Numerical Linear Algebra - Krylov subspaces
 NGSSC-SciComp

Uppsala University
2012

Why Krylov subspaces are so much used?

NGSSC-SciComp, January 2012

Alexei Nikolaevich Krylov

1863-1945, Maritime Engineer
a 300 papers and books on: shipbuilding, magnetism, artilery, math, astronomy, geodesy

Q 1890: theory of oscillating motions of the ship
Q 1904: he built the first machine in Russia for integrating ODEs
e 1931: Krylov subspace methods

Presentation, based on the paper

The Idea Behind Krylov Methods
Ilse C. F. Ipsen and Carl D. Meyer
The American Mathematical Monthly,
Vol. 105, No. 10, Dec., 1998

Summary:

Why Krylov methods make sense, and why it is natural to represent a solution to a linear system as a member of a Krylov space?

We show that the solution to a nonsingular linear system $A x=b$ lies in a Krylov space whose dimension is the degree of the minimal polynomial of A.

Therefore, if the minimal polynomial of A has low degree then the space in which a Krylov method searches for the solution can be small. In this case a Krylov method has the opportunity to converge fast.

When the matrix is singular, however, Krylov methods can fail.
Even if the linear system does have a solution, it may not lie in a Krylov space. In this case one describes a class of right-hand sides for which a solution lies in a rylov space. As it happens, there is only a single solution that lies in a Krylov space, and it can be obtained from the so-called Drazin inverse.

General framework - projection methods

Want to solve $A \mathbf{x}=\mathbf{b}, \mathbf{b}, \mathbf{x} \in R^{n}, A \in R^{n, n}$
Use the projection framework, i.e., we seek an approximate solution $\widetilde{\mathbf{x}}=\mathbf{x}^{0}+\delta$, where $\delta \in K, \operatorname{dim}(K)=m \ll n$, such that

$$
\mathbf{b}-A \widetilde{\mathbf{x}} \perp L, \operatorname{dim}(L)=m
$$

x^{0} is arbitrary.

General framework - projection methods

Major results:
(A) The matrix $B=W^{T} A V$ is nonsingular for any W and V either if A is positive definite and $L=K$, or if A^{-1} exists and $L=A K$.
(B) Properties
(I) $K=L, A$-spd $\Rightarrow\left\|\mathrm{x}^{*}-\widetilde{\mathbf{x}}\right\|_{A} \leq\left\|\mathrm{x}^{*}-\mathrm{x}\right\|_{A}$ for any $\mathbf{x}=\mathbf{x}^{0}+\mathbf{y}, \mathbf{y} \in L$
(II) $L=A K, \Rightarrow\|\mathbf{b}-A \widetilde{\mathbf{x}}\| \leq\|\mathbf{b}-A \mathbf{x}\|$ for any $\mathbf{x}=\mathbf{x}^{0}+\mathbf{y}, \mathbf{y} \in L$

General framework - projection methods

The importand question is now how to choose K. We let

$$
K \equiv \mathcal{K}^{m}(A, \mathbf{v})=\operatorname{span}\left\{\mathbf{v}, A \mathbf{v}, \cdots, A^{m-1} \mathbf{v}\right\}
$$

for some vector \mathbf{v}.
Usual choices: $\mathbf{v}=\mathbf{b}$ or $\mathbf{v}=\mathbf{r}^{0} \equiv \mathbf{b}-A \mathbf{x}^{0}$.

Relevant questions:

- Why is $\mathcal{K}(A, \mathbf{b})$ often a good space from which to construct an approximate solution?
- Why are eigenvalues important for Krylov methods
- Why do Krylov methods often do so well for Hermitian matrices?

One can show that the solution of $A \mathbf{x}=\mathbf{b}$ nas a natural representation in $\mathcal{K}_{k}(A, \mathbf{b})$ for some k.
If k happens to be small, we have a fast convergence.

Assume that A is nonsingular.

Idea: express A^{-1} in terms of powers of A.

The minimal polynomial of $A, q_{d}(t)$ of degree d, is the unique monoic polynomial of minimal degree, for which

$$
q(A)=0 .
$$

It has the form

$$
q_{d}(t)=\prod_{j=1}^{d}\left(t-\lambda_{j}\right)^{m_{j}}
$$

where

- $\lambda_{1}, \cdots, \lambda_{d}$ are distinkt eigenvalues of A,
- m_{1}, \cdots, m_{d} are the corresponding indeces of λ_{j} (the sizes of the largest Jordan block, associated with λ_{j}).

Idea: express A^{-1} in terms of powers of A.

$$
\begin{equation*}
q_{d}(t)=\prod_{j=1}^{d}\left(t-\lambda_{j}\right)^{m_{j}}=\sum_{s=0}^{m} \alpha_{s} t^{s} \tag{1}
\end{equation*}
$$

where $m=\sum_{j=1}^{d} m_{j}$.
Example: $A=\left[\begin{array}{llll}3 & 1 & & \\ & 3 & & \\ & & 4 & \\ & & & 4\end{array}\right] \begin{aligned} & \text { Then we have } \\ & \\ & \end{aligned}$
Note that, since we have assumed that A is nonsingular, in (1), the coefficient $\alpha_{0}=\prod_{j=1}^{d}\left(-\lambda_{j}\right)^{m_{j}} \neq 0$.

Idea: express A^{-1} in terms of powers of A.

$$
q(A)=\alpha_{0} I_{n}+\alpha_{1} A+\alpha_{2} A^{2}+\cdots+\alpha_{m} A^{m}=0, \alpha_{0} \neq 0
$$

Then $A^{-1} q(A)=0$, thus,

$$
A^{-1}=\frac{1}{\alpha_{0}} \sum_{j=0}^{m-1} \alpha_{j+1} A^{j}
$$

However, $\mathbf{x}=A^{-1} \mathbf{b}$!
If the minimal polynomial of $A\left(A^{-1} \exists\right)$ has degree m, then $\mathbf{x}=A^{-1} \mathbf{b} \in \mathcal{K}^{m}(A, \mathbf{b})$.

Idea: express A^{-1} in terms of powers of A.

Remarks:
Q If d is small, then the convergence is fast.

- We also see that the eigenvalues of A, not its singular values, are important, because the dimension of the solution space is determined by the degree of the minimal polynomial.

What happens if A^{-1} does not exist?

Suppose that A is singular. One can show that even if a solution exists, it may not lie in the Krylov space $\mathcal{K}^{m}(A, \mathbf{b})$.

Example: Consider a consistent linear system $N \mathbf{x}=\mathbf{c}$, where N is a nulpotent matrix, i.e., there exists some integer ℓ, such that $N^{\ell}=0$ but $N^{\ell-1} \neq 0$. Suppose that the solution x is a linear combination of Krylov vectors, i.e.,

$$
\mathbf{x}=\beta_{0} \mathbf{c}+\beta_{1} N \mathbf{c}+\beta_{2} N^{2} \mathbf{c}+\cdots+\beta_{\ell-1} N^{\ell-1} \mathbf{c}
$$

Then, $\mathbf{c}=N \mathbf{x}=\beta_{0} N \mathbf{c}+\beta_{1} N^{2} \mathbf{c}+\cdots+\beta_{\ell-2} N^{\ell-1} \mathbf{c}$ and $\left(I-\beta_{0} N-\beta_{1} N^{2}-\cdots-\beta_{\ell-2} N^{\ell-1}\right) \mathbf{c}=0$.
The matrix $Q=I-\beta_{0} N-\beta_{1} N^{2}-\cdots-\beta_{\ell-2} N^{\ell-1}$ is nonsingular, because of the following reasons. The eigenvalues of any nilpotent matrix are all equal to zero, thus, the eigenvalues of Q are all equal to 1 . Therefore, c must be zero. Moral: the solution of a system with a nilpotent matrix and a nonzero right hand side cannot lie in the Krylov subspace, generated by the matrix and the rhs.

What happens if A^{-1} does not exist?

Apply the following trick: Decompose the space $C^{n}=\mathcal{R}\left(A^{\ell}\right) \oplus \mathcal{N}\left(A^{\ell}\right)$, where ℓ is the index of the zero eigenvalue of $A \in C^{n \times n}$ and $\mathcal{R}(\cdot)$ and $\mathcal{N}(\cdot)$ denote range and nullspace. Then

$$
A=\left[\begin{array}{cc}
R & 0 \\
0 & N
\end{array}\right]
$$

where R is nonsingular and N is nilpotent of index ℓ.
Suppose now that $A \mathbf{x}=\mathbf{b}$ has a Krylov solution

$$
\mathbf{x}=\left[\begin{array}{l}
\mathbf{x}_{1} \\
\mathbf{x}_{2}
\end{array}\right]=\sum_{j=1}^{d} \alpha_{j} A \mathbf{b}=\sum_{j=0}^{d} \alpha_{j}\left[\begin{array}{cc}
R^{j} & 0 \\
0 & N^{j}
\end{array}\right]\left[\begin{array}{l}
\mathbf{b}_{1} \\
\mathbf{b}_{2}
\end{array}\right]
$$

thus

$$
\mathbf{x}_{1}=\sum_{j=0}^{d} \alpha_{j} R^{j} \mathbf{b}_{1} \text { and } \mathbf{x}_{2}=\sum_{j=0}^{d} \alpha_{j} N^{j} \mathbf{b}_{2}
$$

What happens if A^{-1} does not exist?

From $A \mathbf{x}=\mathbf{b}$ we have that $N \mathbf{x}_{2}=\mathbf{b}_{2}$, so $\sum_{j=0}^{d-1} \alpha_{j} N^{j+1} \mathbf{b}_{2}=\mathbf{b}_{2}$ and

$$
\left(I-\sum_{j=0}^{d-1} \alpha_{j} N^{j+1}\right) \mathbf{b}_{2}=\underline{0}
$$

and following analogous reasons we obtain that $\mathbf{b}_{2}=\mathbf{0}$.
In other words, The existence of a Krylov solution requires that $\mathbf{b} \in \mathcal{R}\left(A^{\ell}\right)$. The converse statement is also true.

Theorem $1 A$ square linear system $A \mathbf{x}=\mathbf{b}$ has a Krylov solution if and only if $\mathbf{b} \in \mathcal{R}\left(A^{\ell}\right)$, where ℓ is the index of the zero eigenvalue of A.

Properties of the Krylov subspaces

$\mathcal{K}^{m}(A, \mathbf{v})=\operatorname{span}\left\{\mathbf{v}, A \mathbf{v}, \cdots, A^{m-1} \mathbf{v}\right\}$
The dimension of \mathcal{K}^{m} increases with each iteration.
a Theorem [Cayley-Hamilton]: $d \leq n$
e \mathcal{K}^{d} is invariant under A, thus, $\mathcal{K}^{m}=\mathcal{K}^{d}$ for $m>d$, thus,

$$
\operatorname{dim}\left(\mathcal{K}^{m}\right)=\min (m, d)
$$

