
Methods to Compute Approximate Inverses of Matrices

1. The problem

We are interested in computing approximations of the inverse (A−1) of a given
matrix A, such that these approximate inverses can be easily used in various
iterative methods. An additional aspect of the above problem will also be
considered, namely, the applicability of parallel algorithms when computing
the approximations and when using them afterwards.
Let denote by G an approximation of A−1.
There are two major applications of the approximate inverses in an iterative
method. The first is to use them as preconditioners to the original matrix.
Typically we have to perform actions of the form:

x(l+1) = x(l) − Gr(l), l = 1, 2, · · · ,

i.e. G is involved in matrix × vector multiplications.
The second appears when we compute an incomplete factorization of a matrix
partitioned in block form. Consider for simplicity a block tridiagonal matrix

A = block tridiag(Ai,i−1Ai,iAi,i+1).

Then we compute a preconditioner C = (D−1 + L)(I + DU), where L and U

are the strictly lower and upper triangular parts of A.
In many applications the matrix A is sparse. The exact inverse will be just a
full matrix. A natural condition on G then arises, we can impose that G has
some a priori chosen sparsity pattern (the same as A or different) which will
make the calculations with G easy and cheap, and also will provide a sufficient
accuracy.
Let A be of order n and S = {(i, j), 1 ≤ i ≤ n; 1 ≤ j ≤ n}. Any proper
subset S of S will be referred to as a sparsity pattern (S ⊂ S). SL denotes the
corresponding sparsity pattern for the lower triangular matrix and SL̃ denotes
the corresponding sparsity pattern for the strictly lower triangular matrix.
Thus, A ∈ S if aij 6= 0 ⇐⇒ (i, j) ∈ S.

2. Explicit Methods

In these methods an approximation of the inverse A−1 of a given nonsingular
matrix A is computed explicitly.

1



Let S be a sparsity pattern. We want to compute G ∈ S, such that

(GA)ij = δij, (i, j) ∈ S,

i.e.

(1)
∑

k:(i,k)∈S

gikakj = δij, (i, j) ∈ S.

Some observations can be made from (1):

- the elements in the ith row of G can be computed independently;

- even if A is symmetric, G in not necessarily symmetric, because gii−1

and gi−1i are, in general, not equal.

Example: Consider

A =











2 −1 0 0
−1 3 −2 0

0 −2 4 −1
0 0 −1 2











We want to find G with the same sparsity pattern as A, i.e.

G =











g11 g12 0 0
g21 g22 g23 0

0 g32 g33 g34

0 0 g43 g44











Then we compute the entries of G using (1):

G =











3
5

1
5

0
1
3

2
3

1
3

0
0 4

13
6
13

3
13

0 0 1
7

4
7











and we find

GA =











1 0 −0.40 0
0 1 0 −0.33

−0.31 0 1 0
0 −0.28 0 1











2



For instance, the second row of G is the second row of the matrix

A =











2 −1 0 0
−1 3 −2 0

0 −2 4 0
0 0 0 1











−1

.

This is explained below.
It can be seen that when computing the ith row of G, only certain entries of
A are used, namely, for which (i, k) ∈ S and (i, j) ∈ S. Hence, if

S = {(1, 1), (1, 2), {(i, i − 1), (i, i), (i, i + 1)}n
i=1, (n, n − 1), (n, n)}

then only the entries of the matrix Ai =







ai−1,i−1 ai−1,i ai−1,i+1

ai,i−1 ai,i ai,i+1

ai+1,i−1 ai+1,i ai+1,i+1





 will be

used when computing the ith row of G. Furthermore, the ith row of G is the
ith row of G−1, where

G =





























1
. . .

1
Ai

1
. . .

1





























.

But, pay attention! If we compute AG then

0.8667 -0.2667 -0.3333 0

AG = 0.4000 1.1846 0.0769 -0.4615

-0.6667 -0.1026 1.0366 0.3516

0 -0.3077 -0.1758 0.9121

i.e. the matrix G is here a left-hand approximate inverse of A and as such is
somewhat less accurate than as an right-hand approximate inverse.
The drawback of the above method is that G is not symmetric in general even
if A is symmetric.

3. Implicit Methods

3



These methods require that A is factored first. In practice they can be used
mainly for band or ”envelope” matrices.
Suppose A = LD−1U is a triangular matrix factorization of A. If A is a band
matrix then L and U are also band matrices.
Let

L = I − L̃; U = I − Ũ ,

where L̃ and Ũ are strictly lower and upper triangular matrices correspond-
ingly.
The following Lemma can be stated.
Lemma: Using the above notations it can be shown that

(i) A−1 = DL−1 + ŨA−1,

(ii) A−1 = U−1D + A−1L̃.

Proof:

A = LD−1U =⇒ A−1 = U−1DL−1

=⇒ (I − Ũ)A−1 = DL−1 =⇒ A−1 = DL−1 + ŨA−1.

Also
A−1(I − L̃) = U−1D =⇒ A−1 = U−1D + A−1L̃.

2

Since DL−1 is lower triangular and Ũ is upper triangular , using (i) we can
compute entries in the upper triangular part of A−1 with no need to use entries
of L−1. Similarly, using (ii) we can compute entries of the lower triangular part
of A−1 without U−1.
Suppose A is a block banded matrix with a semibandwidth p and we want to
form A−1 also as block banded with a semibandwidth q : q ≥ p. The identities
(i) and (ii) can be used then for the computation of the upper and lower parts
of A−1.

Algorithm:

for r = n, n − 1, · · · , 1

(A−1)r,r = Dr,r +
min(q,n−r)

∑

s=1

Ũr,r+s(A
−1)r+s,r

4



for k = 1, 2, · · · , q

(A−1)r−k,r =
min(q,n−r+k)

∑

s=1

Ũr−k,r−k+s(A
−1)r−k+s,r ; (i)

(A−1)r,r−k =
min(q,n−r+k)

∑

t=1

(A−1)r,r−k+tL̃r−k+t,r−k ; (ii)

endfor

endfor

Remarks:

- The algorithm consists only of matrix × matrix operations.

- There is no need to compute any entries outside the bands.

- If A is symmetric then executing only (i) or only (ii) will be enough.

- It can be seen that (A−1)nn = D−1
nn .

There are two drawbacks of this algorithm. It requires first the factorization
A = LD−1U and even A is s.p.d., the band part of A−1, which is computed,
need not to be s.p.d.
Example: Consider an s.p.d. matrix

G =







1 −2 1
−2 5 −3

1 −3 4





 .

Then

Gband =







1 −2 0
−2 5 −3

0 −3 4







is indefinite.

4. A general framework for computing approximate inverses

It turns out that both the explicit and implicit methods can be characterized
as methods to compute best approximations of A−1 in some norm. The basic
idea is due to Kolotilina and Yeremin (1986-1989).

5



Let a sparsity pattern S be given. Consider the functional

FW (G) = ‖I − GA‖2
W = tr(I − GA)W (I − GA)T ,

where the weight matrix W is s.p.d. If W ≡ I then ‖I−GA‖I is the Frobenius
norm of I − GA.
Clearly FW (G) ≥ 0. If G = A−1 then FW (G) = 0. Hence, we want to compute
the entries of G in order to minimize FW (G), i.e. to find Ĝ ∈ S, such that

‖I − ĜA‖W ≤ ‖I − GA‖W , ∀G ∈ S.

The following properties of tr(.) will be used:

trA = trAT , tr(A + B) = trA + trB.

Then

(2)
FW (G) = tr(I − GA)W (I − GA)T

= tr(W − GAW − W (GA)T + GAW (GA)T )
= trW − trGAW − tr(GAW )T + trGAWAT GT .

Further, as we are interested in minimizing FW w.r.t. G, we consider the
entries gi,j as variables. The necessary condition for a minimizing point are
then

(3)
∂FW (G)

∂gij

= 0, (i, j) ∈ S.

From (2) and (3) we get

−2(WAT )ij + 2(GAWAT )ij = 0,

or

(4) (GAWAT )ij = (WAT )ij, (i, j) ∈ S.

The equations (4) may or may not have a solution, depending on the particular
matrix A and the choice of S and W .
Example: Let A be s.p.d. Choose W = A−1 which is also s.p.d.

=⇒ (GA)ij = δij, (i, j) ∈ S,

6



i.e. the formula for the explicit method can be seen as a special case of the
more general framework for computing approximate inverses using weighted
Frobenius norms.

Example: Let W = (AT A)−1.

=⇒ (G)ij = (A−1)ij, (i, j) ∈ S,

which is the formula for the implicit method. In this case the entries of G are
the corresponding entries of the exact inverse.

Example: Let W = I.Then

FW (G) = n − tr(GA)

and
(GAAT )ij = (AT )ij, (i, j) ∈ S.

This method is also explicit.
We can expect that such methods will be accurate only if all elements ofA
which are not used in the computations are zero or are relatively small. In some
cases the quality of the computed approximation G to A−1 can be significantly
improved using diagonal compensation of the entries of A which are outside
S.

Example: Let A be symmetric and five-diagonal. Suppose we know that
the two of the off-diagonals contain small entries. Such matrix appears if we
solve the anisotropic problem, for instance:

−∂2u

∂x2
− ε

∂2u

∂y2
= f,

where ε > 0 is small.
We choose a tridiagonal sparsity pattern S3 for G, where the the two nonzero
off-diagonals will correspond to the off-diagonals of A, containing bigger el-
ements, i.e. they are not necessarily next to the main diagonal. Then we
construct an approximate inverse in the following way:

Step 1: Let Ã be A with deleted small entries, i.e. Ã ∈ S3.

Step 2: Compute G̃: (G̃A)ij = δij, (i, j) ∈ S3.

7



Step 3: Find G = Ḡ + D, where Ḡ = 1
2
(G̃ + G̃T ) and D is diagonal, computed

from the following imposed condition on G, i.e.

GAe = e,

and e = (1, 1, · · · , 1)T .

The diagonal compensation technique prescribes the s.p.d. property of A.

5. Constructing a symmetric and positive definite approximate in-

verse

For some methods (as the preconditioned Chebyshev iteration method) it is
of importance to use s.p.d. preconditioners. The methods described till now
do not guarantee that G will be such a matrix.
In order to compute s.p.d. approximate inverse of an s.p.d. matrix, we proceed
as follows.
Let S be a symmetric sparsity pattern. We seek G of the form

G = LT
GLG, LG ∈ SL.

Clearly G will be s.p.d.

Theorem. A matrix G of the form G = LT
GLG which is an s.p.d. approxima-

tion of A−1 can be computed from the following relation:

(5) minX∈SL

1
n
trXAXT

(det(XAXT ))
1

n

=
1
n
trLGALT

G

(det(LGALT
G))

1

n

.

Proof:

X ∈ SL is lower triangular. Let X = D(I−X̃), where X̃ ∈ SL̃ is strictly lower
triangular. Then X̃ = I − D−1X. Let denote also D = diag(d1, d2, · · · , dn).
Then

1
n
trXAXT

(det(XAXT ))
1

n

=
1
n

∑

i(XAXT )ii

(det(X)2det(A))
1

n

=

1
n

∑

i

(

D(I − X̃)A(I − X̃)T D
)

ii

(det(X)2det(A))
1

n

=

1
n

∑

i d
2
i

(

(I − X̃)A(I − X̃)T
)

ii

(
∏

i d
2
i )

1

n (det(A))
1

n

8



(6) =
1
n

∑

i α
2

(
∏

i α
2)

1

n

.

(

∏

i((I − X̃)A(I − X̃)T )ii

)
1

n

(det(A))
1

n

= Expression A . Expression B.

In the above notations α2
i = d2

i

(

(I − X̃)A(I − X̃)T
)

ii
.

It can be seen from (6) that Expression B does not depend on di. The prob-
lem of minimizing Expression B is a particular case of the already considered
problem of minimizing the functional FW (G) with a special choice of the cor-
responding matrices - W = A, A = I, G = X̃. In other words, the solution
of the problem

(7) minX̃∈S
L̃

∏

i

(

(I − X̃)A(I − X̃)T
)

ii
= minX̃∈S

L̃

tr(I − X̃)A(I − X̃)T

will be also the solution of minimizing Expression B.
Further, Expression A ≥ 1, ∀α, being the ratio of the arithmetic and geo-
metric mean, and takes the value 1 when α2

i = 1.
Thus, we minimize Expression A computing

(8) di =
1

(

(I − X̃)A(I − X̃)T
)

1

2

ii

.

Let L̃G be the solution of (7). Note that it is strictly lower triangular. Let the
entries di of D are computed from the relations (8) where instead of X̃ L̃G is
used. Then the matrix LT

GLG, where LG = D(I − L̃G), will be the searched
approximation of A−1:

- (LGALT
G)ii = 1 by construction;

- The equality (5) gives a measure of the quality of the approximate inverse
constructed.

2

Example: Let A = tridiag(−1, 4,−1). Find LT
GLG - an approximate inverse

of A, where LG is bidiagonal. Thus, SL̃ = {{(i − 1, i)}n
i=2}.

First we compute a strictly lower bidiagonal matrix L̃ from the condition

(L̃A)i,j = (A)i,j, i, j ∈ SL̃,

9



which gives us

L̃ =























0
1
4

0
1
4

0
. . .
1
4

0
1
4

0























.

Then di are found to be

d1 =
1

2
, di =

2√
15

, i = 1, 2, · · · , n.

Thus,

LG =















1
2

0 0 0
1

2
√

15
2√
15

0 0
. . .

0 0 1
2
√

15
2√
15















,

LT
GLG =













4
15

1
15

0 0 0
1
15

17
60

1
15

0 0
. . .

0 0 1
15

17
60













,

and

LT
GLGA =













1 0 − 1
15

0 0
7
15

1 7
60

0 0
. . .

0 0 7
60

1













.

10


