
Division of Scientific Computing
Department of Information Technology
Uppsala University

NGSSC: HPC II
December 12, 2012

Hands-on: experience with the parallel debugger TotalView and the parallel
performance analyser from Sun Studio 12.1

The task of this computer lab is to get acquainted with the parallel debugger TotalView and the
parallel performance analyser from Sun Studio 12.1.

To play with, you are provided with some parallel codes in C++ and Fortran. These are to be
downloaded fromhttp://user.it.uu.se/�maya/Courses/NGSSC/HPCII/Files
2012/performance.
You are welcome to use any of your available parallel codes, if you wish.

Preparatory work:

� Login onkalkyl.uppmax.uu.se

� Load the compilers and mpi modules:module load pgi openmpi

� Load TotalView:module load totalview

� Load Sun Studio:module load java/sun jdk1.6.0 04 sunstudio
(module check avail)

� copy the tar files the above url address and extract the directories.

Exercise 1 (TotalView)

1. Compile the code to be examined with the flag ’-g’. There are makefiles for both cases.

2. Start TotalView

3. Try to put breakpoints, dive in subroutines, variables, etc

4. Stop the execution in different PEs and then continue to watch the progress of the execu-
tion.

1



As an example, you may compile usingMakefile cg dalig and runmpi main dalig,
where there is an error to be localized. To observe the error,do the following two runs and check
the output (which should be the same in terms of residual norms and iterations performed, but it
is not):
mpirun -np 1 mpi main dalig
mpirun -np 8 mpi main dalig

Some explanation about the algorithm will be provided during the lab.

Exercise 2 (Sun Studio 12.1, Parallel performance analyser, MPI programs)

1. Collect some performance data for your test application byissuing
collect -M OPENMPI mpirun -np xx -- executable

2. Start sunstudio

3. Open the current experiment

4. Repeat the major steps from the demo how to filter and reduce the amount of collected
information, detect large amount of time spent during the execution and localize the source
code where this happens.

Unless you want to analyse the performance of some of your ownprograms, you may try to do
the following:

(i) Try to detect if there is a performance bottleneck in the codecg.

Compile with the corresponding Makefile. The program reads its input from the file
fort.1, and by changing that you can adjust the size of the problem tobe solved.

(ii) Try to understand what is the most time consuming part inthe code - communication,
certain serial function, both.

Compile usingMakefile cg fast and runmpi main fast. This version of the code
uses as input filefort.1, where the size of the local problems are determined. In thisway,
the code achieves almost perfect load balance between the PEs. However, with increasing
the problem size

Exercise 3 (Sun Studio 12.1, Parallel performance analyser, OpenMP programs)
Play with the codetest openmp 1.f. The program is very simple - it finds the sum of the
numbers from 1 to N, for given N.

1. The size of the problem is currently5000. Make it larger by changing the corresponding
liens as follows:

2



allocate(ivar(50000000))
do i=1,50000000

2. Runtest openmp 1.f for various number of threads (1,2,4,8). You see that the execu-
tion time does not scale with the number of threads.

3. Find the bottleneck, use SunStudio performance analyser.

4. Suggest a solution and time that to see the difference.

5. In test openmp 1.f change the line, say todo i=1,50000001. Is there an indica-
tion for a memory leak during execution?

6. Try TotalView to see if it can detect the memory leak.

Exercise 4 (Computing the value of � using a Monte Carlo method)

Buffon-Laplace-needle problem

Problem Statement: More than 200 years before Metropolis coined the name ’Monte Carlo’
method, George Louis Leclerc, Comte de Buffon, proposed the following problem.
’If a needle of length ` is dropped at random on the middle of a horizontal surface ruled with
parallel lines a distance d > ` apart, what is the probability that the needle will cross one of
the lines?’ This problem was first solved by Buffon (1777, pp. 100-104), but his derivation
contained an error. A correct solution was given by Laplace (1812, pp. 359-362; Laplace 1820,
pp. 365-369).
http://mathworld.wolfram.com/Buffon-LaplaceNeedleProblem.html

We reformulate somewhat the original problem in the following way. Imagine that a needle of
length` is dropped onto a floor with a grid of equally spaced parallel lines distancesa andb
apart, wherè is less thana andb.

The probability that the needle will land on at least one lineis given by

P (`; a; b) =
2`(a + b)� `

2

� ab

(Uspensky 1937, p. 256; Solomon 1978, p. 4).

3



The idea now is to keep dropping this needle over and over on the table, and to record the
statistics. Namely, we want to keep track of both the total number of times that the needle is
randomly dropped on the table (call this N), and the number oftimes that it crosses a line (call
this C).

If you keep dropping the needle, eventually you will find thatthe number
N(2`(a + b)� `

2)

Cab

approaches the value of�.
(Note that for largeN the quantityC=N approaches the probabilityP (`; a; b).)

In order to get a reasonably accurate approximation of� we need to perform a number of trials
of order106

� 108. Since the separate trials are completely independent, we can perform those
in parallel and sum up the result. This problem is an example of a trivial parallelism.

1. Study the implementation of the above algorithm (pi buffon laplace.f).

2. Compile and run the program for different numbers of processors (1, 2, 4,...). Amend
the code in order to be able to time the execution. Do you observe that it scales? For
instance, change the code so that you can have the same total number of trials, distributed
evenly over a varying number of processors. What happens withthe execution time when
you increase the number of processors? Does the time on one PEreduce twice when two
processors are used, compared to one PE? Or four times when four PEs are used?

3. How does the accuracy of the computed value of� behaves on one and many PEs? Is it
better to have more processors used, compared with one? How much more? What do you
think is the reason for the error behaviour you observe - the parallelization of the code, the
algorithm or something else?

4


