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Basic Iterative Solution methods

Introduction:
The ideas to use iterative methods for solving linear systems of equations go
back to Gauss (1823), Liouville (1837) and Jacobi (1845).

After deriving an iterative procedure, in 1823, Gauss has written in a letter the
following:

"... You will hardly eliminate directly anymore, at least not when you have more
than two unknowns. The indirect method can be pursued while half asleep or
while thinking about other things."
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Introduction:

Before considering iterative solution methods for linear systems of equations, we
recall how do we solve nonlinear problems
Let f(x) = 0 have to be solved and f(x) is a nonlinear function in x.
The usual way to approach the problem is:

F (x) ≡ x− f(x).

If x∗ is the solution of f(x) = 0, then x∗ is a stationary point for

x = F (x). (1)

Then we proceed with finding the stationary point for (1) and this is done
iteratively, namely,

x(k+1) = F (x(k)), k = 0, 1, · · · , x(0) given. (2)
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Convergence of the fixed point iteration:

For any initial guess x(0), there exists a unique fixed point x∗ for F (x),

x∗ = lim
k→∞

x(k) if and only if F is a contracting mapping, i.e.

‖F (x)− F (y)‖ ≤ q‖x− y‖

for some q ∈ (0, 1).
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Fixed point for linear problems:

Let now f(x) ≡ Ax− b be linear. We use the same framework:

F (x) = x− (Ax− b)

x(k+1) = x(k) − (Ax(k) − b) = x(k) + r(k)

where r(k) = b−Ax(k) is called the residual at iteration k.
In this way we obtain the simplest possible iterative scheme to solve

Ax = b,

namely,

x(k+1) = x(k) − (Ax(k) − b), k = 0, 1, · · ·
x(0) given.
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Simple iteration

For many reasons the latter form of the simple iteration is replaced by

x(k+1) = x(k) + τr(k), (3)

where τ is some properly chosen method parameter.

Relation (3) defines the so-called stationary basic iterative method of first kind.
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Stationary iterative methods ...

If we permit τ to change from one iteration to the next, we get

x(k+1) = x(k) + τkr
(k), (4)

which latter defines the so-called
non-stationary basic iterative method of first kind.

So far τ and τk are some scalars. Nothing prevents us to replace the method
parameter by some matrix, however, if this would improve the convergence of
the iterative method.
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(cont)

Nothing prevents us to replace the method parameter by some matrix, however,
if this would improve the convergence of the iterative method. Thus, we can
consider

x(k+1) = x(k) + C−1(b−Ax(k))

or

x(k+1) = x(k) + C−1r(k),

(5)

It is easy to see that we obtain (5) by replacing Ax = b with

C−1Ax = C−1b

and use the simple iteration framework. In this case the iterative scheme takes
the form

Cd(k) = r(k),

x(k+1) = x(k) + d(k)
(6)

The scheme (6) has in general a higher computational complexity than (4), since
a solution of a system with the matrix C is required at each iteration.
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Concerns:

C1 Does the iteration process converge to the solution, i.e. does x(k) → x∗?

C2 If ’yes’, how fast does it converge?
The number of iterations it needed for the iterative method to converge
with respect to some convergence criterion, is a function of the properties
of A. For instance, it = it(n), where n is the size of A. If it turns out that
it = O(n2), we haven’t gained anything compared to the direct solution
methods.
The best one can hope for is to get it ≤ Const, where Const is
independent of n. Since the the computational complexity of one iteration
is in many cases proportional to n (for sparse matrices, for instance)ten
the complexity of the whole solution process will be

O(n).

C3 Is the method robust with respect to the method parameters (τ , τk)?
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Concerns (cont.):

C4 Is the method robust with respect to various problem parameters?
A = A(ρ, ν, E, · · · )

C5 When we are using the scheme C−1Ax = C−1b, it must be easy to
solve systems with C.

C6 Is the method parallelizable?
Parallelization aspects become more and more important since n is XXL.
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Concerns (cont.):

Suppose the method converges to the exact solution x∗.
Then more questions arise:

C7 When do we stop the iterations?

→ We want ‖x∗ − x(k)‖ ≤ ε but x∗ is not known.

→ What about checking on r(k)?

→ Is it enough to have ‖r(k)‖ ≤ ε̃?

Will the latter guarantee that ‖x∗ − x(k)‖ ≤ ε?

Denote e(k) = x∗ − x(k) (the error at iteration k). Then

r(k) = b−Ax(k) = A(x∗ − x(k)) = Ae(k).

In other words e(k) = A−1r(k).
Scenario: Suppose ‖A−1‖ = 108 and ε̃ = 10−4. Then

‖e(k)‖ ≤ ‖A−1‖‖r(k)‖ ≤ 104, which is not very exiting.

Example: Discrete Laplace ∆5
h:

‖A−1‖ ≈ λmin = 1
2
(πh)2 ≈ 104 for h = 10−2.
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Concerns (cont.):

C8 How do we measure (estimate) the convergence rate?

C9 How do we find good method parameters (τ , τk, C), which will speed up
the convergence?

We start our considerations with [C9].
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ChoosingC:

Intuitively, C has to do something with A.
Note that if C = A, then C−1 = A−1 and we will get convergence in one step!
However, the computational effort to construct A−1 is higher than to use a direct
solution method.

We try the following choice. Consider the following so-called splitting of A,

A = C −R,

where C is nonsingular and R can be seen as an error matrix.
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ChoosingC (cont.)

Then C−1A = C−1(C −R) = I − C−1R = I −B.

The matrix B = C−1R is referred to as the iteration matrix.

‖Bm‖ is the convergence factor for m steps

(‖Bm‖)1/m is called the average convergence factor.
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Equivalent formulation using the splitting:

Using the splitting A = C −R we obtain the following equivalent form of the
iterative procedure:

A = C −R −→ R = C −A

x(k+1) = x(k) + C−1(b−Ax(k))

= x(k) + C−1b− C−1(C −R)x(k)

= C−1b+ C−1Rx(k)

Cx(k+1) = Rx(k) + b (7)

The matrix C is called a preconditioner to A. Its general purpose is to improve
the properties of A in order to achieve a better (faster) convergence of the
method.
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A general convergence result:

Theorem 1 The sequence {x(k)} from Cx(k+1) = Rx(k) + b converges to the

solution x∗ of Ax = b for any initial guess x(0) if and only if there holds

ρ(B) ≡ ρ(C−1R) < 1

where ρ(· · · ) denotes the spectral radius.

Proof Let e(k) = x∗ − x(k), A = C −R. Then

Cx∗ = Rx∗ + b

Cx(k) = Rx(k−1) + b


−

Ce(k) = Re(k−1)

e(k) = Be(k−1) = B2e(k−2) = · · · = Bke(0).

If ρ(C−1R) < 1 then lim
k→∞

Bk = 0 and e(k) → 0.
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If ρ(C−1R) ≥ 1:

Let λi = eig(B) and ρ(B) = |λj | i.e., λj is the eigenvalue of B, such that

ρ(B) = |λj |. Let vj be the corresponding eigenvector.

Then
(
vj
)m

= Bmvj = λm
j vj

9 0.

e(0) =
n∑

k=1

βkv
k = βjv

j + · · ·

Bme(0) = β̃jB
mvj + · · ·

and at least one component of e(m) does not converge to zero.
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Remarks on the proof:

The basic argument in the latter proof is that if ρ(B) < 1 then Bk → 0.. This can
be shown in the following way.

Lemma 1 Let T be a nonsingular matrix and let ‖x‖T = ‖Tx‖∞. Let

‖A‖T = sup
x 6=0

‖Ax‖T
‖x‖T

be the induced matrix norm. Then.

(a) ‖A‖T = ‖TAT−1‖∞
(b) For any ε > 0 and matrix A, there exists a nonsingular matrix T such that

‖A‖T ≤ ρ(A) + ε.

In other words, there exist matrix norms, which are arbitrary close to the

spectral radius of a given matrix.
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Remarks on the proof:

Proof (a) ‖x‖T is a vector norm and T−1 exists.

‖A‖T = sup
x 6=0

‖Ax‖T
‖x‖)T

= sup
x 6=0

‖TAx‖∞
‖Tx‖∞

= sup
y 6=0

‖TAT−1y‖∞
‖y‖∞

= ‖TAT−1‖∞.
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Proof(cont.)

(b) We use Schur’s lemma: There exists a unitary matrix U , such that

UAU−1 = W =




w11 ∗ ∗ · · · ∗
0 w22 ∗ · · · ∗

. . . · · ·
...

wnn



,

where wii = λi ∈ S(A); S(A) denotes the spectrum of A. Let δ > 0 and define
D = D(δ) = diag{δ−1, δ−2, · · · , δ−n}. Then DWD−1 is also upper triangular

and (DWD−1)ij =





0, j < i

wii, j = i

wijδ
j−1, j > i.

⇒ ‖DWD−1‖∞ ≤ max
i

{
|wii|+ nmax

j>i
|wij |δj−1

}
.
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Proof(cont.)

We see that for any given ε > 0 we can choose δ > 0 small enough so that

nmax
j>i
|wijδ

j−1 < ε. Hence,
‖DWD−1‖∞ ≤ ρ(A) + ε

‖A‖T = ‖TAT−1‖∞ = ‖DUAU−1D−1‖∞
= ‖DWD−1‖∞ ≤ ρ(A) + ε.

(for T = DU , nonsingular).
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Convergence (cont.)

Lemma 2 For any square matrix there holds

(a) lim
k→∞

Ak = 0⇔ ρ(A) < 1,

(b) If ρ(A) < 1 then (I −A)−1 = I +A+A2 + · · · is convergent.

Proof (a)’⇒’: If ρ(A) < 1 then choose ε > 0: ρ(A) + ε < 1. Then there exists a
nonsingular T (which depends on A), such that ‖A‖T ≤ ρ(A) + ε < 1.
⇒ ‖Ak‖T ≤ ‖A[|kT → 0 ⇒ lim

k→∞
Ak = 0

(a)’⇐’: If lim
k→∞

Ak = 0, let {λ,v} be an eigensolution of A, then

λkv = Akv→ 0. This is true for all eigenvalues, thus ρ(A) = max |λ| < 1.
(b) (I −A)(I +A+A2 + · · · ) = I −Ak+1. If ρ(A) < 1 then Ak → 0⇒ (b)
follows.

Maya Neytcheva, IT, Uppsala University maya@it.uu.se – p. 24/77



Rate of convergence

Theorem 1 shows both convergence and rate of convergence (e(k) = Bke(k)).
The latter is difficult to compute. Also the convergence may not be monotone.

Theorem 2 Consider Cx(k+1) = Rx(k) + b, B = C−1R and let ρ(B) < 1. Then

‖x∗ − x(k)‖ ≤ ‖B‖
1− ‖B‖‖x

(k) − x(k−1)‖
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Rate of convergence, cont.

Proof x(k+1) − x(k) = B(x(k) − x(k−1)) and
x(k+m+1) − x(k+m) = Bm+1(x(k) − x(k−1)). We have

‖x(k+s) − x(k)‖ = ‖
s−1∑
j=0

(x(k+j+1) − x(k+j))‖ ≤

‖x(k+1) − x(k)‖+ ‖x(k+2) − x(k+1)‖+ · · ·
Therefore

‖x(k+m+1)−x(k+m)‖ ≤
m∑

j=0

‖Bj‖ ‖x(k)−x(k−1)‖ = ‖B‖ − ‖B‖
m+1

1− ‖B‖ ‖x(k)−x(k−1)‖

We let now m→∞, i.e., xk+m → x∗, ‖B‖m → 0.

⇒ ‖x∗ − x(k)‖ ≤ ‖B‖
1−‖B‖

‖x(k) − x(k−1)‖.
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Stopping tests:

Theorem 2 can be used to get information whether the iteration error
e(k) = x∗ − x(k) is small enough.

In practice, most used stopping tests are:

(S1) ‖r(k)‖ ≤ ε, residual based, absolute
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Stopping tests:

Theorem 2 can be used to get information whether the iteration error
e(k) = x∗ − x(k) is small enough.

In practice, most used stopping tests are:

(S1) ‖r(k)‖ ≤ ε, residual based, absolute

(S2) ‖r(k)‖ ≤ ε‖r(0)‖, residual based, relative

Maya Neytcheva, IT, Uppsala University maya@it.uu.se – p. 27/77



Stopping tests:

Theorem 2 can be used to get information whether the iteration error
e(k) = x∗ − x(k) is small enough.

In practice, most used stopping tests are:

(S1) ‖r(k)‖ ≤ ε, residual based, absolute

(S2) ‖r(k)‖ ≤ ε‖r(0)‖, residual based, relative

(S3) ‖x(k) − x(k−1)‖ ≤ ε
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Stopping tests:

Theorem 2 can be used to get information whether the iteration error
e(k) = x∗ − x(k) is small enough.

In practice, most used stopping tests are:

(S1) ‖r(k)‖ ≤ ε, residual based, absolute

(S2) ‖r(k)‖ ≤ ε‖r(0)‖, residual based, relative

(S3) ‖x(k) − x(k−1)‖ ≤ ε

(S4) ‖x∗ − x(k)‖ ≤ ε0‖x∗ − x(0)‖.

If the latter is wanted, then we must check on (S3) and choose ε such

that ε ≤ ‖B‖
1−‖B‖

ε0‖x∗ − x(0)‖.

Either estimate of ‖A−1‖ or of ‖B‖ is required.
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Choices of the matrixC

Choice ’J’
Let A = D − L− U , where D is diagonal, U is strictly upper triangular and L is
strictly lower triangular.
Let C ≡ D, R = L+ U . The iterative scheme is known as Jacobi iteration:

Dx(k+1) = (L+ U)x(k) + b

Entry-wise xk+1
i = 1

aii

(
bi −

∑
i 6=j

aijxj

)
..

For the method to converge: B = D−1(L+ U)

ρ(B) ≤ ‖D−1(L+ U)‖∞ = max
1≤i≤n

n∑

j = 1

j 6= i

∣∣∣∣
aij

aii

∣∣∣∣

We want ρ(B) < 1. One class of matrices, for which Jacobi method converges is
when A is strictly diagonally dominant.
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Choices of the matrixC

Choice GS-B Choose C ≡ D − U , R = L

Backward Gauss-Seidel (D − U)x(k+1) = Lx(k) + b
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Choices of the matrixC

Choice GS-B Choose C ≡ D − U , R = L

Backward Gauss-Seidel (D − U)x(k+1) = Lx(k) + b

Choice GS-F Choose C ≡ D − L, R = U

Forward Gauss-Seidel (D − L)x(k+1) = Ux(k) + b
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Choices of the matrixC

Choice GS-B Choose C ≡ D − U , R = L

Backward Gauss-Seidel (D − U)x(k+1) = Lx(k) + b

Choice GS-F Choose C ≡ D − L, R = U

Forward Gauss-Seidel (D − L)x(k+1) = Ux(k) + b

G-S is convergent for s.p.d. matrices.
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Choices of the matrixC

Choice GS-B Choose C ≡ D − U , R = L

Backward Gauss-Seidel (D − U)x(k+1) = Lx(k) + b

Choice GS-F Choose C ≡ D − L, R = U

Forward Gauss-Seidel (D − L)x(k+1) = Ux(k) + b

G-S is convergent for s.p.d. matrices.

make it more fancy: A = D − L− U . Then

ωA = ωD − ωL− ωL+D −D ← overrelaxation

= (D − ωL)− (ωU + (1− ω)D)

Choose C ≡ D − ωL, R = ωU + (1− ω)D:

SOR (D − ωL)x(k+1) = [ωU + (1− ω)D]x(k) + ωb

Maya Neytcheva, IT, Uppsala University maya@it.uu.se – p. 29/77



SOR - back to 1940

One can see SOR as a generalization of G-S (ω = 1). Rewrite
(D − ωL)x(k+1) = [ωU + (1− ω)D]x(k) + ωb

as
(
1
ω
D − L

)
x(k+1) =

[(
1
ω
− 1
)
D + U

]
x(k) + b

For the iteration matrix Bω =
(
1
ω
D − L

)−1 [( 1
ω
− 1
)
D + U

]

One can show that ρ(Bω) < 1 for 0 < ω < 2. Furthermore, there is an optimal
value of ω, for which ρ(Bω) is minimized:

ωopt =
2

1 +

√
1− ρ(B̂)2

, B̂ = I −D−1
A A.
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SOR - cont.

Rate of convergence: Let λi = eig(Bω).∣∣∣∣
n∏

i=1
λi

∣∣∣∣ =
∣∣det

(
(1− ω)I + ωD−1U

)∣∣ = |1− ω|n. ⇒ at least one λi ≥ |1− ω|.

⇒ ρ(Bω) ≥ |1− ω|.
We want ρ(Bω) < 1, i.e. |1− ω| ≤ ρ(Bω) < 1,⇒ 0 < ω < 2.
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Splittings ofA

Let A,C,R ∈n×n and consider A = C −R. A splitting of A is called

regular if C is monotone and R ≥ 0 (elementwise)

weak regular if C is monotone and C−1R ≥ 0

nonnegative if C−1 exists and C−1R ≥ 0

convergent if ρ(C−1R) < 1.

Recall: A matrix is called monotone if Ax > 0 implies x > 0.
Theorem: A - monotone⇔ A−1 ≥ 0.
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Shortly on projectors
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Projectors and properties

Definitions:
Consider Cn and a mapping P : Cn → Cn.
P is called a projector if P 2 = P (i.e. P is idempotent).
If P is a projector, then I − P is also such:

(I − P )2 = I − 2P + P 2 = I − P.

N (P ) = {x ∈ Cn : Px = 0} (null space (kernel) of P )
R(P ) = {Ax : x ∈ Cn} (range of P ).

A subspace S is called invariant under a square matrix A whenever AS ∈ S.
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Properties:

P1: N (P )
⋂R(P ) = {0} Indeed,

if x ∈ R(P )⇒ ∃y : y = Px⇒ Py = P 2x = Px⇒ y = x⇒ x = Px

If x ∈ N (P )⇒ Px = 0⇒ x = Px⇒ x = 0.

P2: N (P ) = R(I − P )

x ∈ N (P )⇒ Px = 0. Then x = Ix− Px = (I − P )x.
y ∈ R(I − P )⇒ y = (I − P )y⇒ Py = 0.

P3: Cn = R(P )
⊕N (P ).

P4: Given two subspaces K and L of same dimension m, the following two

conditions are mathematically equivalent:

(i) No nonzero vector in K is orthogonal to L

(ii) ∀x ∈ Cn∃ unique vector y : y ∈ K,x− y ∈ L.

Proof (i)⇒(ii): K
⋂

L⊥ = {∅} ⇒ Cn = K
⊕

L⊥ ⇒ ∀x ∈ Cn : x = y + z,
where y ∈ K and z ∈ L⊥. Thus, z = x− y⇒ (ii).
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P5: Orthogonal and oblique projectors

P is orthogonal if N (P ) = R(P )⊥. Otherwise P is oblique.
Thus, if P is orthogonal onto K, then Px ∈ K and (I − P )x ⊥ K. Equivalently,
((I − P )x,y) = 0, ∀y ∈ K.

K

x

Px

x−Px
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Properties (cont.)

P6: If P is orthogonal, then ‖P‖ = 1.

Proof x = Px+ (I − P )x = y − z.
Then
(y, z) = 0 : (Px, (I − P )x) = (Px,x)− (Px, Px) = (Px,x)− (Px,x) = 0.
⇒ ‖x‖22 = ‖Px‖22 + ‖(I − P )x‖22
⇒ ‖x‖22 ≥ ‖Px‖22 ⇒

‖Px‖22
‖x‖22

≤ 1, ∀x ∈ Cn.

However, for x̃ ∈ R(P ) there holds ‖P x̃‖22
‖x̃‖22

= 1. Thus, ‖P‖ = 1.

P7: Any orthogonal projector has only two eigenvalues 0 and 1. Any vector

from R(P ) is an eigenvector to λ = 1. Any vector from N (P ) is an eigenvector
to λ = 0.
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Theorem 3 Let P be orthogonal onto K. Then for any vector x ∈ Cn there holds

min
y∈K

‖x− y‖2 = ‖x− Px‖2. (8)

Proof For any y ∈ K, Px− y ∈ K, Px ∈ K, (I − P )x ⊥ K

‖x− y‖22 = ‖(x− Px) + (Px− y)‖22 =

‖x− Px‖22 + ‖Px− y‖22 + 2(x− Px, Px− y) = ‖x− Px‖22 + ‖Px− y‖22.

Therefore, ‖x− y‖22 ≥ ‖x− Px‖22 ∀y ∈ K and the minimum is reached for
y = Px.

Corollary 1 Let K ⊂ Cn and x ∈ Cn be given. Then min
y
‖x− y‖2 = ‖x− y∗‖2

is equivalent to y∗ ∈ K and x− y∗ ⊥ K.
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Iterative solution methods

➾ Steepest descent

➾ conjugate gradient method (CG)

➾ Generalized conjugate gradient method (GCG)

➾ ORTHOMIN

➾ Minimal residual method (MINRES)

➾ Generalized minimal residual method (GMRES)

➾ Lanczos method

➾ Arnoldi method

➾ Orthogonal residual method (ORTHORES)

➾ Full orthogonalization method (FOM)

➾ Incomplete orthogonalization method (IOM)
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Iterative solution methods

➾ SYMMLQ

➾ Biconjugate gradient method (BiCG)

➾ BiCGStab

➾ Conjugate gradients squared (CGS)

➾ Minimal residual method (MR)

➾ Quasiminimal residual method

➾ · · ·
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Projection-based iterative
methods
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General framework – projection methods

Want to solve b−Ax = 0,b,x ∈ Rn, A ∈ Rn×n

Instead, choose two subspaces L ⊂ Rn and K ⊂ Rn and

∗ find x̃ ∈ x(0) +K, such that b−Ax̃ ⊥ L

K - search space
L - subspace of constraints

∗ - basic projection step

The framework is known as Petrov-Galerkin conditions.

There are two major classes of projection methods:

orthogonal - if K ≡ L,

oblique - if K 6= L.
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Notations:
x̃ = x0 + δ - (δ - correction)
r0 = b−Ax0 (r0 - residual)

∗ find δ ∈ K, such that r0 −Aδ ⊥ L
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Matrix formulation

Choose a basis in K and L: V = {v1,v2, · · · ,vm} and
W = {w1,w2, · · · ,wm}.
Then, x̃ = x0 + δ = x0 + V y for some y ∈ Rm.

The orthogonality condition can be written as

(∗∗) WT (r0 −AV y)

which is exactly the Petrov-Galerkin condition.
From (∗∗) we get

WT r0 = WTAV y

y = (WTAV )−1WT r0

x̃ = x0 + V (WTAV )−1WT r0

In practice, m < n, even m≪ n, for instance, m = 1.
The matrix WTAV will be small and, hopefully, with a nice structure.

!!! WTAV should be invertible.
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A prototype projection-based iterative method:

Given x(0); x = x(0)

Until convergence do:
Choose K and L

Choose basis V in K and W in L

Compute r = b−Ax

y = (WTAV )−1WT r

x = x+ V y

Degrees of freedom: m,K,L, V,W .
Clearly, if K ≡ L, then V = W .

Plan:
(1) Consider two important cases: L = K and L = AK

(2) Make a special choice of K.
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Property 1:

Theorem 4 Let A be square, L = AK. Then a vector x̃ is an oblique projection on K

orthogonally to AK with a starting vector x0 if and only if x̃ minimizes the 2-norm of

the residual over x0 +K, i.e.,

‖r−Ax̃‖2 = min
x∈x0+K

‖r−Ax‖2. (9)

Thus, the residual decreases monotonically.

Referred to as minimal residual methods
CR, GCG, GMRES, ORTHOMIN
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Property 1:

~

b

b−Ax
~

Ax

b−Ax

Ax
K

AK
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Property 2:

Theorem 5 Let A be symmetric positive definite, i.e., it defines a scalar product (A·, ·)
and a norm ‖ · ‖A. Let L = K, i.e., r0 −Ax̃ ⊥ K. Then a vector x̃ is an orthogonal

projection onto K with a starting vector x0 if and only if it minimizes the A-norm of

the error e = x∗ − x over x0 +K, i.e.,

‖x∗ − x̃‖A = min
x∈x0+K

‖x∗ − x‖A. (10)

The error decreases monotonically in the A-norm.
Error-projection methods.
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Example:m = 1

Consider two vectors: d and e. Let K = span{d} and L = span{e}.
Then x̃ = x0 + αd (δ = αd) and the orthogonality condition reads as:

r0 −Aδ ⊥ e⇒ (r0 −Aδ, e) = 0⇒ α(Ad, e) = (r0, e)⇒ α =
(r0, e)

(Ad, e)
.

If d = e - Steepest Descent method (minimization on a line.
If we minimize over a plane - ORTHOMIN.
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Choice ofK:

K = Km(A,v) = {v, Av, A2v, · · · , Am−1v}

Krylov subspace methods

L = K = Km(A, r0) and A spd ⇒ CG

L = AK = AKm(A, r0) ⇒ GMRES
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Why are Krylov subspaces of interest?
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How to construct a basis for K?

CG
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Arnoldi’s method for general matrices

Consider Km(A,v) = {v, Av, A2v, · · · , Am−1v}, generated by some matrix A

and vector v.
1. Choose a vector v1 such that ‖v1‖ = 1

2. For j = 1, 2, · · · ,m
3. For i = 1, 2, · · · , j
4. hij = (Avj ,vi)

5. End

6. wj = Avj −
j∑

i=1
hijvi

7. hj+1,j = ‖wj‖
8. If hj+1,j = 0, stop
9. vj+1 = wj/hj+1,j

10. End
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The result of Arnoldi’s process

V m = {v1,v2, · · · ,vm} is an orthonormal basis in Km(A,v)

AV m = V mHm +wm+1e
T
m

V
m V

m

H
m

em( )T
wm+1

(n,m)(n,m)(n,n)

A

(n,1) 

(1,m)*

*

(m,m)

+

=*
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Arnoldi’s process - example

H3 =



(Av1,v1) (Av2,v1) (Av3,v1)

‖w1‖ (Av2,v2) (Av3,v2)

0 ‖w2‖ (Av3,v3)




Since V m+1 ⊥ {v1,v2, · · · ,vm} then it follows that (V m)TAV m = Hm.
Hm is an upper-Hessenberg matrix.
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Arnoldi’s method for symmetric matrices

Let now A be real symmetric matrix. Then the Arnoldi method reduces to the

Lanczos method.

Recall: Hm = (V m)TAV m

If A is symmetric, then Hm must be symmetric too, i.e., Hm is three-diagonal

Hm =




γ1 β2

β2 γ2 β3

. . .

βm γm




Thus, the vectors vj satisfy a three-term recursion:

βi+1v
i+1 = Avi − γiv

i − βiv
i−1
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Lanczos algorithm to solve symmetric linear systems

Given: x(0)

Compute r(0) = b−Ax(0), β = ‖r(0)‖, v1 = r(0)/β

Set β1 = 0 and v0 = 0

For j = 1 : m

wj = Avj − βjv
j−1

γj = (wj ,vj)

wj = wj − γjv
j

βj+1 = ‖wj‖2, if βj+1 = 0, go out of the loop
vj+1 = wj/βj+1

End
Set Tm = tridiag{βi, γi, βi+1}
Compute ym = T−1

m (βe1)

xm = x0 + V mym

Leads to three-term CG.
To solve, factor first Tm = LLT and then xm = x(0) + V mL−TL−1βe1
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Direct Lanczos: the factorization ofTm

The coefficients on the direct Lanczos algorithm correspond to the following
factorization of Tm:

Tm =




γ1 β2

β2 γ2 β3

. . .

βm γm




=




1

λ2 1

. . .

λm 1







η1 β2

η2 β3

. . .

ηm
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Direct Lanczos

Instead of factorizing at the end, Gauss factorization without pivoting can be
performed while constructing T .
Recall xm = x0 + V mL−TL−1βe1 and let G = V mL−T and z = L−1βe1

Compute r(0) = b−Ax(0), ξ1 = β = ‖r(0)‖, v1 = 1/β r(0)

λ1 = 1, β1 = 1,g0 = 0

Set β1 = 0 and v0 = 0

For j = 1, 2, · · · until convergence
w = Avj − βjv

j−1

γj = (w,vj)

if j > 1, λj = βj/ηj−1, ξj = −λjξj−1

ηj = γj − λjβj

gj = (ηj)
−1(vj − βjg

j−1)

xj = xj−1 + ξjg
j , stop if convergence is reached

w = w − γjv
j

βj+1 = ‖wj‖;
vj+1 = w/βj+1

End
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How to construct a basis for K?

CG
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Arnoldi’s method for general matrices

Consider Km(A,v) = {v, Av, A2v, · · · , Am−1v}, generated by some matrix A

and vector v.
1. Choose a vector v1 such that ‖v1‖ = 1

2. For j = 1, 2, · · · ,m
3. For i = 1, 2, · · · , j
4. hij = (Avj ,vi)

5. End

6. wj = Avj −
j∑

i=1
hijvi

7. hj+1,j = ‖wj‖
8. If hj+1,j = 0, stop
9. vj+1 = wj/hj+1,j

10. End

The algorithm breaks down in step j, i.e., hj+1,j = 0, if and only if the minimal
polynomial of A is of degree j.
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The result of Arnoldi’s process

V m = {v1,v2, · · · ,vm} is an orthonormal basis in Km(A,v)

AV m = V mHm +wm+1e
T
m

V
m V

m

H
m

em( )T
wm+1

(n,m)(n,m)(n,n)

A

(n,1) 

(1,m)*

*

(m,m)

+

=*
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Arnoldi’s process - example

H3 =



(Av1,v1) (Av2,v1) (Av3,v1)

‖w1‖ (Av2,v2) (Av3,v2)

0 ‖w2‖ (Av3,v3)




Since V m+1 ⊥ {v1,v2, · · · ,vm} then it follows that (V m)TAV m = Hm.
Hm is an upper-Hessenberg matrix.
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Arnoldi’s method for symmetric matrices

Let now A be real symmetric matrix. Then the Arnoldi method reduces to the

Lanczos method.

Recall: Hm = (V m)TAV m

If A is symmetric, then Hm must be symmetric too, i.e., Hm is three-diagonal

Hm =




γ1 β2

β2 γ2 β3

. . .

βm γm




Thus, the vectors vj satisfy a three-term recursion:

βi+1v
i+1 = Avi − γiv

i − βiv
i−1
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Lanczos algorithm to solve symmetric linear systems

Given: x(0)

Compute r(0) = b−Ax(0), β = ‖r(0)‖, v1 = r(0)/β

Set β1 = 0 and v0 = 0

For j = 1 : m

wj = Avj − βjv
j−1

γj = (wj ,vj)

wj = wj − γjv
j

βj+1 = ‖wj‖2, if βj+1 = 0, go out of the loop
vj+1 = wj/βj+1

End
Set Tm = tridiag{βi, γi, βi+1}
Compute ym = T−1

m (βe1)

xm = x0 + V mym

Leads to three-term CG.
To solve, factor first Tm = LLT and then xm = x(0) + V mL−TL−1βe1
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The CG method:

The CG algorithm using the above relations:

Initialize: r(0) = Ax(0) − b, g(0) = r(0)

For k = 0, 1, · · · , until convergence

τk =
(r(k),r(k))

(Agk,g(k))

x(k+1) = x(k) + τkg
k

r(k+1) = r(k) + τkAgk

βk =
(r(k+1),r(k+1))

(r(k),r(k))

gk+1 = r(k+1) + βkg
k

end

r(k) – iteratively computed residuals
gk – search directions
Note: the coefficients βk are different from those in the Lanczos method.
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CG: computer implementation

x = x0
r = A*x-b
delta0 = (r,r)
g = -r
Repeat: h = A*g

tau = delta0/(g,h)
x = x + tau*g
r = r + tau*h
delta1 = (r,r)
if delta1 <= eps, stop
beta = delta1/delta0
g = -r + beta*g
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Optimality properties of the CG method

Opt1: Mutually orthogonal search directions: (gk+1, Agj) = 0, j = 0, · · · , k
Opt2: There holds r(k+1) ⊥ Km(A, r(0), i.e.,

(r(k+1), Ar(k)) = 0, j = 0, · · · , k
Opt3: Optimization property: ‖r(k)‖ smallest possible at any step, since CG

minimizes the functional f(x) = 1/2(x, Ax)− (x,b)

Opt4: (e(k+1),Agj) = (gk+1, Agj) = (r(k+1), r(k)) = 0, j = 0, · · · , k
Opt5: Finite termination property: there are n breakdowns of the CG algorithm.

Reasoning: if gj = 0 then τk is not defined. the vectors gj are computed
from the formula gk = r(k) + βkg

k−1. Then

0 = (r(k),gj) = −(r(k), r(k)) + βk (r(k),gk−1)
︸ ︷︷ ︸

0

,⇒ r(k)0, i.e., the

solution is already found.
As soon as x(k) 6= xexact, then r(k) 6= 0 and then gk+1) 6= 0.
However, we can generate at most n mutually orthogonal vectors in Rn,
thus, CG has a finite termination property.
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Convergence analysis

Convergence of the CG method

Theorem: In exact arithmetic, CG has the property that xexact = x(m) for some
m ≤ n, where n is the order of A.

Rate of convergence of the CG method

Theorem: Let A is symmetric and positive definite.
Suppose that for some set S, containing all eigenvalues of A, for some

polynomial P̃ (λ) ∈ Π1
k and some constant M there holds max

λ∈S

∣∣∣P̃ (λ)
∣∣∣ ≤M.

Then,

‖xexact − x(k)‖A ≤M‖xexact − x(0)‖A.

‖ek‖A ≤ 2

[
κ(A) + 1

κ(A)− 1

]k
‖e0‖A
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Rate of convergence (cont)

Repeat:

‖ek‖A ≤ 2

[
κ(A) + 1

κ(A)− 1

]k
‖e0‖A

Seek now the smallest k, such that

‖ek‖A ≤ ε‖e0‖A

we want
(

κ+1
κ−1

)k
> 2

ε

⇒ k ln
(

κ+1
κ−1

)
> ln( 2

ε
)

⇒ k > ln( 2
ε
)/ln

(
κ+1
κ−1

)

⇒ k > 1
2

√
κ ln( 2

ε
)
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The GMRES method
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Basic GMRES

Choose v1 to be the normalized r0 = b−Ax0.
Any vector x ∈ x0 +K is of the form x = x0 + Vmy. Then

b−Ax = b−A(x0 + Vmy)

= r0 −AVmy

= βv1 − Vm+1H̃my

= Vm+1(βe1 − H̃my).

Since the columns of Vm+1 are orthonormal, then

‖b−Ax‖2 = ‖βe1 − H̃my‖2.
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Basic GMRES

1. Compute r0 = b−Ax0, β = ‖r0‖2 and v1 = r0/β

2. For j = 1, 2, · · · ,m
3. Compute wj = Avj

4. For i = 1, 2, · · · , j
5. hij = (wj ,vi)

6. wj = wj − hijvi

7. End
8. hj+1,j = ‖wj‖2; if hj+1,j = 0, set m = j, goto 11
9. vj+1 = wj/hj+1,j

10. End
11. Define the (m+ 1)×m Hessenberg matrix H̃m = {hij}, 1 ≤ i ≤ m+ 1, 1 ≤ j ≤ m

12. Compute ym as the minimizer of ‖βe1 − H̃my‖2 and xm = 0+ Vmym
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GMRES:

No breakdown of GMRES

As m increases, storage and work per iteration increase fast. Remedies:

Restart (keep m constant)
Truncate the orthogonalization process

The norm of the residual in the GMRES method is monotonically
decreasing. However, the convergence may stagnate. The rate of
convergence of GMRES canot be determined so easy as that of CG.
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