Least square problems |

Matrices and Statistics with Applications Given A(m, n) with full column rank, b(n, 1), consistent with A.
Solution of large sparse Least Square We want to solve o
X =
problems
in the Least Squares sense, thus, x = (AT A)~tATb.
Maya Neytcheva We do not want to form AT A because

— it is usually badly conditioned
— it is in general full even if A is sparse.

SeSE, September 2020
AT A'is symmetric positive definite and we have a method for such

systems.

The CG method:

Initialize: r(®) = Ax(®) — b, g(©) = ¢(0)
For k =0,1,---, until convergence
(k) ¢(Kk)
= G e
X(k'H-) = x(k) + Tkgk
r(k+1) — r(k) + TkAgk
. (r(k+1),r(k+1))
P = N GON G

ghtl — (k1) g, ok

Tk

The Conjugate Gradient (CG) method

end

r(k) — iteratively computed residuals
gk — search directions

CG: the algorithm Optimality properties of the CG method

x = %0 Opt1: Mutually orthogonal search directions: (g"™*, Ag/) =0,/ =0, -,k
r Axx=Db Opt2: There holds r**V) | K,(A,r®, ie., (D Ay =0,j=0,--- Kk

deltal0 = (r,r) L K . .
o Opt3: Optimization property: ||r®)|| smallest possible at any step, since CG
g="-t minimizes the functional f(x) = 1/2(x, Ax) — (x,b)

Repeat: h = Axg i)
c (alk+1),Ag) _ okl ALy (kD) (KDY 0 i—0 ...
tau = delta0/(g,h) Opt4: (e (g Ag/) = (r*D)y =0,/ =0,k
% = x + tauxg Opt5: Finite t-ermir-latipn property: there are no breakdowns of the CG algorithm.
_ h Reasoning: if g/ = 0 then 7y is not defined. the vectors g’ are computed
r = r + taux from the formula g" =r® 4+ Bigh. Then
deltal = (r,r) 0=(rM, g) = —(¢™ 1) + 8, (r¥, g 1), = K0, i.e., the solution is
if deltal <= eps, stop]S
beta = deltal/delta0 already fOU"C(i;()) fot
g = -r + betaxg As soon as X' # Xexact, then r'™ # 0 and then g"™*) # 0.

However, we can generate at most n mutually orthogonal vectors in R",

Computational complexity of one CG iteration: O(N), where thus, CG has a finite termination property.
A(N, N), sparse.

Rate of convergence of the CG method Rate of convergence (cont)
Repeat:
Theorem: Let A is symmetric and positive definite. K #(A) +1 k 0
Suppose that for some set S, containing all eigenvalues of A, for lella =2 x#(A) -1 1”14

some polynomial P(\) € M} and some constant M there holds

r Seek now the smallest k, such that
Ta;‘P(A)‘ < M. Then,
€

le“]la < <lle°||a

=)'
AN e, = kin(£1) > In?)

x [[Z = (x, Ax)

||Xexact - X(k)HA S MHXexact - X(O)HA-

V

we want (
s

le¥]la < 2 [

»#(A) - the condition number of A, |

CG - A Krylov subspace iteration method

Definition of a Krylov subspace, based on a vector v € R" and a

matrix B € R™", . .
CGLS - Conjugate Gradient for Least Square problems,

Ki(B,v) = span{v, Bv, B?v,--- ,B*"1v}. i.e., CG for the normal equation

Through the iterations, CG constructs a Krylov subspace, based on
A and b.
Remarkably, the solution x lies in that space!

Remember, we do not want to form AT All

CGLS: solve the normal equation for A € R"™™ CGLS

Recall the definition of a Krylov subspace, based on a vector v € R" and a
matrix B € R™*",

Ki(B,v) = span{v, Bv, B?v,--- ,B*"1v}.

History: The standard CG method minimizes the following functional
CG has appeared in a paper by Hestenes and Stiefel (1952). In that
paper and in a followup paper by Stiefel (1952), a version of CG for
solving the normal equation has peen presented.

First result for using a preconditioned CG for solving Least Square Let A be rectangular and denote A' be its pseudoinverse. Denote
problems appears in a paper by Peter Liuchli (1959). X = A"b - the pseudoinverse solution and the corresponding
residual 7 = AX. Then, in the CG framework, X* minimizes the
following error functional:

F(x) = %(X,Ax) — (x,b).

Eu(x") = (x = x)T(ATA(x + x¥)

where X¥ = (x)° + K4 (AT A, (5)°), s° = AT (b — AxP).

CGLS |

Values of y of practical interest:
=0 minimizes ||x — x¥||3

j=1 minimizes |[F — r¥|Z = 73 - || r*[3
(due to the orthogonality relation 7 L 7 — rk)
p=2 minimizes ||AT(F — r¥)|3
1 = 0 - feasible only for consistent systems.

4=1-CGLS

Algorithm CGLS

Unpreconditioned CG Unreconditioned CGLS

x = x0, r = b-A*x x = x0, r = b-A*x
deltad = (r,r) deltad = (s,s)
g=-r g=s=AT*r
Repeat: h = A*g Repeat: h = A*s

tau = delta0/(g,h)
X = X + tau*g
r =r - tau*h

deltal = (r,r)

if deltal <= eps, stop
beta = deltal/delta0
g = r + beta*g

tau = delta0/(h,h)

X = X + tau*s

r = r - tau*h
s=AT*r

deltal = (s,s)

if deltal <= eps, stop
beta = deltal/delta0
g = s + beta*g

CGLS 1l

Properties of CGSL:

E,.(x¥) decreases monotonically.

v

» For ;1 = 1,2, E,(x*) decreases monotonically for all v < p.
» for ;= 1 also r¥ decreases monotonically.

» The rate of convergence is estimated as follows:

E.(x¥) <2 (\\;_i; 1)1(Eu(x°),

where > = (AT A).

» For u =1, both ||F — r¥|| and ||X — x¥|| decrease
monotonically, however ||AT r¥|| does oscillate (not due to
roundoff errors).

CGSL |

Note: x,g € R", r,h € R™, (A€ R™™)

With s = AT(b — Ax), by construction, x minimizes
sT(ATA) s

over the space Kx(ATA,ATb).
Thus, s € Ty, T = {AT(b— Ax)|x € Kx(ATA,ATb)} and any
vector from T, can be expressed as

sk =1 —ATAP,_1(ATANATb =R (ATA)AT b,

where Py _1 is a polynomial of degree k — 1 and Ry is a residual
polynomial of degree less than or equal k and is normalized at zero,
thus Rk(O) =1.

CGSL 1l

HSkH(ATA)—l = R”éilqk HRk(ATA)ATka(ATA)—l

Consider the singular value decomposition of A, A= ULV,

Then
m n
b:Zb;u;, ATb:Zb,'O','V,'
i=1 i=1
and .
HskH(zATA)_1 = R"éirrfk Z b?R%(c?).
i=1
Preconditioning
CG:

Ax=b—= C1Ax = C1b

such that »(C~1A) is small, as close as possible to 1.
For CG the important role is played by the eigenvalues of »(C~1A).

CGSL Il

n
k2 . 221 2
||S || AT A)-1 = min ble(U,)
() Rel’lk
i=1

Any polynomial from [T, will give an upper bound. For the choice

2 2 2
wa-(-5) () (-9
o3 o5 o2
we get [|sp[[(aTa)-1 = 0, which shows the final termination
property of CGLS.

If A has only g distinct singular values, then CGLS will converge in
at most q iterations.

Algorithm: Preconditioned CGLS

A good preconditioner for CGLS: the distinct singular values of the
preconditioned matrix should be very few!

The normal equations for the preconditioned problem in factored
form:

C-TAT(AC 'y —b) = C TAT(Ax — b) = 0.

The convergence now depends on the condition number »(AC™1).

Algorithm: Preconditioned CGLS

Unpreconditioned CGLS

x = x0,

r = b-A*x;
g=s=AT*r
delta0 = (s,s)

Repeat: h = A*s
tau = delta0/(h,h)
X = X + tau*s
r = r - tau*h

Preconditioned CGLS

x = x0,

r = b-A*x;
g=s=C1AT*
deltal = (s,s)

Repeat: t=C"'s; h = A*s
tau = delta0/(h,h)
X = X + tau*t
r = r - tau*h

s=AT*r s= C 1A *
deltal = (s,s) deltal = (s,s)
if deltal <= eps, stop if deltal <= eps, stop

beta = deltal/delta0
g = s + beta*g

beta = deltal/delta0
g = s + beta*g

