
Ω |∇v|2 dΩ

= F (u) +
1

2

∫

Ω

|∇v|2 dΩ
︸ ︷︷ ︸

≥0

≥ F (u) (10.11)

for any v ∈ V , which shows that u minimises F .

(ii) Now assume that u ∈ V minimises F . For any t ∈ R and v ∈ V , we define
the function f(t) = F (u + tv), that is, by perturbing F away from its minimum.
Expression (10.10) yields that

f(t) = F (u+ tv)

= F (u) + t
(∫

Ω∇u · ∇v dΩ−
∫
Ω fv dΩ

)
+ t2

2

∫
Ω |∇v|2 dΩ,

(10.12)

that is, f is a second-order polynomial in t with a minimum when the derivative
vanishes (since the leading term is non-negative). We also know that the minimum
is attained for t = 0 since u minimises F . Setting f ′(0) = 0 yields that

∫

Ω

∇u · ∇v dΩ−
∫

Ω

fv dΩ = 0, (10.13)

for any v ∈ V , that is, u is a solution to the variational problem (10.8).
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Q.E.D.

Remark 2 Variational forms can be defined for practically all elliptic boundary-value
problems, but minimisation forms cannot always be defined, for instance when the differ-
ential equation contains first-derivative terms.

Remark 3 In mechanics application the variational form (10.8) is called the principle
of virtual work, and the minimisation problem (10.9) is called the principle of minimum
potential energy.

Remark 4 The terminology used here, “variational” for (10.8) and “minimisation” for
(10.9), is convenient for our purpose, but is not the only existing. Quite commonly the
minimisation problem is called a variational form. In fact, the notion of variational forms
was first attached to minimisations of “functionals” like F in the calculus of variations.

10.6 Meshing and Finite-Element Approximation

We introduce a triangulation of the domain Ω, that is, Ω will be subdivided into non-
overlapping triangles as illustrated in figures 10.1 and 10.3. The triangular corners are
called the nodes of the triangulation. The boundary nodes are the nodes which are located
on the boundary, and the internal nodes are the nodes which are not boundary nodes.
A valid triangulation should not contain “hanging nodes”, that is, no node should be
located at another triangles side, as in figure 10.2. The “fineness” of the triangulation is
characterised by a parameter h > 0, the largest length of any of the triangular sides, for
instance.

Now define Vh as the space of all functions that are continuous on Ω, linear on each
triangle, and vanishing on the boundary Γ. The graph of such a function is a surface
composed of triangular-shaped planes, as illustrated in figure 10.4.

This space is constructed so that Vh ⊂ V , and we define the finite-element discreti-
sation of the Poisson problem (10.1) as

Find uh ∈ Vh such that∫
Ω∇uh · ∇vh dΩ =

∫
Ω fvh dΩ ∀vh ∈ Vh.

(10.14)

Note that the discretisation is obtained simply by replacing V with the subspace Vh in the
variational form (10.8). This kind of procedure is also called a Galerkin approximation.

10.7 The Algebraic Problem

A function in the above defined space Vh is uniquely defined by its values at the internal
nodes (we already know that the function is zero at the boundary nodes). To see this,
it is enough to note that the planar surface of uh on each triangle is uniquely defined by
the values of uh at the triangular corners. Let N be the number of internal nodes. Using
the basis functions {φj(x)}Nj=1 ⊂ Vh, each function uh ∈ Vh can be written

uh(x) =

N∑

j=1

ujφj(x), (10.15)
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Figure 10.1: A valid triangulation. In-
ternal nodes are marked by solid dots
and boundary nodes by circles.

Figure 10.2: Not a valid triangulation:
contains hanging nodes.

Figure 10.3: A more complicated triangulated domain (note that the domain may contain
holes!)

Figure 10.4: The functions in Vh are continuous and linear on each triangle. (The
boundary nodes are not included in this picture.)
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Figure 10.5: The basis function φj(x) is equal to one at node j and zero at all other
nodes.

where uj is the value of uh at note j, and φj(x) is the “tent” function depicted in
figure 10.5. The function φj is zero everywhere, except that it raises as a “tent” around
node j, that is, φj ∈ V such that

φj(xk) =

{
1 if k = j,
0 otherwise,

where xk is the coordinate of node k. Substituting the expansion (10.15) into equation
(10.14) yields that

N∑

j=1

uj

∫

Ω

∇φj · ∇vh dΩ =

∫

Ω

fvh dΩ ∀vh ∈ Vh.

Since equation (10.7) should hold for each vh ∈ Vh, it must in particular hold for vh = φi,
i = 1, . . . , N , which means that

N∑

j=1

uj

∫

Ω

∇φj · ∇φi dΩ =

∫

Ω

fφi dΩ i = 1, . . . , N . (10.16)

Problem (10.16) is a system of linear equation in the coefficients uj, j = 1, . . . , N , that
is,

Au = b, (10.17)

where the matrix A has components

Aij =

∫

Ω

∇φi · ∇φj dΩ,

and

u =




u1

...
un


 , b =




∫
Ω
fφ1 dΩ

...∫
Ω fφN dΩ


 .

With a terminology borrowed from solid mechanics, the matrix A is called the stiffness
matrix and the vector b the load vector. This terminology is used also for cases, like heat
conduction, when the PDE we are discretising has nothing to do with mechanics!

We conclude that a numerical approximation of the Poisson problem with a finite-
element method involves setting up and solving the linear system (10.17).
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h

h

1..... J...

J+1...

JJ

...2J

Figure 10.6: A structured meshing of the
unit square.

Figure 10.7: A basis function associated
with the mesh in figure 10.6

10.8 An Example

Let the domain Ω be the unit square, and consider the structured mesh of figure 10.6.
There are J internal nodes in both directions and the sides of each triangle are h =
1/(J + 1). There is a total of J2 = N internal nodes, assumed to be numbered in the
row-wise direction as indicated in figure 10.6. The basis functions φi have the shape
indicated in figure 10.7. The support of each basis function, that is, the nonzero region
of the function, consists of the 6 neighbouring triangles that surround node i. Note that
this means that most of the stiffness matrix elements

Aij =

∫

Ω

∇φi · ∇φj dΩ

are zero. For instance, Ai,i+2 = 0 since there is no overlap in the support for the functions
φi and φi+2; see figure 10.8. In fact, Aij can be nonzero only when i and j are associated
with nearest-neighbouring nodes (figure 10.9).

To calculate the stiffness-matrix elements, we need to know the gradients of the basis
functions,

∇φi =

(
∂φi

∂x
,
∂φi

∂y

)
.

The gradient is constant at each triangle since φi is composed of planar surfaces. Letting
the x and y directions be oriented in the horizontal and vertical directions, respectively,
the values of the gradient at the support of the basis function are indicated in figure 10.10.
Note that the basis function is equal to one at the filled dot and equal to zero at the
open dots, which means that the gradient can simply be read off as the slope of the
“tent” function along the sides of the triangles. With the aid of the gradients given in
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Figure 10.8: There is no overlap in the sup-
port for basis functions φi and φi+2.

i

Figure 10.9: The nearest neighbours to
node i are the six nodes marked with black
dots. Thus, Aij can be nonzero only when
j corresponds to one of the black dots.
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Figure 10.10: The gradient of basis func-
tion φi is piecewise constant on each trian-
gle. The x- and y-coordinates are given as
the pair (·, ·) at each triangle of the sup-
port of the function.
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Figure 10.11: The overlap in the support
of basis functions φi and φi+1 are the tri-
angles T1 and T2.
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figure 10.10, we can compute the diagonal elements in the stiffness matrix,

Aii =
∫
Ω
∇φi · ∇φi dΩ =

∑6
i=1

∫
Tk
∇φi · ∇φi dΩ

= 1
h2 |T1|+ 2 1

h2 |T2|+ 1
h2 |T3|+ 1

h2 |T4|+ 2 1
h2 |T5|+ 1

h2 |T6|
= 8 1

h2
h2

2 = 4.

To compute Ai,i+1, note that ∇φi · ∇φi+1 6= 0 only in two triangles (figure 10.11), thus

on T1 : ∇φi =
(
− 1

h ,
1
h

)
∇φi+1 =

(
1
h , 0
)

on T2 : ∇φi =
(
− 1

h , 0
)

∇φi+1 =
(

1
h ,− 1

h

)

and thus

Ai,i+1 =
∫
Ω∇φi · ∇φi+1 dΩ =

∑2
k=1

∫
Tk
∇φi · ∇φi+1 dΩ

= − 1
h2 |T1| − 1

h2 |T2| = − 2
h2

h2

2 = −1.

Similar calculations yield that

Ai,i−1 = Ai,i+J = Ai,i−J = −1, Ai,i+J+1 = Ai,i−J−1 = 0.

Also note that the matrix A is symmetric: Aij = Aji. Altogether, we obtain the block
triangular structure (empty space means zeros!)

A =




T −I
−I T −I

. . .
. . .

. . .

−I T −I
−I T




where T and I are the J-by-J matrices

T =




4 −1
−1 4 −1

. . .
. . .

. . .

−1 4 −1
−1 4



, I =




1
1

. . .

1
1.



,

Thus, the ith row of the matrix-vector product Au will be

4ui − ui+1 − ui−1 − ui+J − ui−J . (10.18)

Node i+1 and i−1 is located to the right and left, respectively, of node i, whereas nodes
i + J and i − J are above and below node i. Thus, expression (10.18) is precisely the
classical five-point, finite-difference formula. We reach the remarkable conclusion that the
finite-element discretisation of the Laplace operator using continuous, piecewise-linear
functions on the structured mesh of figure 10.6 reduces to a standard finite-difference
formula for the Laplacian. Note, however, that this does not hold in general; finite-
element discretisations are not always easy to interpret as a finite-difference method.
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10.9 Properties of the Stiffness Matrix

Consider the stiffness matrix A with components

Aij =

∫

Ω

∇φi · ∇φj dΩ,

which was obtained by discretising the Poisson problem (10.1). This matrix has some
very particular properties, which will be discussed in this section: it is symmetric, positive
definite, sparse, and ill conditioned. All these properties, except the sparsity, reflects the
nature of the boundary-value problem (10.1). Some or all of these properties may change
if the equation or the boundary conditions are altered. For instance, if an additional term
containing first derivatives of u is added to equation (10.1), the stiffness matrix will no
longer be symmetric. The sparsity is a consequence of the fact that the chosen piecewise-
linear approximations allow a compact basis, the “tent” functions of figure 10.5.

The symmetry of the matrix is immediate,

Aij =

∫

Ω

∇φi · ∇φj dΩ =

∫

Ω

∇φj · ∇φi dΩ = Aji.

Moreover, the matrix is sparse, since Aij = 0 whenever i and j are not nearest neigh-
bours. The number of neighbours to each point does not increase when the mesh is made
finer, as long as the mesh refinements are made in a sensible way, see the discussion
in section 10.10. Thus, the number of nonzero elements on each row does not increase
with the order of the stiffness matrix, that is, the matrix in a sense becomes sparser and
sparser with increasing matrix order.

Recall that a real matrix A is positive definite if vTAv > 0 whenever v 6= 0.

Theorem 41 The stiffness matrix is positive definite.

Proof
Let vh ∈ Vh. Expanding vh in the “tent” basis functions yields

vh =

N∑

i=1

viφi(x).

Setting
v = (v1, v2, . . . , vN )

T
,

yields that

vTAv =
∑N

i=1

∑N
j=1 vi

∫
Ω
∇φi · ∇φj dΩvj

=
∫
Ω

N∑

i=1

∇ (viφi)

︸ ︷︷ ︸
=∇vh

·
N∑

j=1

∇ (vjφj)

︸ ︷︷ ︸
=∇vh

dΩ =
∫
Ω
|∇vh|2 dΩ ≥ 0, (10.19)

with equality if and only if ∇vh = 0, that is, if vh is constant. However, since vh is zero
on the boundary (by definition of Vh), it follows that the constant must be zero. Thus
expression (10.19) is zero only if vh ≡ 0, that is, when v = 0. Q.E.D.
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One important consequence of Theorem 41 is that equation (10.17) has a unique solution.
This follows from the fact that positive-definite matrices are nonsingular: For a singular
matrix A, there would be nonzero vector v so that Av = 0, and thus vTAv = 0.
Thus, singular matrices cannot be positive definite, and positive-definite matrices must
therefore be nonsingular.

The condition number of the stiffness matrix depends strongly on h. In fact, if
the quotient between the size of the smallest and largest triangle in the mesh is kept
bounded as the mesh is refined, one can show that the condition number grows like
cond(A) = O(h−2). The stiffness matrix is thus ill conditioned for fine meshes.

10.10 Accuracy

We have shown how to define a finite-element approximation of the Poisson problem
(10.1), that this yields the linear system (10.17), and that this has a unique solution.
The question how good the finite-element solution is as an approximation of the original
problem will be discussed in this section.

For finite-difference discretisations, accuracy questions are usually addressed indi-
rectly by applying the Lax–Richtmyer Theorem. The crucial steps is then to derive
truncation errors and to check stability. If the method is consistent, that is, if the trun-
cation error vanishes as the mesh is refined, the method is convergent if and only if it
is stable. For finite-element discretisations, this approach is hardly ever used, since it is
possible to study the error in the discretisation directly. The easiest and most natural
way is to work with integral norms of the difference between the weak solution u of
problem (10.8) and the finite-element solution uh of problem (10.14). The L2(Ω) norm
of a function,

|v|L2(Ω) =

(∫

Ω

v2 dΩ

)1/2

,

is the analogue for functions of the vector 2-norm. The perhaps most important norm
for solutions of the Poisson problem is the energy norm

|v|V =

(∫

Ω

|∇v|2 dΩ
)1/2

, (10.20)

that is, the L2(Ω)-norm of the first derivatives; recall that weak solutions were defined
among functions with bounded energy norm (the space of functions defined by (10.7)).
The importance of the energy norm is that the finite-element solution is optimal in the
energy norm. That is, no other function in Vh yields a smaller error in energy norm:

Theorem 42 Let u be the solution to variational problem (10.8) and uh the finite-
element solution (10.14). Then

|u− uh|V ≤ |u− vh|V ∀vh ∈ Vh, (10.21)

Proof
By equation (10.14), the finite-element solution uh satisfies

∫

Ω

∇uh · ∇vh dΩ =

∫

Ω

fvh dΩ ∀vh ∈ Vh. (10.22)
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From equation (10.8) follows that the weak solution u satisfies

∫

Ω

∇u · ∇vh dΩ =

∫

Ω

fvh dΩ ∀vh ∈ Vh, (10.23)

since Vh ⊂ V . Subtracting equations (10.22) and (10.23) yields that

∫

Ω

∇(u− uh) · ∇vh dΩ = 0 ∀vh ∈ Vh. (10.24)

Let vh be an arbitrary element of Vh. Then

|u − uh|2V =
∫
Ω
|∇(u − uh)|2 dΩ =

∫
Ω
[∇(u − uh)] · [∇(u− uh)] dΩ

=
∫
Ω
∇(u− uh) · ∇u dΩ−

∫

Ω

∇(u− uh) · ∇uh dΩ

︸ ︷︷ ︸
= 0 by (10.24)

=
∫
Ω∇(u− uh) · ∇u dΩ−

∫

Ω

∇(u− vh) · ∇vh dΩ

︸ ︷︷ ︸
= 0 by (10.24)

=
∫
Ω
∇(u− uh) · ∇(u − vh) dΩ ≤ |u− uh|V |u− vh|V ,

(10.25)

where the last inequality follows from the Cauchy–Schwarz inequality. Dividing through
with |u− uh|V yields the conclusion. Q.E.D.

The optimality property (10.21) does not hold for all elliptic boundary-value prob-
lems. For the finite-element solution to be optimal, it is necessary that the variational
problem yields a symmetric stiffness matrix.

The next step in an analysis of the error is a pure approximation problem. Typically,
one considers the interpolant, that is, a piecewise-linear function agreeing with u at the
node points; note that the interpolant is an element of Vh. The difference between the
interpolant and u can be estimated by a type of Taylor expansion. From Theorem 42
follows that the error in the finite-element solution smaller or equal to the error in the
interpolant. The precise magnitude of this error depends of course on how fine the mesh
is, but it also depends on the quality of the mesh. Loosely speaking, one should avoid
very thin triangles.

Altogether, estimating the interpolation error and utilising Theorem 42, it can be
shown that the error in the finite-element solution is of second order, that is,

|uh − u|L2(Ω) = O(h2). (10.26)

Note that the norm above is not the energy norm; the error is of first order if measured
in the energy norm. For estimate (10.26) to hold, assumptions have to be made on the
mesh quality and on the smoothness of the solution to the variational problem (10.8).
Following conditions are sufficient.

(i) (Mesh quality.) The smallest angle of any of the triangles is bounded below as
the mesh is refined. This means that no triangle successively can become infinitely
thin.
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Figure 10.12: A strategy to maintain mesh quality is to subdivide each triangle into four
new triangles by joining the edge midpoints.

(ii) (Smoothness.) The boundary of Ω is smooth. Alternatively, the boundary is polyg-
onal and the domain is convex. (If Ω is not polygonal to start with, it is typically
approximated with a succession of polygonal domains Ωh such that Ωh → Ω as
h→ 0).

The mesh quality condition above is maintained if the triangles, as the mesh is refined,
are subdivided into four triangles in the way indicated in figure 10.12. Refining each
triangle in the mesh in this way reduces all triangular sides with a factor 1/2. The error
will thus be reduced with a factor 1/4 (for problems on convex domains at least).

Higher accuracy can thus be obtained through refinement of the mesh (“h method”).
This should preferably be done adaptively, in the parts of the domain where it is needed,
to prevent the size of the stiffness matrix to become too large. There are automatic
methods for this. Higher accuracy can also be obtained through higher order on the
polynomials on each triangle (“p method”). For instance, the error in the sense (10.26)
can be improved to third order if Vh consists of continuous functions that are quadratic
on each element.

10.11 Alternative Elements

Quadrilaterals, that is, a geometric figure obtained by connecting four points in the plane
by straight lines, can be used to partition the domain instead of triangles, see figure 10.13.
In this case will the approximating space Vh contain globally continuous functions who
vary linearly along the edges of each quadrilateral. However, the functions will no longer
be linear within the elements. In the special case when the quadrilaterals are rectangles
oriented in the coordinate directions, a function vh ∈ Vh will be bilinear, that is, of the
form

vh(x, y) = a+ bx+ cy + dxy

on each element. The nodal values of vh (the values of vh at the four corners of the
rectangle) uniquely determine the four coefficients above.

Quadrilaterals and, in particular, rectangular elements yields a regular structure that
may give high solution accuracy and allow efficient solutions of the associated linear
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Figure 10.13: A quadrilateral mesh.

Figure 10.14: Meshes in three space dimensions can be composed of non-overlapping
tetrahedra (left) or hexahedra (right).

systems. It is, however, harder to generate such meshes automatically on complicated
geometries compared to triangular meshes.

For three space dimensions, triangular and quadrilateral meshes generalise to tetra-
hedral and hexahedral meshes (figure 10.14) with advantages and limitations as for cor-
responding meshes in two space dimensions.

For higher order equations, such as the Euler-Bernoulli model of a bending beam

y′′′′(x) = −f(x)

or the biharmonic equation

∆2u = 0

it is necessary to use smoother elements for which the derivatives are continuous contin-
uous across element boundaries. So, for example, in the one-dimensional beam bending
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problem it is possible to define vh ∈ Vh as Hermite piecewise cubic polynomials:

φ0(s) = (s− 1)2(2s+ 1)
φ1(s) = s2(3− 2s)
ϕ0(s) = (s− 1)2s
ϕ1(s) = s2(s− 1)





to define a cubic polynomial, p(s), s ∈ [0, 1] that interpolates v(0), dv(0)
ds , v(1) and

dv(1)
ds can be written as

p(s) = v(0)φ0(s) + v(1)φ1(s) +

(
dv(0)

ds

)
ϕ0(s) +

(
dv(1)

ds

)
ϕ1(s).

The nodal values of vh are the values of the solution at the nodes and the values of the
derivative at the node.

Exercises

Exercise 10.1 Construct the weak form of the b.v.p.

∇(a∇u) = f, x ∈ Ω ⊂ R3

u = g, x ∈ Γ1

a∂nu = h, x ∈ Γ2

where Γ1 ∪ Γ2 = Γ the boundary of Ω and Γ1 ∩ Γ2 = ∅.

Exercise 10.2 Given that u is the solution of ∆u = f in Ω = (0, 1)× (−1, 1), and on

the boundary Γ, subject to u =





1− y2, −1 ≤ y ≤ 1, x = 0
y2, −1 ≤ y ≤ 1, x = 1
x, 0 ≤ x ≤ 1, y = ±1

1. Derive the variational formulation of this problem.

2. Using a uniform grid of triangles and piecewise linear basis functions, φi(x, y), i =
1, . . . , N derive the system of equations AU = b that defines the approximate solu-
tion

U(x, y) =

N∑

j=1

Ujφj(x, y)

where U = (U1, . . . , UN )T in the case when f(x, y) = 0.
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