
Division of Scientific Computing

Department of Information Technology

Uppsala University

NGSSC: HPC II
December 15, 2011

Hands-on: solving numerical PDEs: experience with deal.II and Trillinos

The task of this computer lab is to try some basic functionalities of the packages deal.II
and Trillinos.

To play with, you are provided with some ready codes in C++ (serial and parallel).
These are to be downloaded from http://user.it.uu.se/~maya/Courses/NGSSC/HPCII/

Files_2011/dealII.

1 Introduction

In the lab, we consider the well-known Poisson’s problem in two dimensions:
Find u(x, y) such that

−∆u = f, inΩ ⊂ R2

u = 0, on ∂Ω

where Ω = [−1, 1]2, and f = 1.

We discretize the problem using quadrilateral mesh (square in this case) and bilinear basis
functions, see also the slides.

2 The blocks of a finite element program

The basic structure of a general finite element program to compute the solution of the
problem numerically is as follows:

• Create a mesh

• Set up the linear system, i.e., assemble the matrix and the right hand side vector

• Solve the linear system

• Output the solution

1

An outline of how the primary groups of classes in deal.II interact is given by the following
graph:

Triangulation FiniteElement Quadrature Mapping

DoFHandler FEValues

Linear
System

Linear Solver

Output

To ease the implementation of such a problem, deal.II provides a number of building blocks
(modules), namely,

• Triangulation: Triangulation objects are used to define and create mesh. The trian-
gulation stores geometric and topological properties of a mesh.

• Finite Element: Finite element classes describe the properties of a finite element
space as defined on the unit cell.

• Quadrature: Quadrature objects are defined on the unit cell and only describe the
location of quadrature points on the unit cell, and the weights of quadrature points
thereon.

• DoFHandler: DoFHandler objects are the confluence of triangulations and finite
elements. These enumerate all the degrees of freedom on the mesh and manage
which degrees of freedom live where.

• Mapping: Mappings between reference and real cell.

• FEValues: The FEValues classes offer exactly this information: Given finite element,
quadrature, and mapping objects.

2

• Linear Systems: In this module, classes are used to store and manage the entries of
associated matrices, vectors, and the solution of linear systems.

• Linear Solvers: This module groups iterative and direct solvers, eigenvalue solvers,
and some control classes.

• Output: deal.II generates output files in a variety of graphics formats understood by
widely available visualization tools.

More details about these classes can be found at
http://www.dealii.org/developer/doxygen/tutorial/index.html

3 Tasks

3.1 Get started

Log onto the parallel computer kalkyl: ssh -AX kalkyl.uppmax.uu.se
The provided test programs are ’laplace.cc’ (the sequential code) and ’laplace-p.cc’ (the
parallel code).

3.2 Check the .bashrc file

The .bashrc file has to contain the following lines:

export PATH=$HOME/bin:$PATH:/bubo/home/h1/petia/sw/bin

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/bubo/home/h1/petia/sw/petsc-3.1-p6/linux-gnu-c-opt/lib

export PETSC_DIR=/bubo/home/h1/petia/sw/petsc-3.1-p6/

export PETSC_ARCH=linux-gnu-c-opt

module unload pgi

module load gcc/4.5 openmpi

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/bubo/sw/comp/intel/Compiler/11.1/073/mkl/lib/em64t/:

/bubo/home/h1/petia/sw/petsc-3.1-p6/linux-gnu-c-opt/lib/:

/bubo/home/h1/petia/sw/slepc-3.1-p4/linux-gnu-c-opt/lib/

3.3 Compile and run programs

Study the Makefile to see how to compile programs.

3.3.1 Serial runs

• Compile the program ’laplace.cc’,

make

Run the program with n times of refinements of mesh,

./laplace n

3

Study the program source file and re-run the program and compare the output.

• Test the behaviour of the three solvers for a different size of the problem. Write down
the timing results and compare those with the timings below.

3.3.2 Parallel runs

• Compile the program ’laplace-p.cc’ (similarly as for ’laplace.cc’)

make

Notice that we use mpicc and mpicxx. The runs are then handled with the com-
mand

mpirun -n x laplace-p n

requesting x processes to run program laplace-p with n times of refinements of mesh.

• For the parallel runs we want to see the strong scalability and the weak scalability
of the problem. How would you do that?

3.4 For FEM connoisseurs

Consider the convection-diffusion problem

−ε∆u + (b · ∇)u = f, inΩ ⊂ R2

u = 0, on ∂Ω

where (b · ∇)u = b1 ux + b2 uy, b = [1, 1] and ε = 1, 0.1, 0.01.
The necessary changes in the code are that the discrete Laplacian matrix has to be mul-
tiplied by ε and one new matrix has to be assembled, corresponding to the convection
term.
As a hint, below you see the Matlab code to assembly the diffusion and the convection
element matrices. (Note, that it is simpler to do the same in deal.II , check the assembly
in the provided codes.)

for k=1:nip % nip = number of integration points

FUN = shape_fun_trian(Gauss_point,k); % FUN(1,3)

DER = shape_der_trian; % DER(2x3) %linear b.f.

Jac = DER *Coord;

Det = determinant2_m(Jac);

IJac = inv(Jac);

Deriv = IJac*DER; % (2x3)=(2x2)*(2x3)

L = Deriv’*(epsilon*Deriv); % anisotropic Laplacian

C = b(1)*FUN’*Deriv(1,:) + b(2)*FUN’*Deriv(2,:); % conv-diff

M = FUN’*FUN;

A_elem = A_elem + Det*Gauss_weight(k)*(L+C);

end

4

4 Results

The output of the program looks as follows:

In the sequential code, the direct solver is sparse direct solver UMFPACK, using the
Unsymmetric-pattern MultiFrontal method and direct sparse LU factorization.

Direct CG AMG
DOF Mesh Size h time (s) time (s) iteration time (s) iteration
4225 0.03125 0.0438 0.00771 96 0.0346 13

66049 0.0078125 0.788 0.336 380 0.427 13
1050625 0.00195312 26.9 32.7 1446 7.07 14

Table 1: Sequential code

In the parallel code, the direct solver is the KLU direct solver, provided by Trilinos.

Direct CG AMG
DOF Cores n time (s) time (s) iteration time (s) iteration

66049 1 1.57 0.734 380 0.385 13
263169 1 15.5 6.62 751 1.61 13

1050625 1 134 57.9 1446 6.89 14

Table 2: Results obtained from the parallel code on one core (mpirun -n 1)

5

Direct CG AMG
DOF Cores n time (s) time (s) iteration time (s) iteration

66049 1 1.57 0.734 380 0.385 13
263169 4 15.2 2.76 751 0.484 13

1050625 8 137 22.6 1446 1.62 13

Table 3: Results obtained from the parallel code

5 Visualization

The program ’laplace.cc’ generates the output file solution.gpl, which is in GNUPLOT
format. It can be viewed by typing the following commands:
invoke GNUPLOT:

gnuplot

type commands at GNUPLOT prompt:

gnuplot> set style data lines
gnuplot> splot ”solution.gpl”

The result looks as follows:

The program ’laplace-p.cc’ also generates the output file in GNUPLOT format. All
processors will write their own files. We could visualize them individually in GNU-
PLOT. And there is also a whole set of solution. If we test with the following com-
mand:

mpirun -n 2 laplace-p 6

We will get two individual files written by two processors, namely ’solution-00.00.gpl’ and
’solution-00.01.gpl’, and a whole solution file, namely ’solution-00.gpl’.
The result looks as follows:

6

(a) processer 1 (b) processer 2

(c) whole solution

7

