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The inverse of a nonsingular matrix

Nothing easier:
If A is a square nonsingular matrix, then A−1 is a matrix of the
same size as A, such that

A−1A = AA−1 = I .

Properties:
I1 (A−1)−1 = A
I2 (AT )−1 = (A−1)T

I3 (A∗)−1 = (−1)∗

I4 (AB)−1 = B−1A−1

I5 If Av = λv and A−1w = µw then µ = 1/λ.
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A definition of a generalized inverse

Any matrix, satisfying
AXA = A.

Example: Solvability of a linear system Ax = b.
Let b be in the range of A, i.e., there exist a vector h, such that
b = Ah.
If X is a generalized inverse of A, then x = Xb.
If AXA = A, then Ax = AXb = AXAh = Ah = b



4/16

Generalized / Pseudo- inverses

I The Moore-Penrose Pseudoinverse
I The Drazin inverse
I Weighted generalized inverses, group inverses
I The Bott-Duffin inverse (for constrained matrices)
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Moore-Penrose Pseudoinverse I

The Moore-Penrose pseudoinverse A+ is defined for any matrix and
is unique. Moreover, it brings notational and conceptual clarity to
the study of solutions to arbitrary systems of linear equations and
linear Least Squares problems.
Consider A ∈ Rm,n

r . The subscript r denotes the rank of A.
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Moore-Penrose Pseudoinverse II

Theorem (Penrose, 1956)

Let A ∈ Rm,n
r . Then G = A+ if and only if

P1 AGA = A
P2 GAG = G
P3 (AG )∗ = AG
P4 (GA)∗ = GA

Furthermore, A+ always exists and is unique.

The theorem is not constructive but gives criteria that can be
checked.
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Moore-Penrose Pseudoinverse III

Example:
Let A ∈ Rm,n

r . Then, from A = UΣV T we find A+ = V Σ+UT ,

where Σ+ =

[
S−1 0
0 0

]
.
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Moore-Penrose Pseudoinverse IV

Properties:
I A+ = (ATA)+AT = AT (AAT )+

I (AT )+ = (A+)T

I (A+)+ = A
I (ATA)+ = A+(AT )+ = (AT )+A+

I R(A+) = R(AT ) = R(A+A) = R(ATA)

I N (A)+ = N (AA+) = N ((AAT )+) = N (AAT ) = N (AT )
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Moore-Penrose Pseudoinverse V

For linear systems Ax = b with non-unique solutions (such as
under-determined systems), the pseudoinverse may be used to
construct the solution of minimum Euclidean norm ‖x‖2 among all
solutions.
If Ax = b is consistent, the vector x = A+b is a solution, and
satisfies ‖z‖2 ≤ ‖x‖2 for all solutions.
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Uniqueness of the Moor-Penrose inverse I

Let A ∈ Rm,n
r . Assume that there are two matrices that satisfy the

conditions:
AA+A = A ABA = A
A+AA+ = A+ BAB = B
(AA+)∗ = AA+ (AB)∗ = AB
(A+A)∗ = A+A (BA)∗ = BA

Let M1 = AB −AA+ = A(B −A+). By the hypothesis, M1 is self-adjoint
(since it is the difference of two self-adjoint matrices) and

(M1)2 = (AB − AA+)A(B − A+)
= (ABA− AA+A)(B − A+) = (A− A)(B − A+)A = 0.
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Uniqueness of the Moor-Penrose inverse II

Since M1 is self-adjoint, the fact that M2
1 = 0 implies that M1 = 0, since

for all x one has ‖M1x‖2 = (M1x ,M1x) = (x , (M1)2x) = 0, implying
M1 = 0. This showed that AB = AA+ .
Following the same steps we can prove that BA = A+A (consider the
self-adjoint matrix M2 := BAA + A and proceed as above). Thus,
A+ = A+AA+ = A+(AA+) = A+AB = (A+A)B = BAB = B, thus A+ is
unique.
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The Drazin Inverse

Defined for a square matrix.
Let A be a square matrix. The index k of A is the least
nonnegative integer k such that rank(Ak+1) = rank(Ak).
The Drazin inverse of A is the unique matrix AD which satisfies

Ak+1AD = Ak , ADAAD = AD , AAD = ADA.

If A is invertible with inverse A−1, then AD = A−1.
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Example: Solving systems with a singular matrix by CG

I. Ipsen, C. Meyer, The idea behind Krylov methods, The American
Mathematical Monthly, 105 (1998)
" ... we show that the solution to a nonsingular linear system
Ax = b lies in a Krylov space whose dimension is the degree of the
minimal polynomial of A. Therefore, if the minimal polynomial of A
has low degree then the space in which a Krylov method searches
for the solution is small. In this case a Krylov method has the
opportunity to converge fast.
"When the matrix is singular, however, Krylov methods can fail.
Even if the linear system does have a solution, it may not lie in a
Krylov space. In this case we describe the class of right-hand sides
for which a solution lies in a Krylov space. As it happens, there is
only a single solution that lies in a Krylov space, and it can be
obtained from the Drazin inverse."
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Theoretical result

The following statements are equivalent:
I Ax = b has a Krylov solution.
I b ∈ R(Ai ), where i is the index of the zero eigenvalue of A

(the index i of an eigenvalue is the maximum size of a block,
containing the eivenvalue in the Jordan canonical form).

I ADb is a solution of Ax = b and it is unique.
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Computing the pseudoinverse from SVD

A = UΣV T → A† = V Σ†UT ,

where A = U
[

Σ1
0

]
V T and Σ† =

[
Σ−1

1
0

]
.
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Bott-Duffin inverse

Constrained generalized inverse of a square matrix: We want to
solve Ax = b, A(n, n), where x should belong to a certain subspace
L of Rn.
Denote PL to be the orthogonal projection on L. Then the
constrained problem Ax = b, x ∈ L has a solution if

APLx = b

is solvable.
The generalized Bott-Duffin inverse is defined as

A(+) = PL(APL + PL⊥)−1

if the inverse on the right exists.


