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Least square problems I

Given A(m, n) with full column rank, b(n, 1), consistent with A.
We want to solve

Ax = b

in the Least Squares sense, thus, x = (ATA)−1ATb.

We do not want to form ATA because
– it is usually badly conditioned
– it is in general full even if A is sparse.

ATA is symmetric positive definite and we have a method for such
systems.
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The Conjugate Gradient (CG) method
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The CG method:

Initialize: r(0) = Ax(0) − b, g(0) = r(0)

For k = 0, 1, · · · , until convergence
τk = (r(k),r(k))

(Agk ,g(k))

x(k+1) = x(k) + τkgk

r(k+1) = r(k) + τkAgk

βk = (r(k+1),r(k+1))

(r(k),r(k))

gk+1 = r(k+1) + βkgk

end

r(k) – iteratively computed residuals
gk – search directions
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CG: the algorithm

x = x0
r = A*x-b
delta0 = (r,r)
g = -r
Repeat: h = A*g

tau = delta0/(g,h)
x = x + tau*g
r = r + tau*h
delta1 = (r,r)
if delta1 <= eps, stop
beta = delta1/delta0
g = -r + beta*g

Computational complexity of one CG iteration: O(N), where
A(N,N), sparse. 6/21

Optimality properties of the CG method

Opt1: Mutually orthogonal search directions: (gk+1,Agj ) = 0, j = 0, · · · , k
Opt2: There holds r(k+1) ⊥ Km(A, r(0), i.e., (r(k+1),Ar(k)) = 0, j = 0, · · · , k
Opt3: Optimization property: ‖r(k)‖ smallest possible at any step, since CG

minimizes the functional f (x) = 1/2(x,Ax)− (x, b)

Opt4: (e(k+1),Agj ) = (gk+1,Agj ) = (r(k+1), r(k)) = 0, j = 0, · · · , k
Opt5: Finite termination property: there are no breakdowns of the CG algorithm.

Reasoning: if gj = 0 then τk is not defined. the vectors gj are computed
from the formula gk = r(k) + βkgk−1. Then
0 = (r(k), gj ) = −(r(k), r(k)) + βk (r(k), gk−1)︸ ︷︷ ︸

0

, ⇒ r(k)0, i.e., the solution is

already found.
As soon as x(k) 6= xexact , then r(k) 6= 0 and then gk+1) 6= 0.
However, we can generate at most n mutually orthogonal vectors in Rn,
thus, CG has a finite termination property.
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Rate of convergence of the CG method

Theorem: Let A is symmetric and positive definite.
Suppose that for some set S , containing all eigenvalues of A, for
some polynomial P̃(λ) ∈ Π1

k and some constant M there holds

max
λ∈S

∣∣∣P̃(λ)
∣∣∣ ≤ M. Then,

‖xexact − x(k)‖A ≤ M‖xexact − x(0)‖A.

‖ek‖A ≤ 2
[
κ(A) + 1
κ(A)− 1

]k

‖e0‖A

κ(A) - the condition number of A, ‖ × ‖2A = (x ,Ax)
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Rate of convergence (cont)

Repeat:

‖ek‖A ≤ 2
[
κ(A) + 1
κ(A)− 1

]k

‖e0‖A

Seek now the smallest k , such that

‖ek‖A ≤ ε‖e0‖A

we want
(
κ+1
κ−1

)k
> 2

ε

⇒ k ln
(
κ+1
κ−1

)
> ln(2

ε )

⇒ k > ln(2
ε )/ln

(
κ+1
κ−1

)

⇒ k > 1
2
√
κ ln(2

ε )
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CG - A Krylov subspace iteration method

Definition of a Krylov subspace, based on a vector v ∈ Rn and a
matrix B ∈ Rn×n,

Kk(B, v) = span{v ,Bv ,B2v , · · · ,Bk−1v}.

Through the iterations, CG constructs a Krylov subspace, based on
A and b.
Remarkably, the solution x lies in that space!
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CGLS - Conjugate Gradient for Least Square problems,
i.e., CG for the normal equation

Remember, we do not want to form ATA!!
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CGLS: solve the normal equation for A ∈ Rn×m

History:
CG has appeared in a paper by Hestenes and Stiefel (1952). In that
paper and in a followup paper by Stiefel (1952), a version of CG for
solving the normal equation has peen presented.
First result for using a preconditioned CG for solving Least Square
problems appears in a paper by Peter Läuchli (1959).
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CGLS
Recall the definition of a Krylov subspace, based on a vector v ∈ Rn and a
matrix B ∈ Rn×n,

Kk(B, v) = span{v ,Bv ,B2v , · · · ,Bk−1v}.

The standard CG method minimizes the following functional

f (x) =
1
2
(x,Ax)− (x, b).

Let A be rectangular and denote A† be its pseudoinverse. Denote
x̂ = A†b - the pseudoinverse solution and the corresponding
residual r̂ = Ax̂ . Then, in the CG framework, x̂k minimizes the
following error functional:

Eµ(x̂k) = (x̂ − xk)T (ATA)µ(x̂ + xk)

where x̂k = (x)0 +Kk(ATA, (s)0), s0 = AT (b − Ax0).
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CGLS I

Eµ(xk) = (x̂ − xk)T (ATA)µ(x̂ + xk)

Values of µ of practical interest:
µ = 0 minimizes ‖x̂ − xk‖22
µ = 1 minimizes ‖r̂ − rk‖22 = ‖r̂‖22 − ‖rk‖22

(due to the orthogonality relation r̂ ⊥ r̂ − rk)
µ = 2 minimizes ‖AT (r̂ − rk)‖22
µ = 0 - feasible only for consistent systems.
µ = 1 - CGLS
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CGLS II

Properties of CGSL:
I Eµ(xk) decreases monotonically.
I For µ = 1, 2, Eν(xk) decreases monotonically for all ν ≤ µ.
I for µ = 1 also rk decreases monotonically.
I The rate of convergence is estimated as follows:

Eµ(xk) < 2
(√

κ − 1√
κ + 1

)k

Eµ(x0),

where κ = κ(ATA).
I For µ = 1, both ‖r̂ − rk‖ and ‖x̂ − xk‖ decrease

monotonically, however ‖AT rk‖ does oscillate (not due to
roundoff errors).
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Algorithm CGLS

Unpreconditioned CG Unreconditioned CGLS
x = x0, r = b-A*x x = x0, r = b-A*x
delta0 = (r,r) delta0 = (s,s)
g = -r g = s = AT*r
Repeat: h = A*g Repeat: h = A*s

tau = delta0/(g,h) tau = delta0/(h,h)
x = x + tau*g x = x + tau*s
r = r - tau*h r = r - tau*h

s = AT*r
delta1 = (r,r) delta1 = (s,s)
if delta1 <= eps, stop if delta1 <= eps, stop
beta = delta1/delta0 beta = delta1/delta0
g = r + beta*g g = s + beta*g
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CGSL I

Note: x , g ∈ Rn, r , h ∈ Rm, (A ∈ Rn×m)
On the convergence of CGLS

With s = AT (b − Ax), by construction, x minimizes

sT (ATA)−1s

over the space Kk(ATA,ATb).
Thus, sk ∈ Tk , Tk = {AT (b − Ax) | x ∈ Kk(ATA,ATb)} and any
vector from Tk can be expressed as

sk = (I − ATAPk−1(ATA))ATb = Rk(ATA)ATb,

where Pk−1 is a polynomial of degree k − 1 and Rk is a residual
polynomial of degree less than or equal k and is normalized at zero,
thus Rk(0) = 1.
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CGSL II

‖sk‖(ATA)−1 = min
R∈Πk

‖Rk(ATA)ATbk‖(ATA)−1

Consider the singular value decomposition of A, A = UΣV T .
Then

b =
m∑

i=1

biu i , ATb =
n∑

i=1

biσiv i

and

‖sk‖2(ATA)−1 = min
R∈Πk

n∑

i=1

b2
i R2

k(σ2
i ).
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CGSL III

‖sk‖2(ATA)−1 = min
R∈Πk

n∑

i=1

b2
i R2

k(σ2
i ).

Any polynomial from Πk will give an upper bound. For the choice

Rn(σ2) =

(
1− σ2

σ2
1

)(
1− σ2

σ2
2

)
· · ·
(
1− σ2

σ2
n

)

we get ‖sn‖(ATA)−1 = 0, which shows the final termination
property of CGLS.
If A has only q distinct singular values, then CGLS will converge in
at most q iterations.
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Preconditioning

CG:
Ax = b → C−1Ax = C−1b

such that κ(C−1A) is small, as close as possible to 1.
For CG the important role is played by the eigenvalues of κ(C−1A).
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Algorithm: Preconditioned CGLS

A good preconditioner for CGLS: the distinct singular values of the
preconditioned matrix should be very few!
The normal equations for the preconditioned problem in factored
form:

C−TAT (AC−1y − b) = C−TAT (Ax − b) = 0.

The convergence now depends on the condition number κ(AC−1).
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Algorithm: Preconditioned CGLS

Unpreconditioned CGLS Preconditioned CGLS
x = x0, x = x0,
r = b-A*x; r = b-A*x;
g = s = AT*r g = s =C−1 AT*r
delta0 = (s,s) delta0 = (s,s)
Repeat: h = A*s Repeat: t=C−1s; h = A*s

tau = delta0/(h,h) tau = delta0/(h,h)
x = x + tau*s x = x + tau*t
r = r - tau*h r = r - tau*h
s = AT*r s = C−1AT*r
delta1 = (s,s) delta1 = (s,s)
if delta1 <= eps, stop if delta1 <= eps, stop
beta = delta1/delta0 beta = delta1/delta0
g = s + beta*g g = s + beta*g


