Division of Scientific Computing
Department of Information Technology
Uppsala University

NGSSC: HPC Il
December 12, 2012

Hands-on: experience with the parallel debugger TotalView and the parallel
performance analyser from Sun Studio 12.1

The task of this computer lab is to get acquainted with thalfardebugger TotalView and the
parallel performance analyser from Sun Studio 12.1.

To play with, you are provided with some parallel codes in Chdl &ortran. These are to be
downloaded frontt t p: // user.it. uu. se/ Ymaya/ Cour ses/ NGSSC/ HPCl | / Fi | es_
2012/ per f or mance.

You are welcome to use any of your available parallel codes, if you wish.

Preparatory work:
e Login onkal kyl . uppmax. uu. se
e Load the compilers and mpi modulesodul e | oad pgi opennpi
e Load TotalView:nodul e | oad total vi ew

e Load Sun Studionodul e | oad java/sun_j dkl.6.0.04 sunstudio
(modul e check avail)

e copy the tar files the above url address and extract the direst

Exercise 1 (TotalView)

=

Compile the code to be examined with the flag ’-g’. There aakefiles for both cases.
Start TotalView

Try to put breakpoints, dive in subroutines, variablés, e

A WD

Stop the execution in different PEs and then continue tolwéne progress of the execu-
tion.



As an example, you may compile usidpkefi |l e .cg_dal i g and runnpi _mai n_dal i g,
where there is an error to be localized. To observe the etodhe following two runs and check
the output (which should be the same in terms of residual a@mal iterations performed, but it
IS not):

npirun -np 1 npi maindalig

npirun -np 8 npi main.dalig

Some explanation about the algorithm will be provided dythre lab.

Exercise 2 (Sun Studio 12.1, Parallel performance analyser, MPI programs)

1. Collect some performance data for your test applicatiorsying
collect -M OPENMPI npirun -np XX -- executable

2. Start sunstudio
3. Open the current experiment

4. Repeat the major steps from the demo how to filter and redwecarmount of collected
information, detect large amount of time spent during trexaton and localize the source
code where this happens.

Unless you want to analyse the performance of some of yourpragrams, you may try to do
the following:

(i) Try to detect if there is a performance bottleneck in thdecg.

Compile with the corresponding Makefile. The program reaslsriput from the file
fort. 1, and by changing that you can adjust the size of the probldme solved.

(i) Try to understand what is the most time consuming parthie code - communication,
certain serial function, both.

Compile usingvakef i | e_.cg_f ast and runnpi _mai n_f ast . This version of the code
uses as inputfileor t . 1, where the size of the local problems are determined. Imthis
the code achieves almost perfect load balance between theHeivever, with increasing
the problem size

Exercise 3 (Sun Studio 12.1, Parallel performance analyser, OpenM P programs)
Play with the code est _opennp_1. f. The program is very simple - it finds the sum of the
numbers from 1 to N, for given N.

1. The size of the problem is curren®900. Make it larger by changing the corresponding
liens as follows:



al I ocat e(i var (50000000))
do i =1, 50000000

2. Runt est _opennp_1. f for various number of threads (1,2,4,8). You see that thelexe
tion time does not scale with the number of threads.

3. Find the bottleneck, use SunStudio performance analyser
4. Suggest a solution and time that to see the difference.

5. Intest .opennp_1. f change the line, saydo i =1, 50000001. Is there an indica-
tion for a memory leak during execution?

6. Try TotalView to see if it can detect the memory leak.
Exercise 4 (Computing the value of 7 using a Monte Carlo method)
Buffon-Laplace-needle problem

Problem Statement: More than 200 years before Metropolisedothe name 'Monte Carlo’
method, George Louis Leclerc, Comte de Buffon, proposed tlenimg problem.

"If a needle of length 7 is dropped at random on the middle of a horizontal surface ruled with
parallel lines a distance d > ¢ apart, what is the probability that the needle will cross one of
the lines?” This problem was first solved by Buffon (1777, pp. 100-104}, tia derivation
contained an error. A correct solution was given by Lapld@&i?, pp. 359-362; Laplace 1820,
pp. 365-369).

http:// mat hwor | d. wol f ram cont Buf f on- Lapl aceNeed| ePr obl em ht m

We reformulate somewhat the original problem in the follogvivay. Imagine that a needle of
length/ is dropped onto a floor with a grid of equally spaced paraiiedd distances andb
apart, wherd is less tham andb.

/

g

T
7

-

-+ a

The probability that the needle will land on at least one iggiven by

20(a + b) —

7 ab

P, a,b) =
(Uspensky 1937, p. 256; Solomon 1978, p. 4).

3



The idea now is to keep dropping this needle over and over ertable, and to record the
statistics. Namely, we want to keep track of both the totahber of times that the needle is
randomly dropped on the table (call this N), and the numbéinaoés that it crosses a line (call

this C).
)
If you keep dropping the needle, eventually you will find thiz numberN(%(aCJ;g) £)

approaches the value of
(Note that for largeV the quantityC'/N approaches the probabilify(¢, a, b).)

In order to get a reasonably accurate approximation wke need to perform a number of trials
of order10° — 108. Since the separate trials are completely independentawg@erform those
in parallel and sum up the result. This problem is an examipdetavial parallelism.

1. Study the implementation of the above algoritlpn (ouf f on_| apl ace. f).

2. Compile and run the program for different numbers of preces(1, 2, 4,...). Amend
the code in order to be able to time the execution. Do you ebstrat it scales? For
instance, change the code so that you can have the sameuwthénof trials, distributed
evenly over a varying number of processors. What happenstigtbxecution time when
you increase the number of processors? Does the time on oredB&e twice when two
processors are used, compared to one PE? Or four times wineREs are used?

3. How does the accuracy of the computed value bkehaves on one and many PEs? Is it
better to have more processors used, compared with one? HoWvmore? What do you
think is the reason for the error behaviour you observe - #alfelization of the code, the
algorithm or something else?



