Least Squares and QR Decomposition

L. Eldén

LiU
September 2020

Least Squares - Example Elasticity

Hooke's law:

$$
e+\kappa F=I
$$

where κ is the elasticity constant.
Data:

F	1	2	3	4	5
I	7.97	10.2	14.2	16.0	21.2

Data

Overdetermined System

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 2 \\
1 & 3 \\
1 & 4 \\
1 & 5
\end{array}\right)\binom{e}{\kappa}=\left(\begin{array}{l}
7.97 \\
10.2 \\
14.2 \\
16.0 \\
21.2
\end{array}\right)
$$

Determine an approximation of the elasticity constant of the spring using the least squares method.

Overdetermined System

Let $A \in \mathbb{R}^{m \times n}, m>n$. The system

$$
A x=b
$$

More equations than unknowns!
In general no solution exists.
($m=3$ and $n=2$) We want to find a linear combination of the vectors such that

$$
x_{1} a_{\cdot 1}+x_{2} a_{\cdot 2}=b .
$$

The Least Squares Method

Make the vector $r=b-x_{1} a_{1}-x_{2} a_{2}=b-A x$ as small as possible. $b-A x$ is called the residual vector
The least squares method: Euclidean distance.
Solve the minimization problem

$$
\min _{x}\|b-A x\|_{2}
$$

(1) span

Make r orthogonal to the columns of A.

Normal Equations

Make r orthogonal to the columns of A.
General case:

$$
r^{T} a_{\cdot j}=0, \quad j=1,2, \ldots, n .
$$

Equivalently,

$$
r^{T}\left(\begin{array}{llll}
a_{.1} & a_{.2} & \cdots & a_{. n}
\end{array}\right)=r^{\top} A=0 .
$$

Normal equations:

$$
A^{T} A x=A^{T} b
$$

for the determining the coefficients in x.

Theorem

If the columns vectors of A are linearly independent, then the normal equations

$$
A^{T} A x=A^{T} b
$$

are non-singular and have a unique solution.

The Example

Matlab:

$$
\begin{aligned}
& \text { >> } \mathrm{C}=\mathrm{A} \text { '*A } \\
& \text { \% Normal equations } \\
& \begin{array}{lll}
C= & 15 \\
15 & 55
\end{array} \\
& \text { >> } \mathrm{x}=\mathrm{C} \backslash\left(\mathrm{~A}^{\prime} * \mathrm{~b}\right) \\
& \mathrm{x}=4.2360 \\
& 3.2260
\end{aligned}
$$

Drawbacks of Normal Equations

(1) Forming $A^{T} A$ leads to loss of information.
(2) The condition number $A^{T} A$ is the square of that of A :

$$
\kappa\left(A^{T} A\right)=(\kappa(A))^{2} .
$$

Condition numbers

$$
A=\left(\begin{array}{ll}
1 & 1 \\
1 & 2 \\
1 & 3 \\
1 & 4 \\
1 & 5
\end{array}\right)
$$

```
cond(A) = 8.3657
cond(A'*A) = 69.9857
```


Drawbacks of Normal Equations

Worse example:

$$
A=\left(\begin{array}{ll}
1 & 101 \\
1 & 102 \\
1 & 103 \\
1 & 104 \\
1 & 105
\end{array}\right)
$$

```
cond(A) = 7.5038e+03
cond(A'*A) = 5.6307e+07
```

A linear model

$$
I(x)=c_{0}+c_{1} x,
$$

with data vector $x=(101102103104105)^{T}$, should be replaced by the model

$$
I(x)=b_{0}+b_{1}(x-103)
$$

In the latter case the normal equations become diagonal and much better conditioned.

Orthogonality

$$
A=\left(\begin{array}{cc}
1 & 1.05 \\
1 & 1 \\
1 & 0.95
\end{array}\right), \quad B=\left(\begin{array}{cc}
1 & 1 / \sqrt{2} \\
1 & 1 \\
1 & -1 / \sqrt{2}
\end{array}\right)
$$

Plane rotations

$$
G=\left(\begin{array}{cc}
c & s \\
-s & c
\end{array}\right), \quad c^{2}+s^{2}=1
$$

A plane rotation can be used to zero the second element of a vector x by choosing $c=x_{1} / \sqrt{x_{1}^{2}+x_{2}^{2}}$ and $s=x_{2} / \sqrt{x_{1}^{2}+x_{2}^{2}}$:

$$
\frac{1}{\sqrt{x_{1}^{2}+x_{2}^{2}}}\left(\begin{array}{cc}
x_{1} & x_{2} \\
-x_{2} & x_{1}
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{\sqrt{x_{1}^{2}+x_{2}^{2}}}{0} .
$$

Embed a two-dimensional rotation in a larger unit matrix:

$$
G=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & c & 0 & s \\
0 & 0 & 1 & 0 \\
0 & -s & 0 & c
\end{array}\right)
$$

We can choose c and s so that we zero element 4 in a vector $x \in \mathbb{R}^{4}$ by a rotation in olane (2.4).

Plane rotations in MATLAB

function [c,s]=rot(x, y);
\% Construct a plane rotation that zeros the second
\% component in the vector [x;y]' (x and y are scalars)
sq=sqrt ($\left.x^{\wedge} 2+y^{\wedge} 2\right)$;
$\mathrm{c}=\mathrm{x} / \mathrm{sq}$; $\mathrm{s}=\mathrm{y} / \mathrm{sq}$;
function [X]=approt(c,s,i,j,X);
\% Apply a plane (Givens) rotation in plane (i,j)
\% to a matrix X
$\mathrm{X}([\mathrm{i}, \mathrm{j}],:)=[\mathrm{c} \mathrm{s} ;-\mathrm{s} \mathrm{c}] * \mathrm{X}([\mathrm{i}, \mathrm{j}],:)$;

Zero all the elements in a vector

Given $x \in \mathbb{R}^{4}$, transform it to κe_{1}. First zero the last element:

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & c_{1} & s_{1} \\
0 & 0 & -s_{1} & c_{1}
\end{array}\right)\left(\begin{array}{c}
\times \\
\times \\
\times \\
\times
\end{array}\right)=\left(\begin{array}{c}
\times \\
\times \\
* \\
0
\end{array}\right) .
$$

Then, zero the element in position 3 :

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & c_{2} & s_{2} & 0 \\
0 & -s_{2} & c_{2} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
\times \\
\times \\
\times \\
0
\end{array}\right)=\left(\begin{array}{c}
\times \\
* \\
0 \\
0
\end{array}\right) .
$$

Finally, the second element is annihilated:

$$
\left(\begin{array}{cccc}
c_{3} & s_{3} & 0 & 0 \\
-s_{3} & c_{3} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
\times \\
\times \\
0 \\
0
\end{array}\right)=\left(\begin{array}{c}
\kappa \\
0 \\
0 \\
0
\end{array}\right)
$$

Plane rotations

Reduce the vector x to a multiple of the standard basis vector e_{1} :

$$
\begin{aligned}
& x=[1 ; 2 ; 3 ; 4] ; \\
& \text { for } i=3:-1: 1 \\
& \quad[c, s]=\operatorname{rot}(x(i), x(i+1)) ; \\
& \quad x=\operatorname{approt}(c, s, i, i+1, x) ; \\
& \text { end } \\
& \begin{array}{r}
\gg x= \\
-0.47722557505166 \\
-0.0000000000000 \\
-0.00000000000000
\end{array}
\end{aligned}
$$

After the reduction the first component of x is equal to $\|x\|_{2}$.

Householder Transformations

Householder transformation:

$$
P=I-2 u u^{T}, \quad\|u\|_{2}=1
$$

P is symmetric and orthogonal
Multiplication by P :

$$
P x=x-\left(2 u^{T} x\right) u
$$

Householder transformations in MATLAB I

function $u=$ househ (x)
\% Compute the Householder vector u such that
$\%$ (I - $2 \mathrm{u} * \mathrm{u}$) $\mathrm{x}=\mathrm{k} * \mathrm{e}_{1} 1$, where
$\%|k|$ is equal to the euclidean norm of x
$\%$ and e_1 is the first unit vector
$\mathrm{n}=$ length (x); $\%$ Number of components in x
kap=norm(x) ; v=zeros(n,1);
$\mathrm{v}(1)=\mathrm{x}(1)+\operatorname{sign}(\mathrm{x}(1)) *$ kap;
$\mathrm{v}(2: \mathrm{n})=\mathrm{x}(2: \mathrm{n})$;
$\mathrm{u}=(1 / \mathrm{norm}(\mathrm{v})) * \mathrm{v}$;
function $Y=a p p h o u s e(u, X)$;
\% Multiply the matrix X by a Householder matrix
$\% \mathrm{Y}=(\mathrm{I}-2 * u * u \prime) * X$
$\mathrm{Y}=\mathrm{X}-2 * \mathrm{u} *\left(\mathrm{u}^{\prime} * \mathrm{X}\right)$;

Householder transformations in MATLAB ||

Zero the first three elements of the vector $x=(1,2,3,4)^{T}$:

$$
\begin{array}{cc}
\gg & \mathrm{x}=[1 ; 2 ; 3 ; 4] ; \\
\gg & \mathrm{u}=\text { househ }(\mathrm{x}) ; \\
\text { >> } & \mathrm{y}=\operatorname{apphouse}(\mathrm{u}, \mathrm{x}) \\
& \\
& \mathrm{y}=-5.4772 \\
& 0 \\
& 0 \\
& 0
\end{array}
$$

$u=h o u s e h(A(2: m, 2)) ; A(2: m, 2: n)=\operatorname{aphouse}(u, A(2: m, 2: n)) ;$

$\gg \mathrm{A}=$	-0.8992	-0.6708	-0.7788	-0.9400
	-0.0000	0.3299	0.7400	0.3891
	-0.0000	0.0000	-0.1422	-0.6159
	-0.0000	-0.0000	0.7576	0.1632
	-0.0000	-0.0000	0.3053	0.4680

Theorem (QR decomposition)

Any matrix $A \in \mathbb{R}^{m \times n}, m \geq n$, can be transformed to upper triangular form by an orthogonal matrix. The transformation is equivalent to a decomposition

$$
A=Q\binom{R}{0}
$$

where $Q \in \mathbb{R}^{m \times m}$ is orthogonal and $R \in \mathbb{R}^{n \times n}$ is upper triangular. If the columns of A are linearly independent, then R is nonsingular.

QR decomposition and least squares

QR decomposition:

$$
A=Q\binom{R}{0}=\left(\begin{array}{ll}
Q_{1} & Q_{2}
\end{array}\right)\binom{R}{0}=Q_{1} R \quad(\text { Thin } Q R)
$$

Least squares problem:

$$
\begin{aligned}
& \|A x-b\|^{2}=\left\|Q_{1} R x-b\right\|^{2}=\left\|Q^{T}\left(Q_{1} R x-b\right)\right\|^{2} \\
= & \left\|\binom{Q_{1}^{T}}{Q_{2}^{T}}\left(Q_{1} R x-b\right)\right\|^{2}=\left\|\binom{R x-Q_{1}^{T} b}{0-Q_{2}^{b}}\right\|^{2} \\
= & \left\|R x-Q_{1}^{T} b\right\|^{2}+\left\|Q_{2}^{T}\right\|^{2}
\end{aligned}
$$

Least squares solution: $x=R^{-1} Q_{1}^{T} b$

QR decomposition

$$
\begin{array}{rrrrr}
A= & 1 & 1 \\
1 & 2 & 4 & & \\
1 & 3 & 9 & & \\
1 & 4 & 16 & & \\
> & {[Q, R]=q r(A)} & & & \\
Q=-0.5000 & 0.6708 & 0.5000 & 0.2236 \\
& -0.5000 & 0.2236 & -0.5000 & -0.6708 \\
& -0.5000 & -0.2236 & -0.5000 & 0.6708 \\
& -0.5000 & -0.6708 & 0.5000 & -0.2236 \\
R=-2.0000 & -5.0000 & -15.0000 & \\
0 & -2.2361 & -11.1803 & \\
0 & 0 & 2.0000 & \\
0 & 0 & 0 &
\end{array}
$$

Thin QR

>> $[Q, R]=q r(A, 0)$

$Q=-0.5000$	0.6708	0.5000
	-0.5000	0.2236
	-0.5000	-0.2236
	-0.5000	-0.5000
	-0.6708	0.5000

$$
\begin{array}{rrr}
R=-2.0000 & -5.0000 & -15.0000 \\
0 & -2.2361 & -11.1803 \\
0 & 0 & 2.0000
\end{array}
$$

Least squares problem I

$A=$1 1	$b=7.9700$	
1	2	10.2000
1	3	14.2000
1	4	16.0000
1	5	21.2000

Thin QR and least squares solution

$$
\begin{aligned}
& \text { >> }[\mathrm{Q} 1, \mathrm{R}]=\mathrm{qr}(\mathrm{~A}, 0) \quad \% \text { thin } \mathrm{QR} \\
& \begin{array}{cr}
\text { Q1 }= & -0.4472 \\
& -0.6325 \\
-0.4472 & -0.3162 \\
-0.4472 & 0.0000 \\
& -0.4472 \\
& -0.4472
\end{array} 0.3162 \\
&
\end{aligned}
$$

Least squares problem II

$$
\left.\begin{array}{rl}
R= & -2.2361 \\
0 & -6.7082 \\
3.1623
\end{array}\right] \begin{aligned}
\gg & x \backslash\left(Q 1^{\prime} * b\right) \\
x= & 4.2360 \\
& 3.2260
\end{aligned}
$$

Least squares problem in R I

```
> A<-matrix(c(1,1,1,1,1,1,2,3,4,5),nrow=5)
> A
            [,1] [,2]
[1,] 1 1
[2,] 1 2
[3,] 1 3
[4,] 1 4
[5,] 1 5
> b=c(7.97,10.2,14.2,16.0,21.2)
> b
[1] 7.97 10.20 14.20 16.00 21.20
> x=qr.solve(A,b)
> x
[1] 4.236 3.226
```


Least squares problem in R II

```
> A.qr
$qr
\[
[, 1] \quad[, 2]
\]
\[
[1,]-2.2360680-6.7082039
\]
\[
\left[\begin{array}{lll}
{[2,]} & 0.4472136 & 3.1622777
\end{array}\right.
\]
\[
[3,] \quad 0.4472136-0.1954395
\]
\[
[4,] \quad 0.4472136-0.5116673
\]
\[
[5,] \quad 0.4472136-0.8278950
\]
\$rank
[1] 2
\$qraux
[1] 1.4472141 .120788
```


Least squares problem in R III

```
$pivot
[1] 1 2
attr(,"class")
[1] "qr"
>Q=qr.Q(A.qr)
>Q
    [,1] [,2]
    [1,] -0.4472136 -6.324555e-01
    [2,] -0.4472136 -3.162278e-01
    [3,] -0.4472136 1.179070e-17
    [4,] -0.4472136 3.162278e-01
```


Least squares problem in R IV

```
\([5]-,0.4472136 \quad 6.324555 e-01\)
```

$>\mathrm{R}=\mathrm{qr} . \mathrm{R}$ (A.qr)
$>\mathrm{R}$

$$
[, 1] \quad[, 2]
$$

[1,] -2.236068-6.708204
$[2] \quad 0.000000 \quad$,
> q()

III-conditioned example

Let $\epsilon=10^{-7}$, and define

$$
A=\left(\begin{array}{ll}
1 & 1 \\
\epsilon & 0 \\
0 & \epsilon
\end{array}\right)
$$

The condition number of A is of the order 10^{7}.

$$
\begin{aligned}
& \mathrm{x}=[1 ; 1] \text {; } \mathrm{b}=\mathrm{A} * \mathrm{x} \text {; } \\
& \mathrm{xq}=\mathrm{A} \backslash \mathrm{~b} \text {; } \quad \% \mathrm{QR} \text { decomposition } \\
& \mathrm{xn}=\left(\mathrm{A}^{\prime} * \mathrm{~A}\right) \backslash\left(\mathrm{A}^{\prime} * \mathrm{~b}\right) \text {; } \% \text { Normal equations } \\
& \begin{aligned}
\mathrm{xq}= & 1.00000000000000 \quad \mathrm{xn}= \\
& 1.00000000000000
\end{aligned} \quad 0.98876404494382
\end{aligned}
$$

