
Division of Scientific Computing
Department of Information Technology
Uppsala University

NGSSC: Numerical Methods in Scientific Computing
January 23, 2012

Computer lab: Direct solution methods for linear systems of algebraic
equations with dense and sparse matrices

Requirements: At the end of the lab session, please deliver a Matlab-generated report on the
runs you performed. Give your comments and observations (included in the generated report or
added by hand). Print the report onpr1515.

Where to run Matlab: After logging in on some of the Unix hosts, please issue the com-
mandlinuxlogin. For some more details, seehttp://www.it.uu.se/datordrift/
maskinpark/linux.

The task of this computer lab is to experience matrices with various properties and issues related
to the solution of linear systems using direct solution methods.

Exercise1 (Feel the sparse-dense difference)
Create a100× 100 random matrix that has about 5% nonzero entries:
N=100; S = sprand(N,N,.05);
Convert it to full matrix
F = full(S);

1. Check the time required for MATLAB to compute a product of two dense and two sparse
matrices:

tic,S*S;toc
tic,F*F;toc

What do you see? Is the time to multiply two dense matrices larger than when we multiply
the two sparse matrices?

2. Repeat the experiment forN equal to 500, 1000 and 5000. Is there a change in the propor-
tions of the time spent for the corresponding dense and sparse matrices?

Explain what you see. Observe first what is the computationalcomplexity to multiply two
dense, respectively, sparse matrices and check whether theresults you obtain correspond
to the theoretical prediction.

1



Exercise2 (Ill-conditioning)
Consider the problemAx = b, where

Ax =

[

0.835 0.667
0.333 0.266

] [

x1

x2

]

=

[

b1
b2

]

= b. (1)

Let the right-hand vectorb be a result of an experiment and is read from the dial of a test

instrument asb0 =

[

0.168
0.067

]

. However, due to the small uncertainty, we have to expect that

0.167 ≤ b1 ≤ 0.169 and 0.066 ≤ b2 ≤ 0.068.

Thus, the solution forb1 =

[

0.167
0.068

]

and forb2 =

[

0.169
0.066

]

should be expected to be as valid as

that in the first case.

1. Find the exact solution of the system for each of the above vectorsb0,b1,b2.

2. Is the observed instability due to some numerical procedure, the vectorb, the matrixA or
a combination of these factors?

3. Try to quantify how ill-condition the problem is. How would you do this?

4. Perturbe the system as follows
[

0.835 0.667
0.333 0.266

] [

x1

x2

]

=

[

0.1669995
0.066601

]

Determine the exact solution and compare it with the exact solution corresponding to
[

0.168
0.067

]

.

On the basis of the results formulate a statement concerningthe necessity for the solution
of an ill-posed system to undergo a radical change for every perturbation of the original
system.

Remark 1 One can demonstrate the reason for a2 × 2-system to be ill-conditioned. Geomet-
rically, two equations in two unknowns define two straight lines.The point of intersection of
those lines defines the solution. An ill-conditioned systemrepresents two lines which are almost
parallel. (It is advisable to try to plot the two lines corresponding to the considered system.)

Exercise3 (The effect of fill-in)
MATLAB provides a nonsymmetric sparse demonstration matrixwest0479 of dimension479×
479, which can be accessed after executingload west0479. Let then rename it asA=west0479;.

1. Compute the LU factorization, checking the time it takes toperform it, for example
tic,[L,U,P]=lu(A);toc.

Look atspy plots of A, PA, L, U and make note of the number of nonzero elements in the
triangular factors.

2



2. Download the MATLAB routineLUfact full.m and make sure you understand the
algorithm. It does straightforward LU factorization without pivoting.

Try to the code on the original matrixA. Is that possible? Why?

Try to execute if on the permuted matrixP ∗ A, whereP is the permutation matrix MAT-
LAB has determined in 1. You will soon observe that the execution of the user-written
routine takes much more time, even though some efficient MATLAB syntax is used (see
the source file). What could the explanation of the above be?

3. Modify A by applying a random column permutation to it.

% random column permutation
col = randperm(479);
AP = A(:,col);
spy(AP)

Then repeat 1.

4. Compare the results from 1 and 3.

5. Generate a random right-hand-side vectorb=randn(479,1);. Solve the system as
x=A\b;. Compare the solution time with that spent to factorize the matrix.

Exercise4 (The effect of suitable reordering of the matrix on the number of fillin)
Load the matrices saved in the filespores 2.mat andC29.mat. Check what kind of matrices
are those (spy, nnz, mesh(?)).
The task is now to observe the effect of a reordering of the matrix entries prior to the LU-
factorization and compare some reordering strategies implemented in MATLAB.
The MATLAB commands which provide reordering vectors are
symamd, colamd, symmmd, colmmd, symrcm, dmperm.

1. Check the corresponding MATLAB help for the above orderings

2. Factorize the matrices first without any initial reordering and then after applying three of
the reorderings, which are suitable for the matrix you have in hands.

For each factorization check:

(a) the time for the factorization,

(b) the corresponding number of nonzero elements in the L- and U-factors, relative to the
total number of nonzero elements in the original matrix;

Which ordering is best?

3



Exercise5 Create a matrix using the routineLauchli.m. The routine is used as follows:
A=Lauchli(N,MU); i.e., two parameters are required. The created matrix is the(N+1)×N

matrix [ONES(1,N); MU*EYE(N))]. If only N is given, then the default value ofMU is
sqrt(eps).
SinceA is rectangular, we can not directly solve systems with it. However, for a given vectorb
of sizeN = 1 we can find the corresponding Least Square solution
find x which minimizes the quantity‖b− Ax‖2.
One way to obtain the Least Square solutionx is to solve the so-callednormal equation
(ATA)x = AT b.

1. Create at least two matrices (A1 andA2) of size, sayN = 100 and with two different
values ofMU , one of which to be the default.

2. Take some arbitrary right-hand-side vectorb and solve the systemAix = b, i = 1, 2
using the normal equation. Can you obtain a solution of a ”decent” quality? How can one
check the quality of the solution obtained when solving the normal equation?

3. Check the condition number of the matrix in the normal equation.

4. Solve the problem in any other way you can think of, using MATLAB’s routines. Do you
get a better solution? In what way ’better’?

Exercise6 (A small Google matrix) As a result of
the so-calledweb-crawlingone creates a matrix representation of the page-references. Based on
this information, Google determines the so-calledpagerankingby computing the second largest
eigenvalue of those matrices. When you start a Google search,it tells you the size of the actual
Google matrix which is used in the search.
For instance, on January 10, 2011 at 9:30, the extra information regarding the search on ”Google
matrix” wasAbout 7,600,000 results (0,33 seonds)
On January 22, 2012, at 22:06, the result was:About 82,700,000 results (0.29 seconds)

You can now play with a tiny Google matrix representing the links at Stanford University in
2002. Load a Google matrix by issuing the MATLAB command
G=loadStanfordMatrix;
The matrixG is a row-stochastic matrix, which means that all its entriesare non-negative and
the row-sums are equal to one.
Tasks:

1. Study the matrix - conditioning, structure.

2. Use the routineGS.m to orthogonalize some of the columns ofG, for example, 5, 10, 20
and perhaps 30 if time permits. For instance,Q=GS(G,5);

Are the computed vectors orthogonal or some orthogonality is lost? The latter can be
checked by monitoring the matrix productQ’*Q. If the vectors are truly orthogonal, then
the product is the identity matrix.

4



Exercise7
Load the matricesPF 54.mat andPF 186.mat. These arise from two consecutive refine-
ments of a model of a real-life problem from multiphase flow, modelled by the so-called Cahn-
Hilliard equation.
Study the matrices by all means you know - spectrum, condition number, scaling. Invent an
’exact solution’ and corresponding right-hand-side, and try to solve the corresponding systems.
Is the obtained solution accurate?

Exercise8
Consider the Hilbert matrix H of size n defined by

Hi,j =
1

i+ j + 1
, 1 ≤ i, j ≤ n

This is an example of a very unpleasant matrix for solving equations. To illustrate this we will
show that already at the 16*16 size it is almost impossible toget correct solutions for Gaussian
Elimination with partial pivoting.
Define a vectorx=ones(n,1) of length n. (It will be used as the exact solution for the test.)
Now define a right-hand-side vectorb = H*x. We are going to solve the systemA*x=b us-
ing MATLAB’s ’backslash’ operator and we will compare the obtained solution with the exact
solutionx.

1. Use the MATLAB routine fromHilbert matrix.m which creates a Hilbert matrix of
a given dimension. Create a matrix and check its portrait using mesh. Check its condition
number for a few different sizes of such matrices.

2. Perform the following experiments

for n = 2:2:16
H = Hilbert_matrix(n);
x = ones(n,1);
b = H*x;
y = H\b;
disp([’ Norm of the residual: ’ num2str(norm(b-H*y))])
disp([’Norm of the error: ’ num2str(norm(x-y))])
figure(1), clf, plot(b-H*y)
figure(2), clf, plot(abs(x-y))

end

Note how perfect the residual looks and how bad the error becomes.

What is the reason for this behaviour and what can we do to improve the situation?

Used literature:
Carl D. Meyer,Matrix analysis and applied linear algebra, SIAM, 2000.
L. Trefethen, D. Bau,Numerical Linear Algebra, SIAM, 1997.
J. Leader,Numerical Analysis and Scientific Computation, Pearson Education, 2004.
D.S. Watkins,Fundamentals of Matrix Computations, J. Wiley & Sins Ltd, 2002.

5


