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We need to solve something in parallel, and as fast as possible!
Several questions arise:� There is more than one algorithm (method) which does the job. Which one to choose?� Can we in advance (a priori) predict the performance?� How much does the a priori estimate depend on the computer platform? On the
implementation? On the compiler? On the MPI/OpenMP/Pthreads
implementation/Cache discipline/...?� Can we do a posteriori analysis of the observed performance? How?� Compare what others have done - always a good idea, but how to do this?� We have to write a paper. How to present the parallel results? Why take up this issue?

Did we do a good job?//



Parallel performance

Are the classical approaches relevant on
the new computer architectures?



Computational and communication

complexity

the classical approach



Basic terminology

I computational complexity W (A; p), W (A; 1) (number of arithmetic operations to
perform)I parallel machine (homogeneous), number of PE (threads) p,
size of the problem N (degrees of freedom), some algorithm AI clock cycleI execution time serial: T (A; 1) = t
W (A) parallel:T (A; p) = Ts(A) +

Tp(A)p + T
(A; p)I FLOPS rate (peak performance: theoretical vs sustained)



Clock cycle:
general characteristic of the speed of the processing unit.
The execution of instructions is done in quantums (unit time length) called a clock cycle:�(s) =

1fr =
1

frequency (Hz)

Theoretical peak performance (of one CPU):f =
#instru
tions per 
y
le�

mega-, giga-, tera-, peta, exa-flops performance



More terminology: Granularity

The term granularity is usually used to describe the complexity and type of parallelism,
inherent to a parallel system.
granularity of a parallel computer and granularity of computationsI fine grain parallelism; fine-grained machine;I medium grain parallelism; medium-grained machine;I coarse grain parallelism; coarse-grained computer system.
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How to measure the parallel

performance?

How to understand what we see on the

performance plots?



Performance barriers (parallel overhead)

I Startup (latency) timeI Communication overheadI Synchronization costsI Imbalance of system resources (I/O
channels and CPUs)

of milliseconds, i.e., millions of flops 

each of these can be in the range

on modern computer systems

I Redundant computationI load (dis-)balance

� Tradeoff: to run fast in parallel there must be a large
enough amount of work per processing unit but not
so large that there is not enough parallel work.



Parallel performance metrics

I T (A; p) is the primary metric !!!I speedup S(A; p) =

T (A;1)T (A;p)

� p; relative, absoluteI efficiency E(A; p) =

S(A;p)p � 1I redundancy W (A; p)=W (A; 1)I � � �I scalability



Question:
Now one PE has several cores. Does the
’serial version’ utilize those?



I T (A; p)

Not much to say - we measure and observe the time.I speedup. relative: S(A; p) =

T (A;1)T (A;p)

(the same algorithm is run on one and on p PEs). absolute: eS(A; p) =

T (A�;1)T (A;p)

(the performance of the parallel algorithm on p PEs is compared with the best
known serial algorithm on one PE - A�) � � � if we dare!
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Measuring speedups - pros and cons: contra- relative speedup is that it "hides" the
possibility for T (A; 1) to be very large. The relative speedup "favors slow processors and
poorly-coded programs" because of the following observation.

Let the execution times on a uni- and p-processor machine, and the corresponding
speedup beT0(A; 1) and T0(A; p) and S0 =

T0(A; 1)T0(A; p)

> 1.

Next, consider the same algorithm and optimize its program implementation. Then
usuallyT (A; p) < T0(A; p) but also S < S0.
Thus, the straightforward conclusion is that
WORSE PROGRAMS HAVE BETTER SPEEDUP.



A closer look:T (A; p) = �T0(A; p) for some � < 1: However, T (A; 1) is also improved, sayT (A; 1) = �T0(A; 1) for some � < 1:

What might very well happen is that � < �. Then, of course,
S0S =

�� > 1:
When the comparison is done via the absolute speedup formula, namely

eS0

eS =

T (A�; 1)T0(A; p)
T (A; p)T (A�; 1)

= � < 1:

In this case T (A�; 1) need not even be known explicitly. Thus, the absolute speedup does

provide a reliable measure of the parallel performance.



Both speedup and efficiency, as well as MFLOPSrate, are tools for analysis but

not a goal of parallel computing.

None of these alone is a sufficient criterion to judge whether the performance of a
parallel system is satisfactory or not. Furthermore, there is a tradeoff between the
parallel execution time and the efficient utilization of many processors, or between
efficiency and speedup.
One way to observe this is to fix N and vary p. Then for some p1 and p2 we have the
relation E(A; p1)E(A; p2)

=
p2T (A; p2)p1T (A; p1)

:
If we want E(A; p1) < E(A; p2) and T (A; p1) > T (A; p2) to hold simultaneously, thenp2p1

< T (A;p1)T (A;p2)
, i.e., the possibility of utilizing more processors is limited by the gain in

execution time.



"As a realistic goal, when developing parallel algorithms for massively parallel computer
architectures one aims at efficiency which tends to one with both increasing problem size
and number of processors."

Massively parallel?



Scalability
* scalability of a parallel machine: The machine is scalable if it can be incrementally

expanded and the interconnecting network can incorporate more and more processors
without degrading the communication speed.

* scalability of an algorithm: If, generally speaking, it can use all the processors of a

scalable multicomputer effectively, minimizing idleness due to load imbalance and
communication overhead.

* scalability of a machine-algorithm pair



How to define scalability?

Definition 1: A parallel system is scalable if the performance is linearly proportional to the
number of processors used.
BUTS: impossible to achieve in practice

Definition 2: A parallel system is scalable if the efficiency E(A; p) can become bigger than
some given efficiency E0 2 (0; 1) by increasing the size of the problem, i.e., E(A; p)

stays bounded away from zero when N increases (efficiency-conserving model).

Definition 3: A parallel system is scalable if the parallel execution time remains constant
when the number of processors p increases linearly with the size of the problem N

(time-bounded model). BUTS: too much to ask for since there is communication
overhead.

Definition 4: A parallel system is scalable if the achieved average speed of the algorithm
on the given machine remains constant when increasing the number of processors,
provided that the problem size is increased properly with the system size.



Scaled speedup :

Compare scalability figures when problem size and number of PEs are increased
simultaneously in a way that the load per individual PE is kept large enough and
approximately constant.



Scalability example:

The parallelization of the summation problem A =

NPi=1

ai has been modeled for a

broadcast medium to have an execution time proportional to N=P + (
 + 1)P , where 


is a constant of proportionality that can be interpreted as the the number of floating point
additions that can be done in the time it takes to send one word.
Choosing P as a function of N can yield arbitrarily large speedup in apparent
contradiction to Amdahl’s Law. For the summation problem,EP =

„
1 + (
 + 1)

P 2N «�1

For fixed N, this implies that the efficiency goes to zero as P goes to infinity.
But if we choose P as a function of N as N increases, we can obtain an efficiency that
does not go to zero, as it would for the case of a fixed N. For example, suppose P and N

are related by the equation P =

pN . Then the efficiency is constant:EP = (1 + (
 + 1))�1



A different approach to defining an efficiency metric can be described as follows. Define
the efficiency to be the ratio E(A; p) =

wa(N)wa(N) + ww(N; p)
;

where wa(N) is the "work accomplished" and may equal W (A�) for the best known
serial algorithm; ww(N; p) is the "work wasted", i.e., the work which would have been
performed if there were no communication and synchronization overhead. Then the
speedup is defined in the terms of the so-determined efficiency, as S(A; p) = pE(A; p).



Presuming an algorithm is parallelizable, i.e., a significant part of it can be done
concurrently, we can achieve large speed-up of the computational task using

(a) well-suited architecture;

(b) well-suited algorithms;

(c) well-suited data structures.

A degraded efficiency of a parallel algorithm can be due to either the computer
architecture or the algorithm itself:

(i) lack of a perfect degree of parallelism in the algorithm;

(ii) idleness of computers due to synchronization and load imbalance;

(iii) of the parallel algorithm;

(iv) communication delays.



More on measuring parallel performance
Definition: A parallel system is said to be cost-optimal if the cost of solving a problem in
parallel is proportional to the execution time of the fastest-known sequential algorithm on
a single processor.

The cost is understood as the product pTp
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Gene Amdahl, 1965



Gene Amdahl, March 13, 2008



Gene Amdahl:

For over a decade prophets have voiced the contention that the organization of a single
computer has reached its limits and that truly significant advances can be made only by
interconnection of a multiplicity of computers in such a manner as to permit cooperative
solution...The nature of this overhead (in parallelism) appears to be sequential so that it
is unlikely to be amendable to parallel processing techniques. Overhead alone would
then place an upper limit on throughput on five to seven times the sequential processing
rate, even if the housekeeping were done in a separate processor...At any point in time it
is difficult to foresee how the previous bottlenecks in a sequential computer will be
effectively overcome.



Parallel performance models

I The fundamental principle of computer performance; Amdahl’s law (1967)

Given: N operations, grouped into k subtasks N1; N2; � � � ; Nk, which must be done
sequentially, each with rate Ri.T =

kXi=1

ti =

kXi=1

NiRi =

kXi=1

fiNRi ; R =
TN N=X

(fiN=Ri) =
1

Pki=1 fi=Ri

Hence, the average rate R(= N=R) for the whole task is the weighted harmonic
mean of R1; R2; : : : ; Rk.

For the special case of only two subtasks - fp (parallel) and 1 � fp - serial, thenR(fp) =
1fpRp +

1�fpRs and S =

pfp + (1 � fp)p � 1

1 � fp :

Thus, the speedup is bounded from above by the inverse of the serial fraction.



Example:

(200 km/h)

300 km

50 km
BA

(50 km/h)

250 km

V =
1

5
6

200 + 1
6

50
= 133:3 km=h

If we drive 125 km=h on the highway, then the total time would increase with only 15%.

So, why bother to drive fast on the highway?!



I Gustafson-Barsis law (1988):

Perhaps, the first breakthrough of the Amdahl’s model is the result achieved by the
1988 Gordon Bell’s prize winners - a group from Sandia Laboratories.

On a 1024 processor nCUBE/10 and with fp computed to be in the range of
(0:992; 0:996) they encountered a speedup of 1000 while the Amdahl’s law
prediction was only of the order of 200 (S = 1024=(0:996 + 0:004 � 1024) � 201).T (A; 1) = (1 � fp) + fppT (A; p) = (1 � fp) + fp = 1 properly scaled problemS = T (A; 1) = p� (p� 1)(1� fp)



An example:

32 cores, 1% serial part and 0.99% parallel part

Amdahl’s law: S � 1=(0:01 + 0:99=32) = 24:43

Gustafson’s law: S � 32 � 31 � 0:01 = 31:69



What has happened to the computer hardware since 1993?



Top 500, June 1993

1 Los Alamos Nat.Lab., CM-5/1024 Fat tree SuperSPARC I 32 MHz (0.128
GFlops) Hypercube, tree

2 Minnesota Supercomputer Center CM-5/544 Fat tree
3 NCSA United States CM-5/512 Fat tree
4 National Security Agency CM-5/512 Fat tree
5 NEC Japan SX-3/44R NEC NEC 400 MHz (6.4 GFlops) Multi-stage crossbar



Top 500, November 2003

1 The Earth Simulator Center Japan Earth-Simulator NEC NEC 1000 MHz (8
GFlops), Multi-stage crossbar

2 Los Alamos Nat.Lab., ASCI Q - AlphaServer SC45, 1.25 GHz HP
3 Virginia Tech X - 1100 Dual 2.0 GHz Apple G5/Mellanox Infiniband 4X/Cisco

GigE Self-made
4 NCSA Tungsten - PowerEdge 1750, P4 Xeon 3.06 GHz, Myrinet Dell
5 Pacific Northwest National Laboratory Mpp2 - Cluster Platform 6000 rx2600

Itanium2 1.5 GHz, Quadrics HP� � �

8 Lawrence Livermore National Laboratory ASCI White, SP Power3 375 MHz
IBM, SP Switch
(clusters - faster )



Top 500, November 2003

Computer no 1:
The ES: a highly parallel vector supercomputer system of the distributed-memory type.
Consisted of 640 processor nodes (PNs) connected by 640x640 single-stage crossbar
switches.
Each PN is a system with a shared memory, consisting of 8 vector-type arithmetic
processors (APs), a 16-GB main memory system (MS), a remote access control unit
(RCU), and an I/O processor.
The peak performance of each AP is 8Gflops.
The ES as a whole consists of 5120 APs with 10 TB of main memory and the theoretical
performance of 40 Tflop.



Top 500, November 2006

1 DOE/NNSA/LLNL BlueGene/L - eServer Blue Gene Solution IBM PowerPC
440 700 MHz (2.8 GFlops), 32768 GB

2 NNSA/Sandia Nat.Lab., Red Storm - Sandia/ Cray Red Storm, Opteron 2.4
GHz dual core Cray Inc.

3 IBM Thomas J. Watson Research Center BGW - eServer Blue Gene Solution
IBM

4 DOE/NNSA/LLNL ASCI Purple - eServer pSeries p5 575 1.9 GHz IBM
5 Barcelona Supercomputing Center MareNostrum - BladeCenter JS21 Cluster,

PPC 970, 2.3 GHz, Myrinet IBM



Top 500, November 2006

Computer no 1:
The machine was scaled up from 65,536 to 106,496 nodes in five rows of racks.
Each Blue Gene/L node is attached to three parallel communications networks:
- a 3D toroidal network for peer-to-peer communication between compute nodes,
- a collective network for collective communication,
- a global interrupt network for fast barriers.

The I/O nodes, which run the Linux operating system, provide communication with the
world via an Ethernet network. The I/O nodes also handle the filesystem operations on
behalf of the compute nodes. Finally, a separate and private Ethernet network provides
access to any node for configuration, booting and diagnostics.



Top 500, November 2010

1 National Supercomputing Center in Tianjin, China, Tianhe-1A - NUDT TH MPP,
X5670 2.93Ghz 6C, NVIDIA GPU, FT-1000 8C NUDT

2 DOE/SC/Oak Ridge Nat.Lab., Jaguar - Cray XT5-HE Opteron 6-core 2.6 GHz

3 National Supercomputing Centre in Shenzhen (NSCS) China Nebulae - Dawn-
ing TC3600 Blade, Intel X5650, NVidia Tesla C2050 GPU Dawning

4 GSIC Center, Tokyo Institute of Technology, Japan TSUBAME 2.0 - HP Pro-
Liant SL390s G7 Xeon 6C X5670, Nvidia GPU, Linux/Windows NEC/HP

5 DOE/SC/LBNL/NERSC Hopper - Cray XE6 12-core 2.1 GHz� � �

9 Forschungszentrum Juelich, Germany, JUGENE - Blue Gene/P IBM



Top 500, November 2010

Computer no 1: Peta-flop machine
Configuration of the system:
Computing node:
* 2560 computing nodes in total
Each computing node is equipped with 2 Intel Xeon EP CPUs (4 cores) , 1 AMD ATI
Radeon 4870x2 (2GPUs, including 1600 Stream Processing Units - SPUs), and 32GB
memory
Operation node:
512 operation nodes in total
Each operation node is equipped with 2 Intel Xeon CPUs (4 cores) and 32GB memory
Interconnection subsystem:
Infiniband QDR
The point-to-point communication bandwidth is 40Gbps and the MPI latency is 1.2us
Provides a programming framework for hybrid architecture, which supports adaptive task
partition and streaming data access.



Top 500, November 2011

1 RIKEN Advanced Institute for Computational Science (AICS) Japan, K com-
puter, SPARC64 VIIIfx 2.0GHz, Tofu interconnect / 2011 Fujitsu, 705024 cores,
10.51 PetaFlops

2 National Supercomputing Center in Tianjin China, 186368 cores

3 DOE/SC/Oak Ridge National Laboratory United States, 224162 cores



Top 500, November 2011

Tokyo and Tsukuba, Japan, November 18, 2011 - A research group from RIKEN, the
Univ. Tsukuba, the Univ. Tokyo, and Fujitsu Ltd announced that research results
obtained using the "K computer" were awarded the ACM Gordon Bell Prize.

The award-winning results, revealed the electron states of silicon nanowires, which have
attracted attention as a core material for next-generation semiconductors.

To verify the computational performance of the K computer, quantum-mechanical
computations were performed on the electron states of a nanowire with approx. 105

atoms (20 �m in diameter and 6 �m long), close to the actual size of the materials, and
achieved execution performance (*2) of 3.08 petaflops (representing execution efficiency
of 43.6%).

The results of the detailed calculations on the electron states of silicon nanowires,
comprised of 10,000 to 40,000 atoms, clarified that electron transport characteristics will
change depending on the cross-sectional shape of the nanowire.



New performance models and metrics:

Examples:
Estimating Parallel Performance, A Skeleton-Based Approach
Oleg Lobachev and Rita Loogen

Roofline: An Insightful Visual Performance Model for Floating-Point Programs and
Multicore Architectures
Samuel Webb Williams, Andrew Waterman and David A. Patterson

A new energy aware performance metric
Costas Bekas and Alessandro Curioni Computer Science, Volume 25, Nr. 3-4, 187-195,
2010



The ’Skeleton’ approach:

No of PEs - ’p’, problem size - ’n’, W (n), T (n) = W (n),T (n; p) - execution time on p PEs; assume W (n; p) = pT (n; p).
In a parallel execution, the sequential work is distributed over the processors. This
causes an overhead, A(n; p) (a penalty), which is also distributed over the p elements,

thus, A(n; p) = p eA(n; p). ThenT (n; p) = T (n)=p + eA(n; p)

and W (n; p) = T (n) + p eA(n; p) = T (n) + A(n; p)

Task: try to estimate accurately T (n) and eA(n; p).

Then we can predict T (n; p). Use ’skeletons’ as abstract desctiptions of the parallelization

paradigm (’divide and conquer’, ’iteration’).



The ’Roofline’ approach:
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A scalar product of two vectors of ordern onp PE’s (tree)
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T1 = (2n� 1)� . For p = n we getTp = (log2 n + 1)� + �(log2 n + 1)�;S =

T1Tp =
2n� 1

(log2 n + 1)

� 1

1 + �

and we see that the theoretical speedup is degraded by the factor (1 + �)�1 due to data
transport. If p < n, the data transport during the first bn=p
 � 1 levels of the algorithm
need correspondingly more data transports.
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Computing a scalar product on a 3-D hypercube



Example: Adding n numbers on a p-processor machine (p < n).
The serial complexity of adding n numbers is O(n). On a p-processor hypercube

(p = 2d) the complexity becomes O(

np + 2 log p):
n p=1 p=4 p=8 p=16 p=32

64 1.0 0.80 0.57 0.33 0.17
192 1.0 0.92 0.80 0.60 0.38
320 1.0 0.95 0.87 0.71 0.50
512 1.0 0.97 0.91 0.80 0.62
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Does this algorithm scale or not?

A version of wave:
Solve 2D advection equation with forcing term numerically with the Leap-frog scheme
(Kalkyl, Dec 13, 2010)

Problem size 1 2 4 8 16

One year old results

2562 2.71 1.37 0.72 0.73 -
5122 21.79 11.23 5.83 5.93 -
10242 172.35 88.75 47.25 52.62 -

Kalkyl

2562 3.26 1.49 0.77 0.42 0.33
5122 25.99 11.45 6.78 3.17 2.49
10242 208.04 105.32 48.17 29.25 19.69





An algorithm which should scale very well ...

Given A, b and an initial guess x(0) .

g(0) = Ax(0) � b,Æ0 = (g(0);g(0))

d(0) = �g

For k = 0; 1; � � � until convergence

(1) h = Ad(k)

(2) � = Æ0=(h;d(k))

(3) x(k+1) = x(k) + �d(k)

(4) g(k+1) = g(k) + �h,

(5) Æ1 = (g(k+1);g(k+1))

(6) � = Æ1=Æ0; Æ0 = Æ1

(7) d(k+1) = �g(k+1) + �d(k)

Convergence rate, computational cost per iteration



... but does not scale ...

Dusty-shelf Fortran-77 code grid-oriented Conjugate Gradient method:

Problem size 1 2
It Time Time/It It Time Time/It

500 756 3.86 0.0051 1273 7.77 0.0061

Problem size 4 8
It Time Time/It It Time Time/It

500 1474 19.69 0.0134 2447 56.96 0.0233



Another algorithm which does not scale ...

Dusty-shelf Fortran-77 code grid-oriented Conjugate Gradient method:

Problem size 1 2
It Time Time/It It Time Time/It

500 756 3.86 0.0051 1273 7.77 0.0061
1000 1474 33.66 0.0228 2447 72.72 0.0297

Problem size 4 8
It Time Time/It It Time Time/It

500 1474 19.69 0.0134 2447 56.96 0.0233
1000 2873 137.03 0.0477 4737 386.58 0.0816

Numerical efficiency – parallel efficiency – time



An algorithm which scales ...

Coarsest Number of PEs

Grid level No Time

size (total no. 4 8 16 32 64 (sec)

of levels)

406.62 190.54 94.61 49.55 28.90 total

2562 10(16) 403.49 189.06 93.86 49.18 28.71 outer

159.75 80.09 41.63 21.97 13.20 coars.

5.31 5.93 5.58 4.62 3.89 comm.

632.60 304.24 154.65 total

5122 12(18) 629.44 302.71 153.81 outer

363.38 183.18 96.15 coars.

14.28 12.14 10.14 comm.

1662.73 829.71 total

10242 12(20) 1655.73 826.22 outer

810.11 422.25 coars.

29.89 22.26 comm.



Another algorithm which scales ...

Ultrascalable implicit finite element analyses in solid mechanics with over a half a billion
degrees of freedom
M.. Adams, H.. Bayraktar, T.. Keaveny, P. Papadopoulos

ACM/IEEE Proceedings of SC2004: High Performance Networking and Computing,
2004
Bone mechanics, AMG, 4088 processors, the ACSI White machine (LLNL):

"We have demonstrated that a mathematically optimal algebraic multigrid method
(smoothed aggregation) is computationally effective for large deformation finite element
analysis of solid mechanics problems with up to 537 million degrees of freedom.
We have achieved a sustained flop rate of almost one half a Teraflop/sec on 4088 IBM
Power3 processors (ASCI White).
These are the largest published analyses of unstructured elasticity problems with
complex geometry that we are aware of, with an average time per linear solve of about 1
and a half minutes.



Ultrascalable implicit finite element analyses in solid mechanics with over a half a billion
degrees of freedom
M. Adams, H. Bayraktar, T. Keaveny, P. Papadopoulos

ACM/IEEE Proceedings of SC2004: High Performance Networking and Computing,
2004

... Additionally, this work is significant in that no special purpose algorithms or
implementations were required to achieve a highly scalable performance on a common
parallel computer.



The Bone problem: continuation
Eight BG/L racks correspondig to 8192 BG/L dual core nodes,

1.5 billion degrees of freedom



Assume A, B and b are distributed and the initial guess x(0) is replicated.

g(0) = Ax(0) � b, g(0) = repli
ate(g(0))

h = Bg(0)Æ0 = (g(0);h) h = repli
ate(h)

d(0) = �h

For k = 0; 1; � � � until convergence

(1) h = Ad(k)

(2) � = Æ0=(h;d(k))

(3) x(k+1) = x(k) + �d(k)

(4) g(k+1) = g(k) + �h, g(k+1) = repli
ate(g(k+1))

(5) h = Bg(k+1),

(6) Æ1 = (g(k+1);h) h = repli
ate(h)

(7) � = Æ1=Æ0; Æ0 = Æ1

(8) d(k+1) = �h + �d(k)



FEM-SPAI: Scalability figures: Constant problem size

#pro
 nfine tB�1

11

=tA trepl [s] tsolution [s] # iter
4 197129 0.0047 0.28 7.01 5
16 49408 0.18 0.07 0.29 5
64 12416 0.098 0.02 0.03 5

Problem size: 787456
Solution method: PCG

Relative stopping criterium: < 10�6



FEM-SPAI: Scalability figures: Constant load per processor

#pro
 tB�1

11

=tA trepl [s] tsolution [s] # iter
1 0.0050 - 0.17 5
4 0.0032 0.28 7.01 5
16 0.0035 0.24 4.55 5
64 0.0040 0.23 12.43 5

Local number of degrees of freedom: 197129
Solution method: PCG

Relative stoppicg criterium: < 10�6



Yet another problem (from Umeå):

Robert Granat: XXX dense eigenvalue problems

The complete spectrum of a dense 100000 � 100000 matrix.



P hl Probl. E(n;P ) Total Comm. IT
size (n = 210) Time Time

1 1=210 1048576 1.0 3.8375 0 11

4 1=211 4194304 0.9841 3.8994 0.2217 11

16 1=212 16777216 1.0687 3.5908 0.2209 10

64 1=213 67108864 0.9008 4.2601 0.3424 10

256 1=214 268435456 0.8782 4.3697 0.3648 10

1024 1=215 1073741824 0.9274 4.1379 0.3962 9

Borrowed from a presentation by Ridgway Scott, Valpariaso, Jan 2011.
Parallel performance of U-cycle multigrid for Poisson’s equation on IBM Blue Gene/L



Gauss Elimination

Dependences in Gaussian elimination System of equations and standard sequential
algorithm for Gaussian elimination:
for k=1,n

for i=k+1,n
l(i,k) = a(i,k)/a(k,k)

endfor(i)
for j=k+1,n

for i=k+1,n
a(i,j) = a(i,j) - l(i,k) * a(k,j)

endfor(i)
endfor(j)

endfor(k)

Sequential Gaussian elimination: multiple loops



Gauss Elimination

j

k

i

The iteration space for the standard sequential algorithm for Gaussian elimination forms
a trapezoidal region with square cross-section in the i, j plane. Within each square (with
k fixed) there are no dependencies.



Gauss Elimination

The dominant part of the computation in solving a sustem with a direct solver is the
factorization, in which L and U are determined. The triangular system solves in require
less computation.
There are no loop-carried dependences in the inner-most two loops (the i and j loops)
because i, j > k. Therefore, these loops can be decomposed in any desired fashion. We
now consider two different ways of parallelizing the LU factorization The algorithm for
Gaussian elimination can be parallelized using a message-passing paradigm. It is based
on decomposing the matrix column-wise, and it corresponds to a decomposition of the
middle loop (the j loop). A typical decomposition would be cyclic, since it provides a good
load balance.



Gauss Elimination

for k=1,n
if( " I own column k " )
for i=k+1,n

l(i,k) = a(i,k)/a(k,k)
endfor(i)
"broadcast" l(k+1 : n)

else "receive" l(k+1 : n)
endif
for j=k+1,n ("modulo owning column j")

for i=k+1,n
a(i,j) = a(i,j) - l(i,k) * a(k,j)

endfor(i)
endfor(j)

endfor(k)

Standard column-storage parallelization Gaussian elimination.



Gauss Elimination

We can estimate the time of execution of the standard Gaussian elimination algorithm as
follows. For each value of k, n� k divisions are performed in computing the multipliersl(i; k), then these multipliers are broadcast to all other processors. Once these are
received, (n� k)2 multiply-add pairs (as well as some memory references) are
executed, all of which can be done in parallel. Thus the time of execution for a particular
value of k is 
1(n� k) + 
2 (n� k)2P
where the constants 
i model the time for the respective basic operations. Here, 
2 can
be taken to be essentially the time to compute a ’multiply-add pair’ a = a� b � 
 for a
single processor. The constant 
1 can measure the time both to compute a quotient and
to transmit a word of data.



Gauss Elimination - speedup, efficiency and scalability

Summing over k, the total time of execution isn�1Xk=1

„
1(n� k) + 
2
(n� k)2P « � 1

2


1n22 +
1

3

2

n3P
Time to execute this algorithm sequentially is 1

3


2n3 Speed-up for standard
column-storage parallelization of Gaussian elimination isSP;n =

„
2

3


n +
1P «�1

= P „
2

3


nP + 1

«�1

where 
 = 
1=
2 - ratio of communication to computation time. Efficiency isEP;n =

„
2

3


Pn +
1P «�1 � 1 � 2

3


Pn :

Thus the algorithm is scalable; we can take Pnn = �n and have a fixed efficiency of

„
2

3


� + 1

«�1 :
P n P=n



� Parallel performance� Parallel performance measures
– time
– speedup
– efficiency
– scalability� Computational complexity of algorithms� Examples (optimal – nonoptimal order algorithms� Summary. Tendencies



Final words: High Performance Computing, where are we?

} Performance:. Sustained performance has increased substantially during the last years.. On many applications, the price-performance ratio for the parallel systems has
become smaller than that of specialized supercomputers. But � � �. Still, some applications remain hard to parallelize well (adaptive methods).} Languages and compilers:. Standardized, portable, high-level languages exist. But � � �. Message passing programming is tedious and hard to debug. OpenMP has its
limitations. Combination - good.. GPUs still too specialized. Programming difficulties remain still a major obstacle for mainstream scientists to
parallelize existing codes.. Revisit some ’old’ algorithms, come up with new languages.

However, we are witnessing and we are given the chance to participate in the exiting
process of parallel computing achieving its full potential power and solving the most
challenging problems in Scientific Computing/Computational
Mathematics/Bioinformatics/Data Mining etc.
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