J. SIAM NUMER. ANAL,
Vol. 3, No. 3, 1066
Printed in U.S. A.

ON ITERATIVE COMPUTATION OF GENERALIZED INVERSES
AND ASSOCIATED PROJECTIONS*

ADI BEN-ISRAELt{ ano DAN COHENY

Introduction. The generalized inverse A" of an arbitrary complex matrix
A [9], [7] and the perpendicular projection AA™ [8] play a sufficiently
important role in matrix applications to justify the current interest and
research in their computational aspects. The subject of this paper is the
iterative method [2], [3]:

Yo -_— aA*,
Yia = Yi(2 — AYy), k=0,1,---,

which yields A¥ as the limit of the sequence {¥i}, k¥ = 0,1, --+ , when a
satisfies condition (1) (or (30) below. This method, a variant of the well-
known Schultz method [8], is of the 2nd order (Theorems 1, 2 below). Its
relation to the iterative method [4],

X, = ad®,
Xipn = Xi + a(I — Xpd)A", k=01,
is shown, in Theorem 3 below, to be:
Yi = Xoqy k=0,1,---.

An upper bound on || A™ — Y ||, and the optimal «, are given in Theorems
4 and 5.

An iterative method for computing AA™ based on {Yi}, &k = 0,1, -+,
is: Zy = AY,:, ie.,

Zy = adA*,
Ty = 27 — Zf, k=0,1,---.
The tracesof Z; ,k = 1, 2, .- -, are shown in Theorem 6 to be a monotone

increasing sequence converging to rank A. A division free bound for rank 4
(Corollary 2) and a criterion for nonsingularity (Corollary 3) follow now
easily.
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ITERATIVE COMPUTATION 411

Direct methods for computing AA™ were given by Householder [8],
Rosen [11], Pyle [10] and others. The correct determination of rank 4 is a
critical factor in these methods, even more so in the direct methods for
computing A*, e.g., Golub and Kahan [6]. The iterative methods {Y3},
{Z}, % = 0,1, -, for computing A* and AA*, and the bounds for rank
A, given in this paper, may consequently be of some interest.

0. Notations and preliminaries. Let A denote anm X n nonzero complex
matrix, A* its conjugate transpose, A™ its generalized inverse [9], R(4),
N(4) its range and null space, respectively, r = rank A.

Let M(A*A) = M(A%A) = -+ = M(A%A4) be the eigenvalues of A*A.
From rank A = r it follows that A (4*4) > 0 and M (4*A) = 0 for ¢
=r+1,--+,n Wewill use the matrix norm || 4 | = A*(4*4), which
is subordinate to the Euclidean vector norm (e.g., {8, p. 44] where this
matrix norm is called lubs(4)).

For a subspace L of the n-dimensional complex Euclidean space E"
let P, denote the perpendicular projection on L.

The following results are needed in the sequel.

THEOREM 0.1. Let the real o salisfy

2
(1) 0 < [+ < m-
Then the sequence
k
(2) Xi=a 2 A% — adA®)? k=01,
p=0

converges to A™ as k — «. (See [4].)
THEOREM 0.2. Let o satisfy (1). Then the sequence

(3) Yo = aA*:
(4) Yk-H. = Yk(zI - AY&), k = 0, 1, trty
converges to A* as k — . (See [2], [3].)

1. On the iterative computation of A", In terms of the residuals Pg(s)
— AX; and Pguy — AY: we have, as in the nonsingular case ([8, p.
94]), the following:

TurorEM 1. (a) The process (2) s of the 1st order. (b) The process (4)
s of the 2nd order.

Proof.

(a) The process (2) is rewritten as

Xip = Xo (I — adA®) + aA*

5
6) =X+ a (I - Xd)A%, k=0,1, -,



412 ADI BEN-ISRAEL AND DAN COHEN

with

(6) X, = ad®.

From (5) it follows that

(7) AAT — AXy = AAT — AX, — o(I — AX)AA*,
and since A = A4%4,

(8) AAY — AXpy = (AAT — AXy) (I — cAA™).

Since || I — adA™ || < 1, by (1), and AA* = Pru, [4], it follows that:
| Pacwy — AXia || S || I — adA™ || || Prewy — AXx ||
< || Preay — AXi ||

(9)

(b) Similarly we verify that
AA™T — AYipy = AAY — AV, — AY, (I — AYy)
= AAY — AY, — AY: (44T — AY)),

where Y = Y, AA™ holds because Y, = (4™ for some matrix C:, [2],
k=0,1,---,and 4* = A*4A4™", [9]. From (10) it follows that

(10)

(11) AAT — AV = (AAT =AY,  k=0,1,---,
and finally
(12) | Preay — AYena || < || Prewy — AY "2: k=0,1,---.

In terms of convergence to A*, the corresponding results are given by the
following theorem.
THEOREM 2. (a) The process (2) satisfies:

(13) IA¥ = Xen |l < | 4T = Xi |l k=01,
(b) The process (4) satisfies:

(14) AT = Yeu | S AN AT = Vi)',  k=0,1,--
Proof.
(a) Using (5) and A*AA* = A¥ [9], it follows that

(15) AT = X = (AT = Xu) (I — adA”), k=0,1, -,

which, because of (1), proves (13).
(b) Similarly, (14) follows from

(16) At — Vi = (A1 — YDA(AT = Y), £=0,1,2,---,
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which is obtained by using the easily verified relations
Yy = AYAY, = Y, 441, k=01,-.--.

To establish the relation between the processes (2) and (4) we need the
following lemma.
LemMA. Let S be any square complex matriz and k = 0 an tnieger. Then

(17) 2 S(I — 8) = 88*I — (I -8)*™.

Proof. By induction. For k = 0, 1, (17) holds because S = SS*S.
Assuming that (17) holds for k, it also holds for & + 1 since
k+1

S8 — 8) = 88MI — (I — )" + 8(I — 8)¥
§=0
= 88*I — (I — 8)**.

The sought relation is that (4) is a “subprocess” of (2).
THEOREM 3.
(18) Y = Xoey, Ek=01,---.
Proof. Using (4) and (3), and the remark following (10), it follows that
(19) Vi = ATl — (I — AY)") = AT — (I — AYi,)”)
= AT — (I — «44™)"].

From (2) it follows that
2k—1 2k—1

(20) Xooy = a 2, A¥(I — adA*)? = 47 Z;o (adA™) (I — adA™)".
=0 p=
Using the lemma with § = adA* and the easily verifiable fact that
aAA*(adA®)t = AA™, we conclude that
(21) Xp—y = AT — (I — ad4™)¥),
which, compared with (19), proves (18).
Remark. Using Euler’s identity [4],
E—1 2k—1
(22) 1+ [+ = 2, lz| <1,
=1 p=0
and Theorem 3, we obtain:
k-1
(23)  Yi=ad*I + (I — adA®)] I[1 I+ (I —add™™),
=

which corresponds to 4;" in [4, (54)].
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THEOREM 4.

M(4%4)
MAYA)
Proof. Using Theorems 0.1 and 3 it follows that

(24) | AY = Y| = (1 — an(4*4))", k=01, .

AT — Yy = a D2 AMT — adA®)?
(25) p=t

-]

= a 2, A*(AA4T — ad4™?, Ek=0,1,---

p=2k
As in [3] we verify that
| AAY — adA™ || = |1 — aA(474) |;

and therefore
A" = Vil Sa 4% 2 || AA* — add™|?
,—gi

all 4| | 44* — add® |”
= 1= |AAT — adA¥|

M(A*A) (1 — an(4*4A)?
MA*A) ’

Remarks. (a) This theorem corrects an error in [4, Theorem 17]. (b)
As in [5] we call a optimal if it minimizes || AA™ — «dA4* .

The function F(a) = | AAT — @AA™| is convex and F(0)
= F(2/M(4%4)) = 1. Asin [1] it can be shown that F(«) has a unique
minimum in the interval

(26)

=

k=01,

2
0<a<m.

TueoreM 5. The optimal a is

2

(27) % = STV + NAA)

for which

M(A*4) (a(4*4) — M (A* )\
MA*A) \M(A*A) + N\ (4%4))

Proof. As in [1] the minimizing ay must satisfy

(28) AT -V = k=01,

1 Recall that A.(4*4) is the smallest nonzero (positive) eigenvalue of A*4, and
note that | 1 — e\ (4*4) | < 1 since M (A*4) S M(4*4) and (1).
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(29) 1 — oA (A%4) = — (1 — aM(4%4)),

L.e., the interval [\,(4*4), M (4*4)] is mapped onto an interval symmetric
around the origin, Now, (29) gives (27), which yields (28) when sub-
stituted in (24).

Using well-known bounds on AM(4*4) = M(AAY), it is possible to
replace condition (1) by another condition which is more easily checked:
Writing AA™ = (bs;), 4,7 = 1, .-+, m, the Gershgorin theorem [8] im-
plies that

M(4%4) £ max 2 | by .

=12 eym j=1
Therefore (1) can be replaced by:
2

,Inax i“’ﬁl ‘

Jreem jeml

(30) 0<a<

Other bounds [8] on A (A*A) yield similar conditions.

2. On the iterative computation of AA*. An iterative method for com-
puting AA™, based on the process (3) and (4), is given in the following
corollary.

CoRrOLLARY 1. Let a satisfy (1). Then the sequence of matrices

(31) Zo - aAA*,

(32) Zyya = 27 — 7y, k=0,1,:.--,
converges to AA™ as k — ©, and

(33) | Paay — Ziwa || S || Prewy — Ze || k=01,---.

Proof. The corollary follows from Theorems 0.2 and 1 (b) by noting that
Zy =AY, ,k=0,1, ---.

The following fact about the process (31), (32) is useful.

TueoreEM 6. The frace of Z: is a monotone increasing function of k, k

= 1,2, ..., converging to rank A.
Proof. From the easily verifiable fact
(34) Zi=1— (I —add™)”, k=01,

it follows that:
trace Zr = m — trace {(I — aAA*)"*}

(35) =m — Z:: (1 — ar(44™)®* =m — Zl (1 — ari(A4™)*
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r

—(m=r) =r— 21— a4, k=01,

where the third equality in (35) follows from

A (AA™) =0, i=r+1, -, m.
From (1) it follows that:
|1 — aX(44%) | < 1, i=1, 0,7
and from (35):
(36) trace Zp41 = trace Zy, k=12 ..,
and
(37) lim trace Z;, = r = rank A.

k—+w

Remark. For « large enough, 1 — a M(AA*) < 0 for some 7. Thus it is
obvious from (35) that possibly

trace Z, > trace Z, .

For a real z let [z] denote the integral part of z; e.g., [3.5] = 3, [—2.5]
= —3.Let () = — [—z]; e.g., (3.5) = 4.

Division free bounds on the rank and nullity of A are derived from
Theorem 6.

CoROLLARY 2. For every integer k = 1 and real « satisfying (1),

(38) rank 4 = (trace Z),
(39) dim N(4*) < [trace {(I — ad4™)"}].

Proof. Equation (38) follows from (35). Equation (39) follows from the
facts that the sequence

(40) (I — adA =1 = 74, k=01,
converges to Py by Corollary 1, and the sequence of traces,
{trace (I — Z)}, k=12---,

is monotone decreasing by Theorem 6.

A consequence of the above is the following corollary.

CoroLLaRY 3. The square matriz A is nonsingular if and only if for some
integer k = 1 and for some real B > 0
(41) trace {(I — B A4A*)"} < 1.

Proof. The proof follows from (39) by noting that a scalar 8 > 0
satisfies

2 Thus (z) = [x] + 1 unless z is an integer, in which case z = [z] = (z).
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|1 - pn(44™) | <1,
if and only if 8 satisfies (1).

3. Examples. The computation of A™ by the iterative method of (3)
and (4), and of AA" by (31) and (32), is demonstrated below. In each
example, five values of « satisfying (30) were used:

t=1 -,

= P
? m, ! p=1-..-.,5
‘max E |b.'j |
!-1»"','“ J-l
The sequence of traces
{trace (I — Z.)} = {trace (I — ad4™®)™}, k=01,---,

which is monotone decreasing for k = 1,2, ---, and converges to the
nullity of A¥ indicates the rate of convergence. Computations were carried
out on a PHILCO-2000.

Example 1. The matrix is:

B DD =

4=

(=R L
(= = =]

0

The sequence trace (I — Z;) for ap, p = 1, -+, 5, converges to the
nullity of A* which is 1.

Pirecreannn 1 2 3 4 5
Qs 0.010101 0.020202 0.030303 0.040404 0.050505
k trace (I — Zy)
0 3.646464 3.292929 2.939393 2.585858 2.232323
1 3.386287 2.959289 2.719008 2.665442 2.798592
2 3.044291 2.664607 2.498218 2.380443 2.344645
3 2.703913 2.400470 2.228713 2.111508 2.036046
4 2.412875 2.120182 1.993923 1.924015 1.882346
5 2.137676 1.930274 1.854851 1.805310 1.761924
6 1.933500 1.805974 1.721921 1.647348 1.580391
7 1.806340 1.647827 1.521131 1.419059 1.336854
8 1.648066 1.419678 1.271578 1.175610 1.113470
9 1.419988 1.176130 1.073754 1.030839 1.012875
10 1.176389 1.031022 1.005440 1.000951 1.000166
1 1.031113 1.000962 1.000029 1.000001 1.000000
12 1.000968 1.000001 1.000000 1.000000
13 1.000000 1.000000
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The sequence (4) converges to the generalized inverse
-0.6 08 0 0 )

A+._.(

A4*

04 =02 0 O
1.2 —16 1 0

and the sequence (32) converges to

Ezxample 2. The matrix is

A

SO =O
CS~=OO
cooQ

1
0
0
0

=(aii)='l'lﬁ.-- i,j=1,°°',10°

For a; = 0.666667 the sequence of traces is:

1k

trace (I — Zi)

M= O

9.333333
9.111111
9.012345
9.000152
9.000000

And the sequence (4) converges to A™ = 4 = AA4™.
Ezxample 3. The matrix is the 10 X 10 Hilbert matrix

1 .
A=(“"1)=(Wo_l): 5,j=1---,10.

As expected, the convergence is very slow. About 40 iterations are needed
for (4) to converge to the inverse of A. For a3 = 0.178152 the sequence of
traces {trace (I — Zi)},k = 0,1, - - - , converges to the nullity of A which

is 0.

k trace (I — Zg)

0 9.432031463

1 9.163480102
10 7.790923364
20 6.298691575
30 4.615991308
35 0.358689858
36 0.036953381
37 0.000712251
38 0.000000448
39

0.200492748 X 1072
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The elements of (AYym — I) are all smaller, in absolute value, than
1077,
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