
1/76

Matrices and Statistics with Applications
Sparse matrices

Maya Neytcheva

SeSe, September 2020

2/76

Plan of the lecture:

I Sparse matrices - who are those?
I Where do sparse matrices occur in Statistical applications?
I Why are sparse matrices a topic of special interest?
I Handling sparse matrices. Sparse data formats

I Solution methods for sparse matrices
I Direct methods

I Fill-ins and can we get rid of them?
I Reordering strategies
I Sparse Cholesky factorization
I Sparse QR, SVD

I Examples

3/76

Large matrices

What has been and is considered as large through the years

1970 200
1975 1000
1980 10000
1985 100000
1990 250000
1995 500000
2000 2000000

since 2005 500000000

4/76

What is a sparse matrix?

A(N × N), nnz(A) = kN, 2 ≤ k ≤ logN

5/76

Where do sparse matrices arise?

acoustic scattering demography network flow
air traffic control economics oceanography
astrophysics electrical eng. petroleum eng.
biochemical electric nets reactor modelling
chemical eng. climate/pollution studies statistics
chemical kinetics fluid flow structural eng
circuit physics laser optics survey data
computer simulations linear programming signal processing

6/76

Sparse matrices in Statistical applications

One application: Quantitative trait loci (QTL)
Inheritance of quantitative traits or polygenic inheritance refers to the
inheritance of a phenotypic characteristic that varies in degree and can be
attributed to the interactions between two or more genes and their
environment.
Though not necessarily genes themselves, quantitative trait loci (QTLs) are
stretches of DNA that are closely linked to the genes that underlie the trait in
question. QTLs can be molecularly identified, for example, with PCR
(Polimerase Chain reaction) or AFLP (Amplified Fragment Length
Polymorphism) to help map regions of the genome that contain genes involved
in specifying a quantitative trait.
This can be an early step in identifying and sequencing these genes.

7/76

Sparse matrices in Statistical appl.: QTL

Description: Given an IBD matrix A (Identity By Descent) -
symmetric positive semidefinite.
Needed: to minimize some log-likelihood matrix L, which boils
down to a nonlinear solution method with approximated Hessian
(HI) and gradient (GL) of L as follows:

HI =
(

yTPAPAPy yTPAPPy
yTPAPPy yTPPPy

)
GL = −

(
tr(AP)− yTPAPy
tr(P)− yTPPy

)

where V = σ1A + σ2I and
P = V−1 − V−1X (XTV−1X)−1XTV−1.
Task: find the blocks in GL and HI and execute the nonlinear solver
for a sequence of IBD matrices A.

8/76

IBD ...

A− spsd =⇒ A = AT , eig(A) ≥ 0

V = σ1A+σ2I =⇒ V = V T , eig(V) = σ1eig(A) +σ2,V−1exists.

P = V−1 − V−1X (XTV−1X)−1XTV−1 =⇒ P = PT

9/76

Sparse matrices in Statistical appl.: QTL

0 100 200 300 400 500 600 700

0

100

200

300

400

500

600

700

nz = 50887

A portrait of one IBD matrix (spy(A))

10/76

Sparse matrices in Statistical appl.: QTL

Another portrait of the same IBD matrix (mesh(A))

11/76

Sparse matrices in Statistical appl.: QTL

0 100 200 300 400 500 600 700 800
10

−50

10
−40

10
−30

10
−20

10
−10

10
0

10
10

The eigenvalues of the IBD matrix (plot(eig(A),’o’))

12/76

Sparse matrices in Statistical appl.: QTL

0 100 200 300 400 500 600 700 800
10

−70

10
−60

10
−50

10
−40

10
−30

10
−20

10
−10

10
0

10
10

The singular values of the IBD matrix (plot(svd(A),’o’))

13/76

Major computational tasks in Statistical applications

I LS: solving the normal equation, Cholesky factorization
min‖Ax− b‖, ATA = LLT , LLTx = ATb

I LS: A = QR , x = R−1QT
1 b

I LS: A = UΣV T

I PCA (principal component analysis): SVD
I PCR (principal component regression): truncated SVD
I Ax = λx
I trace(A−1)

14/76

Major computational tasks in Statistical applications

I trace(A−1)

Jok M. Tang, Yousef Saad
A probing method for computing the diagonal of a matrix inverse
Numerical Linear Algebra with Applications, 19(2012), 485–501,
https://doi.org/10.1002/nla.779

15/76

Major computational tasks in Statistical applications

Thanks to software (Matlab, R) and powerful computers on our
desk, we do not care that much about sparse-dense etc...
until we face large enough problems or we have to repeat a
computational task 100, 1000, 10000 times.

The lecture today concerns storage book-keeping and programming
aspects which will help to

I do the computations faster
I save computer memory

16/76

Before discussing sparse matrices...

we are going to look first at dense matrices...
because these are easier.

17/76

Dense matrix storage schemes

Given a dense matrix A(m, n).
Two main possibilities to store dense matrices:
row-wise and column-wise.

A =




a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

...
am1 am2 · · · amn




DCW : a11 a21 · · · am1 a12 a22 · · · am2 a1n a2n · · · amn

DRW : a11 a12 · · · a1n a21 a22 · · · a2n am1 am2 · · · amn

First row

First column

18/76

Dense matrix storage schemes and computations

What difference does the storage scheme make with respect to
computations?

Matrix-vector multiplications: y = Ax,A(m, n)

yi =
n∑

j=1

aijxj , i = 1, . . . ,m.

for i=1:m
y(i) = 0
y(i) = y(i) + A(i,:) * x(:)

end

18/76

Dense matrix storage schemes and computations

What difference does the storage scheme make with respect to
computations?
Matrix-vector multiplications: y = Ax,A(m, n)

yi =
n∑

j=1

aijxj , i = 1, . . . ,m.

for i=1:m
y(i) = 0
y(i) = y(i) + A(i,:) * x(:)

end

18/76

Dense matrix storage schemes and computations

What difference does the storage scheme make with respect to
computations?
Matrix-vector multiplications: y = Ax,A(m, n)

yi =
n∑

j=1

aijxj , i = 1, . . . ,m.

A: stored row-wise (inner product scheme)
for i=1:m

y(i) = 0
for j = 1:n

y(i) = y(i) + A(i,j) * x(j)
end

end

for i=1:m
y(i) = 0
y(i) = y(i) + A(i,:) * x(:)

end

18/76

Dense matrix storage schemes and computations

What difference does the storage scheme make with respect to
computations?
Matrix-vector multiplications: y = Ax,A(m, n)

yi =
n∑

j=1

aijxj , i = 1, . . . ,m.

for i=1:m
y(i) = 0
y(i) = y(i) + A(i,:) * x(:)

end

19/76

Dense matrix storage schemes and computations

Matrix-vector multiplications: y = Ax
A: stored column-wise (outer product scheme)

y = 0
for j=1:n

for i = 1:m
y(i) = y(i) + A(i,j) * x(j)

end
end

y = 0
for j = 1 : n

y = y + x(j) ∗ A(:, j)
end

(vector operation)

20/76

Dense matrix-matrix multiply (ijk)

A

B

C

j

k

k

i

A(m,n)*B(n,p) = C(m,p)

for i=1:m

for j=1:p

for k=1:n

C(i,j) = C(i,j) + A(i,k)*B(k,j)

end

end

C = 0

end

Scalar-product type of computation

21/76

Dense matrix-matrix multiply (ijk)

A

B

C

A(m,n)*B(n,p) = C(m,p)

end

end

C = 0

end

for j=1:p

for k=1:n

i

k

j

k

C(i,j) = C(i,j) + A(i,k)*B(k,j)

for i=1:m

Outer-product type of computation (’ikj’ - row-wise and ’jki’ -
column-wise)

22/76

Dense matrix-matrix multiply (ijk)

A

B

C

A(m,n)*B(n,p) = C(m,p)

C(i,j) = C(i,j) + A(i,k)*B(k,j)

end

end

C = 0

end

for k=1:n

for j=1:p

for i=1:m

k

i i

j

k

accumulated update form

23/76

Dense matrix storage schemes and computations

Bottom line:

I The storage scheme of a dense matrix affects the order how
the matrix entries are accessed in the computer memory.
This may have a significant effect on the performance of an
algorithm since the memory accesses are much slower than
arithmetic operations.

I One storage scheme is better for some operations and not so
preferable for other operations (AT).

24/76

Sparse matrix storage schemes

There are more than 20 different sparse storage schemes...

25/76

Sparse matrix storage schemes

Coordinate scheme:

A =




0 1 2 0
3 4 0 0
0 0 5 0
6 0 0 0




J : 2 3 1 2 3 1

I : 1 1 2 2 3 4

V : 1 2 3 4 5 6

Advantages and disadvantages

26/76

Sparse matrix storage schemes

Diagonal-wise storage scheme:

A =




a11 a12 0 a14 0 0
a21 a22 a23 0 a25 0
0 a32 a33 a34 0 a36
0 0 a43 a44 a45 0
0 0 0 a54 a55 a56
0 0 0 0 a65 a66




V =




0 a11 a12 a14
a21 a22 a23 a25
a32 a33 a34 a36
a43 a44 a45 0
a54 a55 a56 0
a65 a66 0 0




OF : -1 0 1 3

27/76

Sparse matrix storage schemes

Sparse compressed schemes: A =




0 1 2 0
3 4 0 0
0 0 5 0
6 0 0 0




R : 1 3 5 6 7

C : 2 3 1 2 3 1

V : 1 2 3 4 5 6

(a) CSR

C : 1 3 5 7 7

R : 2 4 1 2 3 3

V : 3 6 1 4 2 5

(b) CSC

28/76

Sparse matrix storage schemes

Jagged diagonal storage: The Jagged Diagonal Storage format can be
useful for the implementation of iterative methods on parallel and vector
processors. Like the Compressed Diagonal format, it gives a vector length
essentially of the size of the matrix. It is more space-efficient than CDS at the
cost of a gather/scatter operation.




10 −3 0 −1 0 0
0 9 6 0 −2 0
3 0 8 7 0 0
0 6 0 7 5 4
0 0 0 0 9 13
0 0 0 0 5 −1



−→




10 −3 1
9 6 −2
3 8 7
6 7 5 4
9 13
5 −1




col_ind(:,1) 1 2 1 2 5 5
col_ind(:,1) 2 3 3 4 6 6
col_ind(:,1) 4 5 4 5 0 0
col_ind(:,1) 0 0 0 6 0 0

29/76

Jagged diagonals, cont.




10 −3 0 −1 0 0
0 9 6 0 −2 0
3 0 8 7 0 0
0 6 0 7 5 4
0 0 0 0 9 13
0 0 0 0 5 −1



→




0 6 0 7 5 4
0 9 6 0 −2 0
3 0 8 7 0 0
10 −3 0 −1 0 0
0 0 0 0 9 13
0 0 0 0 5 −1



→




6 7 5 4
9 6 −2
3 8 7
10 −3 −1
9 13
5 −1




vals 6 9 3 10 9 5; 7 6 8 -3 13 -1; 5 -2 7 1; 4;
cols 2 2 1 1 5 5; 4 3 3 2 6 6; 5 5 4 4; 6;
perm 4 2 3 1 5 6

jd_ptr 1 7 13 17

30/76

LU factorization for sparse matrices

31/76

Direct methods: A = LU, LUx = b, Ly = b, Ux = y

The process of triangular factorization (Gaussian elimination) for
the case of sparse matrices.
Note: In general, during factorization we have to do pivoting in
order to assure numerical stability.
The computational complexity of a direct solution algorithm is as
follows.

Type of matrix A Factor LU solve Memory
general dense 2/3n3 O(n2) n(n + 1)
symmetric dense 1/3n3 O(n2) 1/2n(n + 1)
band matrix (2q + 1) O(q2n) O(qn) n(2q + 1)

32/76

The reason to consider particularly factorizations of sparse
matrices

is the effect of fill-in, namely, obtaining nonzero entries in the LU
factors in positions where Ai ,j is zero.

a(k+1)
i ,j ←− a(k)i ,j +

a(k)i,k a(k)k,j

a(k)k,k

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

nz = 8

L

A

33/76

Effect on sparsity structure on factorization:

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

nz = 22

(c) Arrow matrix

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

nz = 36

(d) The structure of the L-factor

The arrow matrix structure - the L and U factors are full.

34/76

Effect on sparsity structure on factorization

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

nz = 22

(e) Arrow matrix permuted

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

nz = 15

(f) The structure of the L-factor

We can permute the matrix A first and then factorize!
35/76

We pose now the question to · · ·

find permutation matrices P and Q, such that when we factorize
Ã = QTAPT , the fill-in in the so-obtained L and U factors will be
minimal.
The solution algorithm takes the form:

(1) Factorize QTAPT = LU
(2) Solve PLz = b and UQx = z.

How to construct P and Q in general?

36/76

The strive to achieve complexity O(n) + O(nnz(A)) entails very
complicated sparse codes.
Some important aspects when implementing the direct solution
techniques for sparse matrices in practice:
- sparse data structures and manipulations with those;
- computer platform related issues, such as handling of

indirect addressing; lack of locality;
difficulties with cache-based computers and parallel platforms;

short inner-most loops.

37/76

Extra difficulties come from the fact that· · ·

we have to choose a pivot element and its proper choice may
contradict to the strive to minimize fill-in.

38/76

n=500;
R=sprand(n,n,5/n); I=speye(n); b=rand(n,1); A=I+R; AF=full(A);
tic,x=A\b;toc
Elapsed time is 0.006472 seconds.
tic,x=AF\b;toc
Elapsed time is 0.036819 seconds.

n=5000;
tic,x=A\b;toc
Elapsed time is 0.336134 seconds.
tic,x=AF\b;toc
Elapsed time is 1.666255 seconds.

n=10000;
tic,x=A\b;toc
Elapsed time is 1.881219 seconds.
tic,x=AF\b;toc
Elapsed time is 12.504630 seconds.

39/76

n=50000;
R=sprand(n,n,1/n);I=speye(n);b=rand(n,1);A=10*I+0.5*(R+R’);
tic,x=A\b;toc
Elapsed time is TOO MANY seconds.

tic,[x,flag,relres,iter,resvec]=pcg(A,b,1e-6,1000);toc
Elapsed time is 0.015673 seconds.
iter = 5
relres = 4.67 e-07

40/76

We are most often dealing with ’Given-the-matrix’ case

I.e., the only source of information is the matrix itself and we will
try to reorder the entries so that the resulting structure will limit
the possible fill-in.

What is the matrix structure to aim at?

41/76

Given-the-matrix strategy

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

nz = 8

(g) Diagonal matrix

I diagonal
I block-diagonal
I block-tridiagonal
I arrow matrix
I band matrix
I block-triangular

42/76

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

nz = 21

(h) block-diagonal matrix

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

nz = 18

(i) The structure of the L-factor

43/76

0 2 4 6 8 10 12 14 16 18

0

2

4

6

8

10

12

14

16

18

nz = 112

(j) Block-tridiagonal matrix

0 2 4 6 8 10 12 14 16 18

0

2

4

6

8

10

12

14

16

18

nz = 54

(k) The structure of the L-factor

44/76

Consider the case of symmetric matrices (P = Q) and three
popular methods based on manipulations on the graph
representation of the matrix.
- (generalized) reverse Cuthill-McKee algorithm (1969);
- nested dissection method (1973);
- minimum degree ordering (George and Liu, 1981) and variants.

45/76

A matrix from somewhere

0 20 40 60 80 100 120

0

20

40

60

80

100

120

nz = 4355

0 20 40 60 80 100 120

0

20

40

60

80

100

120

nz = 5574

46/76

Generalized Reverse Cuthill-McKee (RCM)

Aim: minimize the envelope (in other words a band of variable
width) of the permuted matrix.

1. Initialization. Choose a starting (root) vertex r and set v1 = r .

2. Main loop. For i = 1, ..., n find all non-numbered neighbours of vi and
number them in the increasing order of their degrees.

3. Reverse order. The reverse Cuthill-McKee ordering is w1, ...,wn, where
wi = vn+1−i .

47/76

Generalized Reverse Cuthill-McKee (RCM)

One can see that GenRCM tends to number first the vertices
adjoint to the already ordered ones, i.e., it gathers matrix entries
along the main diagonal.

The choice of a root vertex is of a special interest.

The complexity of the algorithm is bounded from above by
O(m nnz(A)), where m is a maximum degree of vertices, nnz(A) -
number of nonzero entries of matrix A.

48/76

Generalized Reverse Cuthill-McKee (RCM)

0 20 40 60 80 100 120

0

20

40

60

80

100

120

p
r
cm = symrcm(A1); A2 = A1(p

r
cm,p

r
cm);

Symmetric reverse Cuthill−McKee permutation

0 20 40 60 80 100 120

0

20

40

60

80

100

120

nz = 3375

49/76

The Quotient Minimum Degree (QMD)

Aims to minimize a local fill-in taking a vertex of minimum degree
at each elimination step. The straightforward implementation of
the algorithm is time consuming since the degree of numerous
vertices adjoint to the eliminated one must be recomputed at each
step. Many important modifications have been made in order to
improve the performance of the MD algorithm and this research
remains still active .
In many references the MD algorithm is recommended as a general
purpose fill-reducing reordering scheme. Its wide acceptance is
largely due to its effectiveness in reducing fill and its efficient
implementation.

50/76

The Quotient Minimum Degree (QMD)

0 20 40 60 80 100 120

0

20

40

60

80

100

120

nz = 4355

Symmetric minimum degree permutation

0 20 40 60 80 100 120

0

20

40

60

80

100

120

nz = 3090

51/76

IBD matrix: X20

0 100 200 300 400 500 600 700

0

100

200

300

400

500

600

700

nz = 101027

0 100 200 300 400 500 600 700

0

100

200

300

400

500

600

700

nz = 195744

52/76

IBD matrix: X20: RCM

0 100 200 300 400 500 600 700

0

100

200

300

400

500

600

700

nz = 101050

0 100 200 300 400 500 600 700

0

100

200

300

400

500

600

700

nz = 176880

53/76

IBD matrix: X20: MMD

0 100 200 300 400 500 600 700

0

100

200

300

400

500

600

700

nz = 101050

0 100 200 300 400 500 600 700

0

100

200

300

400

500

600

700

nz = 119470

54/76

The Nested Dissection algorithm

A recursive algorithm which on each step finds a separator of each
connected graph component. A separator is a subset of vertices
whose removal subdivides the graph into two or more components.
Several strategies how to determine a separator in a graph are
known. Numbering the vertices of the separator last results in the
following structure of the permuted matrix with prescribed zero
blocks in positions (2, 1) and (1, 2)




A11 0 A13
0 A22 A23
A31 A32 A33


 .

55/76

The Nested Dissection algorithm

Under the assumption that subdivided components are of equal size
the algorithm requires no more than log2 n steps to terminate.

ND is optimal (up to a constant factor) for some class of model 2D
problems originating from discretized PDEs. The Cholesky factor
contains O(m2log2m) nonzero entries. This is the
best low order bounds derived for direct elimination methods.

56/76

In the PDE world and not only...

1

2

3

4

5

6

7

8

9

11

12

13

14

16

17

18

19

21

22

23

24

27

29

32

33

34

36

37

38

39

41

42

44

46

47

49

15 20 25 30 35 40 45

4843

3126

28

10 50

(l) Column-wise order-
ing

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

30

35

40

45

50

nz = 220

(m) The structure of
the matrix A

57/76

Major computational tasks in Statistical applications

I Cholesky factorization
min‖Ax− b‖, ATA = LLT , LLTx = ATb

I LS: A = QR , x = R−1QT
1 b

I LS: A = UΣV T

I PCA (principal component analysis): SVD
I Ax = λx
I trace(A−1)

58/76

Sparse QR

A = LLT

A = QR, then ATA = RTQTQR = RTR!

Thus, if we know R , we have factorized ATA!
But: if A is sparse, we want that R is as sparse as possible.
This is achieved by performing symbolic factorization of ATA.

59/76

Sparse SVD, Matlab

The Matlab SVD implementation follows that of LINPACK,
which is for general dense matrices.
To find some of the singular values (largest or smallest) of a large
sparse matrix, one can use svds.
svds(A,k) uses eigs to find the k largest magnitude
eigenvalues and corresponding eigenvectors of

B =

[
0 A
AT 0

]

.

60/76

Sparse SVD, Matlab

Demo:

load 20.dat S=svds(AS,5);
A=X20+tril(X20,1)’; S=svds(AS,5,0.51);
S =svd(A); 0.27 s S=svds(AS,5,0.01);
AS=sparse(A);
SS=svds(AS,10); 0.09 s

61/76

Sparse matrices in Statistical applications

I Genetic mapping of quantitative traits
I Sparse inverse of covariance matrix for QTL effects with incomplete

marker data
R. Mark Thallman, Kathryn Hanford, Stephen Kachman, L. Dale Van
Vleck
Statistical Applications in Genetics and Molecular Biology, 2005

I Sparse spatial autoregression
I Pace and Barry (1997), "Kriging with Large Data Sets," Communications

in Statistics, Simulation and Compassion
The authors discuss sparse krigging in Communication in Statistics,
Simulation and Computation. Using published estimates on a spherical
variogram they solve the estimates 432 times as fast as using more
conventional solution techniques.

62/76

Sparse matrices in Statistical applications

I Barry and Pace (1999), "Monte Carlo Estimates of the Log Determinant
of Large Sparse Matrices," Linear Algebra and its Applications
The authors devise a means of estimating the log-determinant of large,
sparse matrices. Estimation of the log-determinant of the
variance-covariance matrix (or its inverse) allows maximum likelihood
estimation of large-scale spatial statistical problems. Most importantly,
the article shows a way of providing confidence intervals for the estimate
and show these work via a coverage study. To illustrate the potential of
the estimator, we estimated the log-determinant of a 1,000,000 by
1,000,000 matrix (on a Pentium 133 MHz machine). The estimator has a
simple form and its performance depends only upon the degree of sparsity
and not its pattern. Source code and executable code for it resides in
SpaceStatPack.

63/76

Summary:

I There is no one good buy.
I The best code in any situation will depend on

- the solution environment;
- the computing platform;
- the structure of the matrix.

64/76

Some practical issues

R packages for working with sparse matrices:
– spam
– SparseM
– Matrix

65/76

R - Matlab: sparse matrix exchange

library(MASS)
> M=matrix(1:12,3,4)
> M

[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12
write.matrix(M,file="M.dat",sep=" ")

>> load M.dat
>> M

1 4 7 10
2 5 8 11
3 6 9 12

66/76

Matlab-R : sparse matrix exchange

>> N=M/2
N =

0.5000 2.0000 3.5000 5.0000
1.0000 2.5000 4.0000 5.5000
1.5000 3.0000 4.5000 6.0000

>> save N.dat -ASCII N

> N0=read.csv("N.dat",sep="",header=F)
> is.matrix(N0)
[1] FALSE
> N=as.matrix(N0)
> N

V1 V2 V3 V4
[1,] 0.5 2.0 3.5 5.0
[2,] 1.0 2.5 4.0 5.5
[3,] 1.5 3.0 4.5 6.0

67/76

Matlab-R : sparse matrix exchange

Source file: 20.dat
Read in Matlab:

>> load 20.dat
>> size(X20)
ans = 770 770

>> X20sp=sparse(X20);
>> whos
Name Size Bytes Class Attributes
X20 770x770 4743200 double
X20sp 770x770 613728 double sparse

68/76

Matlab-R : sparse matrix exchange

Source file: 20.dat
Read in R :

> library("MASS")
> X20=read.delim("20.dat")
> dim(X20)
[1] 769 1
> AL=read.csv("20.dat",sep="",header=F)
> dim(AL)
[1] 770 770
> is.matrix(AL)
[1] FALSE
> AL=as.matrix(AL)
> AU=t(AL)
> A=AL+AU
> S=svd(A)
> plot(S$d)

69/76

Matlab-R : sparse matrix exchange

Export the triangular factor from R to Matlab:

> is.numeric(U)
[1] TRUE
> write.table(U,file = "Fname", quote = FALSE, sep = "")

70/76

Experience with R - spam

library(spam)
> N0=read.csv("A20.dat",sep="",header=F)
> is.matrix(N0)
[1] FALSE
> A=as.matrix(N0)
> dim(A)
[1] 770 770
> Asp=as.spam(A)
> is.spam(Asp)
[1] TRUE
> D=diag.spam(x=10, 770, 770)
> B=Asp+D
> system.time(U=chol(B))
> b <- rnorm(770)
> q=solve(B,b)
> Q=chol(B)
> spam.options(imagesize=1000)
> display(B) 71/76

Data format of the ’spam’ package

The ’old Yale sparse format":
a (sparse) matrix is stored with four elements (vectors), which are:
– (1) the nonzero values row by row, – (2) the ordered column
indices of nonzero values, – (3) the position in the previous two
vectors corresponding to new rows, given as pointers, – (4) the
column dimension of the matrix.

72/76

R : SparseM

library(SparseM)
A <- rnorm(10*10)
A[abs(A) < 0.7] <- 0
B <- matrix(A,10,10)
B
B.csr <- as.matrix.csr(B)
B.csr

73/76

R : SparseM

as.matrix.csr(B)
An object of class "matrix.csr"
Slot "ra":
[1] -2.4102317 2.5728546 0.9818316 -0.9926660 1.3441660 -1.3187796
[7] 0.7838835 0.9944858 1.7196010 0.8811503 2.0851579 1.6376506

[13] 0.8536892 1.3447788 -2.5888581 -1.6815039 1.1941216 -1.8795499
[19] -1.7724763 -2.2327467 0.9569822 -0.8778493 0.8796285 -1.0345438
[25] -0.7602273 2.5978370 -1.7801954 -0.8674773 -0.7682890 -0.9491965
[31] 0.8423863 -0.8469827 -0.7912244 -1.8190693 -1.0183608 -0.9646922
[37] 1.3862937 -2.3116806 1.1205653 -2.0512307 -1.4883147 1.3637320
[43] -1.5820963 -0.9229476 0.8861217 1.4164354 0.9828918 1.1553508
[49] -1.0872901 -0.9350768 -0.7850330

Slot "ja":
[1] 1 4 5 7 8 9 3 4 5 7 8 9 1 3 5 6 7 8 3 4 6 10 2 3 7

[26] 10 3 5 7 9 10 4 5 6 7 8 1 3 4 6 7 9 10 5 6 8 9 4 5 7
[51] 10

Slot "ia":
[1] 1 7 13 19 23 27 32 37 44 48 52

Slot "dimension":
[1] 10 10

74/76

R : Sparse SVD, needs

http://stats.stackexchange.com/questions/41259/

svd-on-a-65-million-by-3-4-million-sparse-matrix Q: What is the best way
compute SVD on a very large positive matrix (65M x 3.4M) where data
is extremely sparse? sparse: less than 0.1% of the matrix is non zero.
Should be computed in a reasonable time: 3,4 days
It would be great to have a Haskell, Python, C# etc. library which
implements it. I am not using mathlab or R but if necessary I can go with
R.

A: Try ’Matrix’ and ’irlba’
Package ’irlba’, July 2, 2014; Jim Baglama and Lothar Reichel.
’Fast partial SVD by implicitly-restarted Lanczos bidiagonalization’
Augmented Implicitly Restarted Lanczos Bidiagonalization Methods, J.
Baglama and L. Reichel, SIAM J. Sci. Comput. 2005

75/76

Some references:

P. R. Amestoy, T. A. Davis and I. S. Duff. An approximate minimum degree
ordering algorithm. SIAM J. Matr. Anal. Appl., 17, 886-905, 1996.
C. Ashcraft and J.W.H. Liu. Robust ordering of sparse matrices using
multisection. SIAM J. Matrix Anal. Appl., 19, 816-832, 1998.
E. Cuthill, J. McKee. Reducing the bandwidth of sparse symmetric matrices.
Proc. 24th Nat. Conf. Assoc. Comput. Mach., 157-172, 1969.
J.W.H. Liu, A. H. Sherman. Comparative analysis of the Cuthill-McKee and
the reverse Cuthill-Mckee ordering algorithms for sparse matrices. SIAM J.
Numer. Anal., 13, 198-213, 1975.
J. Dongarra, I. Duff, Sorensen and H. van der Vorst, Numerical Linear Algebra
for High Performance Computers, SIAM Press.
I. Duff, Direct methods, Technical report TR/PA/98/28, July 29, 1998,
CERFACS.
H.W. Berry and A. Sameh (1988), Multiprocessor schemes for solving block
tridiagonal linear systems, The International Journal of Supercomputer
Applications, 12, 37-57.

76/76

Some references:

I. S. Duff, A. M. Ersiman and J. K. Reid, Direct Methods for Sparse Matrices,
Oxford University Press, 1986. Reprinted 1989.
I. S. Duff, R. G. Grimes and J. G. Lewis. Sparse matrix test problems. ACM
Trans. Math. Software, 15, 1-14, 1989.
J.A. George and J.W.H. Liu. Computer solution of large sparse positive definite
systems. Prentice-Hall, Englewood Cliffs, New Jersey, 1981.
K.A. Gallivan, R.J. Plemmons, and A.H. Sameh (1990), Parallel algorithms for
dense linear algebra computations, SIAM Review, 32, 54-135.
J. George and J.W.H. Liu. The evolution of the minimum degree ordering
algorithm. SIAM Rev., 31, 1-19, 1989.
F.-C. Lin and K.-L. Chung (1990), A cost-optimal parallel tridiagonal system
solver, Parallel Computing, 15, 189-199.
E. Rothberg and S.C. Eisenstat. Node selection strategies for bottom-up sparse
matrix ordering. SIAM J. Matr. Anal. Appl., 19, 682-695, 1998.
H. van der Vorst and K. Dekker, Vectorization of linear recurrence relations,
SIAM Sci. Stat. Comp., 10 (1989), 27–35.

