Division of Scientific Computing
Department of Information Technology
Uppsala University

NGSSC: Numerical Methods in Scientific Computing
January 24, 2012

Assignment: Iterative solution methods for linear systefmagebraic
equations

Requirements. At the end of the lab session, please deliver a Matlab-gdeédrraport on the
runs you performed. Give your comments and observatiocki@led in the generated report or
added by hand). Print the report priL515 .

The task of this computer lab is to test various iterativeisoh methods and obtain some expe-
rience regarding their rate of convergence and how to cbittro

Exercise 1 (Forward and backward Gauss-Seidel method)
Background problem: Consider the convection-diffusion problem in two dimensio

—eAu + viug +vou, = f (z,y) € Q=10,1)? (1)

The parameter is positive but can be very small. The coefficientsand v, are in general
functions ofz, y and may change sign being both positive and negative in thrahd?.
Equation (1) can be discretized using different methodsesé&lresult in a discrete system of
linear equations with a matrid, which can have very different properties. It is in general
nonsymmetric, but for special choice of the method and thedficeentsv; andv, can be also
symmetric. Two classical discretization methods are "G#midifferences” and "Upwind”, and
will be referred to below as "cd” and "up”. These are implengehin Matlab and obtained via a
call to the routineed _-main . The routine is interactive and asks for three parameters:
Refinement parametern determines how large the system will be. The resulting
matrix will be of size
A((n—1)*x (n—1)?)). In the numerical tests you should
tryn=26,7,8,9, 10.

Epsilon cdeps | Thee parameter in equation (1). For the numerical tests
should be taken equal ig 0.01 andle — 6.
Vector field flag flag | A parameter determining, andv,

The routine then calls both the forward and backward GaesteEmethods, and reports the
iteration counts.

1. Load all files with names starting wiitd and the fileGaussSeidel.m . The latter
contains an implementation of the Forward and Backward &&esdel method. Browse
at least the routinesd _-main.m andGaussSeidel.m and make sure you understand
what are they doing.

2. Generate some test matrices of varying sizes 1,0.1,1e — 6 and flag = 1,2. To
obtain the matrices and the corresponding right hand stddighe routinecd _main . The
matrices and the right hand side vectors are nafed, b cd, A _up, b _up. An
exact solution is also generated, nanset .

Check the sparsity of the above matricepy(). Are some of these symmetric (which)?
Compute their complete spectra (say, for= 10) by using the MATLAB functioneig .
Plot those and compare. You are advised to repeat the exg@rior a larger matrix size
to see how the spectrum develops.

3. Test the performance of both forward and backward GaageBnethods on both matri-
cesAcd, A _up.

For small values otdeps, one of the two methods is performing exceptionally good on
the upwind matrices matrices. To give you a hint, choose déhg\vof Epsilon to be at least
0.001 or smaller. Then run both the forward and backward &&esdel methods.

What do you observe? Try to analyse what happens and giveayguments.

More hints:

- Check the spectrum of the iteration matrices, correspaiti the Forward and Backward
Gauss-Seidel methods.

- Check the values of the entries of the corresponding nestric

4. Try to solve the matrice& up using unpreconditionegimres .

(&) Consult firshelp gmres

(b) Executéx,flag,relres,iter,resvec | = gmres(A _up,b _up,N,1e-6,N);
whereN=size(A _up,1);

(c) Plotthe residual curve (also called 'convergence hystd gmres. First tryplot(resvec)

and thensemilogy(resvec,’0") . What do you see? How does the conver-
gence of the unpreconditioned gmres compares with that ofo&e particular
problem?

(d) Try to speedup gmres by adding a preconditioner. Use M¥9’k incomplete LU
factorization routinduinc . Do the following: [L1,Ul |=luinc(A _up,tau);
for tau=1e-1 . Then execute
[x1,flag,relresl,iterl,resvecl] = gmres(A _up,b _up,N,1le-6,N,L1,Ul);
Check the two gmres convergence histories on one plot:
semilogy(resvec,’0-'),hold,semilogy(resvecl,’rd-)
Note: You may wish to plot the convergence of GS on the sante by that reason
you have to uncomment a few lines in the rout@®aussSeidel.m

Exercise 2 (Final termination property for the unpreconditioned CG method)

1. Consider the solution ofx = b by the standard conjugate gradient, where

2 -1 1
-1 2 -1 0
A= b=10
-1 2 -1 0
] -1 1 0
The exact solution i = [1,1,---,1]%. Starting withx" = [0,0,---,0]” run the un-

preconditioned conjugate gradient method. You can eitlser your own implementa-
tion of the standard CG method or the one availabl®atlab , called for example as
X _it=pcg(A,b,1e-6,size(A,1));

The matrixA can be generated in various ways. One lazy possibility isat@wving:

A = 2+xeye(n);
A = A + diag(-ones(n-1,1),1);
A = A + diag(-ones(n-1,1),-1);

A(n,n)=1;
Run experiments for a number of different sizes of the mattisay,n = 10, 50, 100.

2. For how many iterations does the method converges? Mdhigccurrent CG iterates (the
approximations of the solutiax produced during each iteration. What do you observe?

3. Itis very instructive to derive the exact form of the CGates and see how the method
proceeds. One finds that afterterations
T

P § WP
k—'—l’k—i—l, ’k—'—l”)

forl <k <n-—1andx™ = x.

Hence, the information travels one step at a time from leftight and it takes: steps
before the last component has changed at all.

Exercise 3 (The unpreconditioned CG method converging for morethan n iterations, Toeplitz matrices

Consider the matrix of size > 1

a
as +a 5 t
An(a): . _'2 . y at:a< >7 (2)

n+1

Njw

Ty Onoy T gy

whereq : [0, 1] — R is a positive function (choose now a positive function).

3

1. Use the Matlab fil&oeplitz _matrix.m to build the matrixA,(a) with a fixed func-
tion a (chosen by you) and > 1 as a parameter. For example, fdr) = 2% + 1

A=Toeplitz_matrix(n,@(x) x2+1);
P=Toeplitz_matrix(n,@(x) 1);

2. Apply CG to a systemd, (a)x = b (choose your data vectd) for variousn (n =
16,32, 64,128, ...) and fixed tolerance = 10~%. Permit the CG to run for more itera-
tions than the size of the matrix.

e What do you see concerning the number of required iterafimmsonvergence® Can
you explain the observed convergence? What could have gaoreg®

3. Consider the matri¥’, = A,(1) and apply CG to a system, (a)z = b with precon-
ditioner P,, (choose your data vecteéy for variousn (n = 16, 32,64, 128, ...) and fixed
tolerance: = 10°6:
¢ What do you see concerning the number of required iterafmmsonvergence?

Exercise 4 (A nonsymmetric matrix; convergence of the GMRES method)

1. Consider th@on-symmetric sparse matrix stored pores _2.mat , which is the coeffi-
cient matrix resulting from a problem in oil reservoir madel

Study the matrix - its sparsity pattern, conditioning, sal Is the matrix strongly non-
symmetric or not? Is it well- or ill-conditioned?

2. Solve thepores _2-problem using the GMRES iterative method, implemented Hey t
Matlab commandgmres .
[x,flag,relres,iter,resvec] = gmres(A,b,restart,tol,m axit);

As right-hand vectors use the vector storedanes _2_b.mat andinpores _2_bl.mat ,
and as a stopping tolerance usé=1le-6 . Try different values of the restarting length,
including full GMRES.

Plot the convergence history of each run (for instancesgeasilogy(resvec)). Com-
pute the exact solution by the dirddiatlab solver and compare the difference between
that one and the iteratively computed solution.

3. Scale the matrixi symmetrically to unit diagonal. Run the experiments ag&iaes the
scaling help? If 'yes’, in what sense? Does diagonal scatiifect the accuracy of the
computed solution in this case?

Remark 1 Note that the diagonal elements of A are both positive and negative.

4. Investigate the effect of using some incomplete LU-faz&tion preconditioner for the
scaled system, obtained usiMgatlab commanduinc . Try, for instance[L,U] =

luinc(A,tau) with tau=0.1 andtau=1le-5 . Compare the convergence and the
accuracy of the computed solution. Compute the conditionber of the preconditioned
system. What are your conclusions?

Exercise 5 (Peaks and plateaus)

Background: In the so-called Galerkin methods, typical representawievhich are the Full Or-
thogonalization method (FOM), Biconjugate gradient (B)Gfðod and the Lanczos method,
the approximatiox*) is chosen such that the corresponding residual is orthdgoecertain
space. The methods in this class suffer some numericabilists and various minimum- and
qguasi-minimum residual methods have been developed te@ver these instabilities.
Examples of such pairs of methods are

1: GMRES and FOM

2: QMR and BICG

3: Minres and Lanczos

4: GCG-RM and GCG-OR.

The convergence behaviour of pairs of such methods shoikggtsimilarities. One essential
result shown is a relation between residuals of these mailied the effect of peaks and plateaus.
Whenever a peak appears in the convergence plot of the anlabgesidual method, there is a
plateau under it for the corresponding norm-minimizing moet Several peaks may sit on the
top of what appears to be a single plateau, where there aceepiably small improvements in
the residual norm over a number of consecutive iterationsaddition, whenever the residual
norm plot for the norm-minimizing method rapidly decreasbe corresponding residual norm
plot for the orthogonal residual method also rapidly desesaThus, the corresponding residual
plots appear to track each other if the arithmetic used istexin finite precision arithmetic
one extremely high peak could lead to loss of accuracy aml titve convergence plot of the
orthogonal method will not meet the convergence plot of theesponding minimal residual
method at the end of the plateau under this peak.

Denote byr® andr®) the residual of a minimal residual method and the residugt@tor-
responding Galerkin orthogonal residual method. It is ghtvat if the residuals are computed
exactly at steg, they satisfy the following relation

k
Hr(k,G)H > ||I‘()”)
EVARNTCIE
IREERIE

Whenever% is close to unity, thefjr®%)|| is much larger thafjr®)||.
The following test illustrates the effect of peaks and @Hate

1. Use the same set of matrices as in Exercise 1. Generateathieen for
Refinement parameter: 20 ,
Epsilon: 1e-8 and
Vector field flag: 1

2. Solve the corresponding systelup* x=b_up by the BICG and the QMR methods:
[x _.gmr,f _gmr,rres _gmr,it _gmr,rvec _gmr] = gmr(A _up,b _up,le-6,size(A _up,1));
[x _bcg,f _bcg,rres _bcg,it _bcg,rvec _bcg] = bicg(A _up,b _up,le-6,size(A _up,1));
Plot the convergence histories of both methods on one figthreck whether the accuracy
of the solution is affected from the erratic convergenceaadur of the BICG method.

3. One can also check the peak-plateau effects on the madnxExercise 1. What do you
observe?

Exercise 6 (Try Algebraic Multigrid)
thisexercise can only be done on the Linux machines. Otherwise the agmg softwar e cannot
beinstalled.

The classical multigrid (MG) method is one of the so-calbptimal order methods. The opti-
mality is understood as follows:

e The method has optimal convergence property. This meahsridapendent of the size of
the problem, respectively of the discretization paramktéor a given stopping tolerance,
the method will converge within a constant number of itenagi

e The method has optimal computational complexity. This rsehat the cost per one itera-
tion is linearly proportional to the number of degrees oéttem.

Due to the above two optimality properties MG has overall patational complexity which is
linearly proportional to the total number of degrees ofil@®. The same properties hold for its
algebraic counterpart, the Algebraic Multigrid (AMG) meth

We consider as a model problem the two-dimensional coraeddiffusion-reaction (CDR) equa-

tion,
0 ou 0 ou ou ou
“or <a_> ~ oy (a—y> Thig, Thg, teu=t ®)

with some suitable boundary conditions.
The domain of definition is the unit square= [0, 1]?, discretized by some triangular mesh. The
problem is discretized using standard linear finite elerbasts functions.

Problem (3) has three problem parameters: the diffusiofficeatss = [, ¢5], the convection
vector fieldb = [b;, b;] and the reaction coefficient

By giving various values of the problem coefficients, we damutate a series of classical prob-
lems of elliptic type:

(P1) Poisson’s problenz: = [1,1], b = [0,0], ¢ = 0.
(P2) Anisotropic problem: = [1,es] ore = [gq, 1] withe; < 1, b = [0,0], ¢ = 0.

(P3) Poisson’s problem with variable (jumping) coefficeentets;,7 = 1,2 be functions of
space or constants with different values in different paft3, b = [0, 0], ¢ = 0.

6

0.9

0.8

0.6

0.4

03

0.2

01

(a) (b)
Figure 1:

(P4) Singularly perturbed convection-diffusion problem= ¢, < 1, b nonzero.

(P5) Parabolic-type problems:> 0. The coefficient can be related to the inverse of the time-
step when discretizing a parabolic problem with FEM in spaied with some implicit
time-stepping method.

(P) Any other choice of problem parameters could also be oféste however we limit our-
selves to the cases (P1)-(P5).

The resulting system matrix is of the forma = L(¢) + C(b) + c¢M, whereL, C' andM are the
discrete divergence, convection and mass matrices, pamdmgly.

Software needed and adjustments:
1. Download all files from the directory.
2. Download and instahgmg from http://homepages.ulb.ac.be/ ~ynotay/
3. Inthe fileMain _CDR.mcorrect the paths for the MG and AMG directory.

The main routine to use Main _.CDR.m You can edit it and give various values to the problem
parameters. The program reads a predefined coarse mesheancetimes it a given number
of times. The two predefined meshes are shown in Figure 1. Thesks for a number of
refinements and generates the corresponding matrix ofrtearlsystem to be solved.

The major task is to see the robustness and scalability ailewdl methods of Multigrid type.
Robustness is understood as (near) independence of prphlameters and problem size. These
methods are shown to have computational cost per iterdiimggr in the number of degrees
of freedom and (nearly) optimal convergence rate, i.e.,nilm@ber of iterations stay (nearly)
constant with the problem size (for a given set of problenapesters). The word 'near’ reflects

7

=

—

I

=7

0.9 7 7 T~ Nl

S -
0.8 —>\\\
///ﬁ\\\\l
‘s \

\
1

|
/

\&//

0.7

0.6

0.5

0.4 N

0.3

\\%4/

l
$
J
/
/

0.2

- _ L

N /’)%ﬁ\\ N

/
!
\
\
\

f///g

0.1 S i

oh— — J
0 01 0.2 03 04 05 0.6 07 08 09 1

Figure 2:

that when one uses a V-cycle, as in the provided solversghtgjrowth in the iteration counts

might be observed when the problem size is increased.
The above study can be made by performing the following slista

(T1) Check the suitability aigmgto solve strongly anisotropic problems. Choese [1, 1077,
s =2,3,4,b =10,0], c = 0. How do the iteration counts behave? Check the spectrum of

the original matrix and you will see that there is a whole dusf very small eigenvalues,
and the unpreconditioned CG will have a slow convergenee rat

(T3) Consider a problem with jumping coefficients. Changedbarse mesh generating routine
from Square _ConvDiff to Square _disco _hier(jmp) . The code assumes that in
the subregion.5 < z,y < 0.75 the diffusion coefficient is equal jmp and is taken to be
one in the rest of the domain. By varyifgp one tests the robustness of the solver with

respect to discontinuous coefficients.

(T4) Consider heat conduction in a space domain, where atemeection is present. Choose
e = [1,1], flag=1 , and varyc = 10°,s = 0, 1,2, 3,4. What happens to the matrix for
large values ot?

(T5) Check the suitability oAgmg for solving singularly perturbed convection-diffusioropr
lems. Choose; ==, =10%,s = 2,3,flag=1 , ¢ = 0. The variabldlag determines
which vector field to be used. The one suggested is of the fainown in Figure 2.
Remark: Testing solvers for singularly perturbed convectiontsfon problems, where
typically layers occur in the solution, is a difficult taskiiequires suitable discretizations
and adaptive meshes to reldtsvith < in order to resolve those layers. Here, the boundary
conditions are Dirichlet all over and, therefore, no layames present.

Disclaimer: The code is not much optimized wrt matrix generation and atyolevels of refinement it feels rather
slow. Any input on that or other issues related to the lab bélvery highly appreciated. Thank you! Maya

Neytcheva

