
Division of Scientific Computing
Department of Information Technology
Uppsala University

NGSSC: Numerical Methods in Scientific Computing
January 24, 2012

Assignment: Iterative solution methods for linear systemsof algebraic
equations

Requirements: At the end of the lab session, please deliver a Matlab-gener ated report on the
runs you performed. Give your comments and observations (included in the generated report or
added by hand). Print the report onpr1515 .

The task of this computer lab is to test various iterative solution methods and obtain some expe-
rience regarding their rate of convergence and how to control it.

Exercise 1 (Forward and backward Gauss-Seidel method)
Background problem: Consider the convection-diffusion problem in two dimensions�"∆u + v1ux + v2uy = f (x; y) 2 Ω = [0; 1]2 (1)

The parameter" is positive but can be very small. The coefficientsv1 and v2 are in general
functions ofx; y and may change sign being both positive and negative in the domainΩ.
Equation (1) can be discretized using different methods. These result in a discrete system of
linear equations with a matrixA, which can have very different properties. It is in general
nonsymmetric, but for special choice of the method and the coefficientsv1 andv2 can be also
symmetric. Two classical discretization methods are ”Central Differences” and ”Upwind”, and
will be referred to below as ”cd” and ”up”. These are implemented in Matlab and obtained via a
call to the routinecd main . The routine is interactive and asks for three parameters:
Refinement parametern determines how large the system will be. The resulting

matrix will be of sizeA((n�1)2� (n�1)2)). In the numerical tests you should
try n = 6; 7; 8; 9; 10.

Epsilon
deps The" parameter in equation (1). For the numerical tests"
should be taken equal to1, 0:01 and1e� 6.

Vector field flag flag A parameter determiningv1 andv2

The routine then calls both the forward and backward Gauss-Seidel methods, and reports the
iteration counts.

1

1. Load all files with names starting withcd and the fileGaussSeidel.m . The latter
contains an implementation of the Forward and Backward Gauss-Seidel method. Browse
at least the routinescd main.m andGaussSeidel.m and make sure you understand
what are they doing.

2. Generate some test matrices of varying size," = 1; 0:1; 1e � 6 and flag = 1; 2. To
obtain the matrices and the corresponding right hand sides,call the routinecd main . The
matrices and the right hand side vectors are namedA cd, b cd, A up, b up . An
exact solution is also generated, namedsol .

Check the sparsity of the above matrices (spy). Are some of these symmetric (which)?
Compute their complete spectra (say, forn = 10) by using the MATLAB functioneig .
Plot those and compare. You are advised to repeat the experiment for a larger matrix size
to see how the spectrum develops.

3. Test the performance of both forward and backward Gauss-Seidel methods on both matri-
cesA cd, A up .

For small values of
deps, one of the two methods is performing exceptionally good on
the upwind matrices matrices. To give you a hint, choose the value of Epsilon to be at least
0.001 or smaller. Then run both the forward and backward Gauss-Seidel methods.

What do you observe? Try to analyse what happens and give yourarguments.

More hints:
- Check the spectrum of the iteration matrices, corresponding to the Forward and Backward
Gauss-Seidel methods.
- Check the values of the entries of the corresponding matrices.

4. Try to solve the matricesA up using unpreconditionedgmres .

(a) Consult firsthelp gmres

(b) Execute[x,flag,relres,iter,resvec] = gmres(A up,b up,N,1e-6,N);
whereN=size(A up,1); .

(c) Plot the residual curve (also called ’convergence history’ of gmres. First tryplot(resvec)
and thensemilogy(resvec,’o’) . What do you see? How does the conver-
gence of the unpreconditioned gmres compares with that of GSfor the particular
problem?

(d) Try to speedup gmres by adding a preconditioner. Use MATLAB’s incomplete LU
factorization routineluinc . Do the following: [L1,U1]=luinc(A up,tau);
for tau=1e-1 . Then execute
[x1,flag,relres1,iter1,resvec1] = gmres(A up,b up,N,1e-6,N,L1,U1);

Check the two gmres convergence histories on one plot:
semilogy(resvec,’o-’),hold,semilogy(resvec1,’rd-’)

Note: You may wish to plot the convergence of GS on the same plot. For that reason
you have to uncomment a few lines in the routineGaussSeidel.m .

2

Exercise 2 (Final termination property for the unpreconditioned CG method)

1. Consider the solution ofAx = b by the standard conjugate gradient, where

A =

2666664 2 �1�1 2 �1
.�1 2 �1�1 1

3777775 ;b =

266664 1
0
0
0
0

377775 :
The exact solution iŝx = [1; 1; � � � ; 1]T . Starting withx

0 = [0; 0; � � � ; 0]T run the un-
preconditioned conjugate gradient method. You can either use your own implementa-
tion of the standard CG method or the one available inMatlab , called for example as

x it=pcg(A,b,1e-6,size(A,1));

The matrixA can be generated in various ways. One lazy possibility is thefollowing:

A = 2* eye(n);
A = A + diag(-ones(n-1,1),1);
A = A + diag(-ones(n-1,1),-1);
A(n,n)=1;

Run experiments for a number of different sizes of the matrixA, say,n = 10; 50; 100.

2. For how many iterations does the method converges? Monitor the current CG iterates (the
approximations of the solutionx produced during each iteration. What do you observe?

3. It is very instructive to derive the exact form of the CG iterates and see how the method
proceeds. One finds that afterk iterations

x
(k) =

� kk + 1
; k � 1k + 1

; � � � ; 1k + 1
; 0; � � � ; 0�T

for 1 � k � n� 1 andx
(n) = x̂.

Hence, the information travels one step at a time from left toright and it takesn steps
before the last component has changed at all.

Exercise 3 (The unpreconditioned CG method converging for more than n iterations, Toeplitz matrices)

Consider the matrix of sizen � 1An(a) =

26664 a 1
2

+ a 3
2

�a 3
2�a 3

2
a 3

2
+ a 5

2
�a 5

2

.�an� 1
2

an� 1
2

+ an+ 1
2

37775 ; at = a� tn + 1

� ; (2)

wherea : [0; 1] ! R is a positive function (choose now a positive function).

3

1. Use the Matlab fileToeplitz matrix.m to build the matrixAn(a) with a fixed func-
tion a (chosen by you) andn � 1 as a parameter. For example, fora(x) = x2 + 1

A=Toeplitz_matrix(n,@(x) xˆ2+1);
P=Toeplitz_matrix(n,@(x) 1);

2. Apply CG to a systemAn(a)x = b (choose your data vectorb) for variousn (n =
16; 32; 64; 128; : : :) and fixed tolerance� = 10�6. Permit the CG to run for more itera-
tions than the size of the matrix.� What do you see concerning the number of required iterationsfor convergence?� Can
you explain the observed convergence? What could have gone wrong?

3. Consider the matrixPn = An(1) and apply CG to a systemAn(a)x = b with precon-
ditionerPn (choose your data vectorb) for variousn (n = 16; 32; 64; 128; : : :) and fixed
tolerance� = 10�6:� What do you see concerning the number of required iterationsfor convergence?

Exercise 4 (A nonsymmetric matrix; convergence of the GMRES method)

1. Consider thenon-symmetric sparse matrix stored inpores 2.mat , which is the coeffi-
cient matrix resulting from a problem in oil reservoir modeling.

Study the matrix - its sparsity pattern, conditioning, scaling. Is the matrix strongly non-
symmetric or not? Is it well- or ill-conditioned?

2. Solve thepores 2-problem using the GMRES iterative method, implemented by the
Matlab commandsgmres .

[x,flag,relres,iter,resvec] = gmres(A,b,restart,tol,m axit);

As right-hand vectors use the vector stored inpores 2 b.mat and inpores 2 b1.mat ,
and as a stopping tolerance usetol=1e-6 . Try different values of the restarting length,
including full GMRES.

Plot the convergence history of each run (for instance, assemilogy(resvec)). Com-
pute the exact solution by the directMatlab solver and compare the difference between
that one and the iteratively computed solution.

3. Scale the matrixA symmetrically to unit diagonal. Run the experiments again.Does the
scaling help? If ’yes’, in what sense? Does diagonal scalingaffect the accuracy of the
computed solution in this case?

Remark 1 Note that the diagonal elements of A are both positive and negative.

4. Investigate the effect of using some incomplete LU-factorization preconditioner for the
scaled system, obtained usingMatlab commandluinc . Try, for instance,[L,U] =

4

luinc(A,tau) with tau=0.1 and tau=1e-5 . Compare the convergence and the
accuracy of the computed solution. Compute the condition number of the preconditioned
system. What are your conclusions?

Exercise 5 (Peaks and plateaus)
Background: In the so-called Galerkin methods, typical representatives of which are the Full Or-
thogonalization method (FOM), Biconjugate gradient (BICG) method and the Lanczos method,
the approximationx(k) is chosen such that the corresponding residual is orthogonal to a certain
space. The methods in this class suffer some numerical instabilities and various minimum- and
quasi-minimum residual methods have been developed to overcome these instabilities.
Examples of such pairs of methods are
1: GMRES and FOM
2: QMR and BICG
3: Minres and Lanczos
4: GCG-RM and GCG-OR.
The convergence behaviour of pairs of such methods shows striking similarities. One essential
result shown is a relation between residuals of these pairs,called the effect of peaks and plateaus.
Whenever a peak appears in the convergence plot of the orthogonal residual method, there is a
plateau under it for the corresponding norm-minimizing method. Several peaks may sit on the
top of what appears to be a single plateau, where there are unacceptably small improvements in
the residual norm over a number of consecutive iterations. In addition, whenever the residual
norm plot for the norm-minimizing method rapidly decreases, the corresponding residual norm
plot for the orthogonal residual method also rapidly decreases. Thus, the corresponding residual
plots appear to track each other if the arithmetic used is exact. In finite precision arithmetic
one extremely high peak could lead to loss of accuracy and then the convergence plot of the
orthogonal method will not meet the convergence plot of the corresponding minimal residual
method at the end of the plateau under this peak.
Denote byr(k) andr

(k;G) the residual of a minimal residual method and the residual ofthe cor-
responding Galerkin orthogonal residual method. It is shown that if the residuals are computed
exactly at stepk, they satisfy the following relationkr(k;G)k � kr(k)kq

1� kr(k)k2kr(k�1)k2

:
Whenever kr(k)k2kr(k�1)k2 is close to unity, thenkr(k;G)k is much larger thankr(k)k.
The following test illustrates the effect of peaks and plateaus.

1. Use the same set of matrices as in Exercise 1. Generate the matrices for
Refinement parameter: 20 ,
Epsilon: 1e-8 and
Vector field flag: 1 .

5

2. Solve the corresponding systemA up* x=b up by the BICG and the QMR methods:
[x qmr,f qmr,rres qmr,it qmr,rvec qmr] = qmr(A up,b up,1e-6,size(A up,1));

[x bcg,f bcg,rres bcg,it bcg,rvec bcg] = bicg(A up,b up,1e-6,size(A up,1));

Plot the convergence histories of both methods on one figure.Check whether the accuracy
of the solution is affected from the erratic convergence behaviour of the BICG method.

3. One can also check the peak-plateau effects on the matrix from Exercise 1. What do you
observe?

Exercise 6 (Try Algebraic Multigrid)
this exercise can only be done on the Linux machines. Otherwise the agmgsoftware cannot
be installed.
The classical multigrid (MG) method is one of the so-calledoptimal order methods. The opti-
mality is understood as follows:� The method has optimal convergence property. This means that, independent of the size of

the problem, respectively of the discretization parameterh, for a given stopping tolerance,
the method will converge within a constant number of iterations.� The method has optimal computational complexity. This means that the cost per one itera-
tion is linearly proportional to the number of degrees of freedom.

Due to the above two optimality properties MG has overall computational complexity which is
linearly proportional to the total number of degrees of freedom. The same properties hold for its
algebraic counterpart, the Algebraic Multigrid (AMG) method.

We consider as a model problem the two-dimensional convection-diffusion-reaction (CDR) equa-
tion, � ��x �"1

�u�x�� ��y �"2
�u�y� + b1

�u�x + b2
�u�y +
u = f (3)

with some suitable boundary conditions.
The domain of definition is the unit squareΩ = [0; 1]2, discretized by some triangular mesh. The
problem is discretized using standard linear finite elementbasis functions.

Problem (3) has three problem parameters: the diffusion coefficients" = ["1; "2], the convection
vector fieldb = [b1; b2] and the reaction coefficient
.
By giving various values of the problem coefficients, we can simulate a series of classical prob-
lems of elliptic type:

(P1) Poisson’s problem:" = [1; 1], b = [0; 0],
 = 0.

(P2) Anisotropic problem:" = [1; "2] or " = ["1; 1] with "i � 1, b = [0; 0],
 = 0.

(P3) Poisson’s problem with variable (jumping) coefficients: let "i; i = 1; 2 be functions of
space or constants with different values in different partsof Ω, b = [0; 0],
 = 0.

6

1 2

3 4

1

2 3 4

5

1

2

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

Figure 1:

(P4) Singularly perturbed convection-diffusion problem:"1 = "2 � 1, b nonzero.

(P5) Parabolic-type problems:
 > 0. The coefficient
 can be related to the inverse of the time-
step when discretizing a parabolic problem with FEM in spaceand with some implicit
time-stepping method.

(P1) Any other choice of problem parameters could also be of interest, however we limit our-
selves to the cases (P1)-(P5).

The resulting system matrix is of the formK = L(") + C(b) +
M , whereL, C andM are the
discrete divergence, convection and mass matrices, correspondingly.

Software needed and adjustments:

1. Download all files from the directory.

2. Download and installagmg from http://homepages.ulb.ac.be/ �ynotay/ .

3. In the fileMain CDR.mcorrect the paths for the MG and AMG directory.

The main routine to use isMain CDR.m. You can edit it and give various values to the problem
parameters. The program reads a predefined coarse mesh and then refines it a given number
of times. The two predefined meshes are shown in Figure 1. Thenit asks for a number of
refinements and generates the corresponding matrix of the linear system to be solved.

The major task is to see the robustness and scalability of multilevel methods of Multigrid type.
Robustness is understood as (near) independence of problemparameters and problem size. These
methods are shown to have computational cost per iteration,linear in the number of degrees
of freedom and (nearly) optimal convergence rate, i.e., thenumber of iterations stay (nearly)
constant with the problem size (for a given set of problem parameters). The word ’near’ reflects

7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2:

that when one uses a V-cycle, as in the provided solvers, a slight growth in the iteration counts
might be observed when the problem size is increased.
The above study can be made by performing the following subtasks.

(T1) Check the suitability ofagmgto solve strongly anisotropic problems. Choose" = [1; 10�s],s = 2; 3; 4, b = [0; 0],
 = 0. How do the iteration counts behave? Check the spectrum of
the original matrix and you will see that there is a whole cluster of very small eigenvalues,
and the unpreconditioned CG will have a slow convergence rate.

(T3) Consider a problem with jumping coefficients. Change the coarse mesh generating routine
from Square ConvDiff to Square disco hier(jmp) . The code assumes that in
the subregion0:5 � x; y � 0:75 the diffusion coefficient is equal tojmp and is taken to be
one in the rest of the domain. By varyingjmp one tests the robustness of the solver with
respect to discontinuous coefficients.

(T4) Consider heat conduction in a space domain, where also aconvection is present. Choose" = [1; 1], flag=1 , and vary
 = 10s; s = 0; 1; 2; 3; 4. What happens to the matrix for
large values of
?

(T5) Check the suitability ofagmg for solving singularly perturbed convection-diffusion prob-
lems. Choose"1 = "2 = 10�s, s = 2; 3, flag=1 ,
 = 0. The variableflag determines
which vector field to be used. The one suggested is of the form,shown in Figure 2.

Remark: Testing solvers for singularly perturbed convection-diffusion problems, where
typically layers occur in the solution, is a difficult task asit requires suitable discretizations
and adaptive meshes to relateh with " in order to resolve those layers. Here, the boundary
conditions are Dirichlet all over and, therefore, no layersare present.

Disclaimer: The code is not much optimized wrt matrix generation and above 7 levels of refinement it feels rather

slow. Any input on that or other issues related to the lab willbe very highly appreciated. Thank you! Maya

Neytcheva

8

