
collect(1) collect(1)

NAME
collect − command used to collect program performance data

SYNOPSIS
collectcollect-arguments target target-arguments
collect
collect −V
collect −R

DESCRIPTION
Thecollect command runs the target process and records performance data and global data for the process.
Performance data is collected using profiling or tracing techniques.The data can be examined with a GUI
program (analyzer) or a command-line program (er_print). Thedata collection software run by thecol-
lect command is referred to here as the Collector.

The data from a single run of thecollect command is called an experiment. Theexperiment is represented
in the file system as a directory, with various files inside that directory.

The target is the path name of the executable, Java(TM) .jar file, or Java .classfile for which you want to
collect performance data.(For more information about Java profiling, see JAVA PROFILING, below.)
Executables that are targets for thecollect command can be compiled with any lev el of optimization, but
must use dynamic linking. If a program is statically linked, thecollect command prints an error message.
In order to see annotated source usinganalyzer or er_print , targets should be compiled with the-g flag,
and should not be stripped.

In order to enable dataspace profiling, executables must be compiled with the-xhwcprof -xdebugfor-
mat=dwarf -g flags. Theseflags are valid for the C, C++ and Fortran compilers, but only on SPARC[R]
platforms. Seethe section "DAT ASPACE PROFILING", below.

Thecollectcommand uses the following strategy to find its target:

- If there is a file with the name of the target that is marked executable, the file is verified as an ELF
executable that can run on the target machine. If the file is not such a valid ELF executable, thecollect
command fails.

- If there is a file with the name of the target, and the file is not executable,collect checks whether the file
is a Java[TM] jar file or class file. If the file is a Java jar file or class file, the Java[TM] virtual machine
(JVM) software is inserted as the target, with any necessary flags, and data is collected on that JVM
machine. (Theterms "Java virtual machine" and "JVM" mean a virtual machine for the Java[TM] plat-
form.) Seethe section on "JAVA PROFILING", below.

- If there is no file with the name of the target, your path is searched to find an executable; if an executable
is found, it is verified as described above.

- If no file of the current name is found, the command looks for a file with that name and the string.class
appended; if a file is found, the target of a JVM machine is inserted, with the appropriate flags, as above.

- If none of these procedures can find the target, the command fails.

OPTIONS
If invoked with no arguments, print a usage summary, including the default configuration of the experiment.
If the processor supports hardware counter overflow profiling, print two lists containing information about
hardware counters. The first list contains "aliased" hardware counters; the second list contains raw hard-
ware counters.For more details, see the "Hardware Counter Overflow Profiling" section below.

Data Specifications
−p option

Collect clock-based profiling data. The allowed values ofoptionare:

Value Meaning

March 2009 1

collect(1) collect(1)

off Turn off clock-based profiling

on Turn on clock-based profiling with the default profiling interval of approxi-
mately 10 milliseconds.

lo[w] Turn on clock-based profiling with the low-resolution profiling interval of
approximately 100 milliseconds.

hi[gh] Turn on clock-based profiling with the high-resolution profiling interval of
approximately 1 millisecond.

n Turn on clock-based profiling with a profiling interval ofn. The valuen can be
an integer or a floating-point number, with a suffix of u for values in microsec-
onds, orm for values in milliseconds.If no suffix is used, assume the value to
be in milliseconds.

If the value is smaller than the clock profiling minimum, set it to the minimum;
if it is not a multiple of the clock profiling resolution, round down to the nearest
multiple of the clock resolution.If it exceeds the clock profiling maximum,
report an error. If it is neg ative or zero, report an error. If inv oked with no argu-
ments, report the clock-profiling intervals.

An optional + can be prepended to the clock-profiling interval, specifying thatcollect capture
dataspace data.It will do so by backtracking one instruction, and if that instruction is a memory
instruction, it will assume that the delay was attributed to that instruction and record the event,
including the virtual and physical addresses of the memory reference.

Caution must be used in interpreting clock-based dataspace data; the delay might be completely
unrelated to the memory instruction that happened to precede the instruction with the clock-profile
hit; for example, if a memory instruction hits in the cache, but is in a loop executed many times,
high counts on that instruction might appear to indicate memory stall delays, but they do not. This
situation can be disambiguated by examining the disassembly around the instruction indicating the
stall. If the surrounding instructions also have high clock-profiling metrics, the memory delay is
likely to be spurious.

Clock-based dataspace profiling should be used only on machines that do not support hardware
counter profiling on memory-based counters.

See the section "DAT ASPACE PROFILING", below.

If no explicit −p off argument is given, and no hardware counter overflow profiling is specified,
turn on clock-based profiling.

−h ctr_def...[,ctr_n_def]
Collect hardware counter overflow profiles. The number of counter definitions, (ctr_def through
ctr_n_def) is processor-dependent. For example, on an UltraSPARC III system, up to two counters
can be programmed; on an Intel Pentium IV with Hyperthreading, up to 18 counters are available.
You can ascertain the maximum number of hardware counters definitions for profiling on a target
system, and the full list of available hardware counters, by running the collect command without
any arguments.

This option is now available on systems running the Linux OS.You are responsible for installing
the required perfctr patch on the system; that patch can be downloaded from:

http://user.it.uu.se/˜mikpe/linux/perfctr/2.6/perfctr-2.6.15.tar.gz
Instructions for installation are contained within that tar file.The user-level libperfctr.solibraries
are searched for usingLD_LIBRARY_P ATH, and then in/usr/local/lib, /usr/lib/, and /lib/ for the
32-bit versions, or/usr/local/lib64 /usr/lib64/, and /lib64/ for the 64-bit versions.

March 2009 2

collect(1) collect(1)

Each counter definition takes one of the following forms, depending on whether attributes for
hardware counters are supported on the processor:

1. [+]ctr[/reg#][,interval]

2. [+]ctr[˜attr=val]...[˜attrN=valN][/reg#][,interval]

The meanings of the counter definition options are as follows:

Value Meaning

+ Optional parameter that can be applied to memory-related counters. Causescol-
lect to collect dataspace data by backtracking to find the instruction that trig-
gered the overflow, and to find the virtual and physical addresses of the memory
reference. Backtrackingworks on SPARC processors, and only with counters of
type load, store, or load-store, as displayed in the counter list obtained by run-
ning thecollect command without any command-line arguments. Seethe sec-
tion "DAT ASPACE PROFILING", below.

ctr Processor-specific counter name. You can ascertain the list of counter names by
running thecollect command withoutany command-line arguments. Onmost
systems, even if a counter is not listed, it can still be specified by a numeric
value, either in hexadecimal (0x1234) or decimal.Drivers for older chips do not
support numeric values, but drivers for more recent chips do.

attr=val On some processors, attribute options can be associated with a hardware counter.
If the processor supports attribute options, then runningcollect without any
command-line arguments specifies the counter definition,ctr_def, in the second
form listed above, and provide a list of attribute names to use forattr. Valueval
can be in decimal or hexadecimal format. Hexadecimal format numbers are in C
program format where the number is prepended by a zero and lower-case x
(0xhex_number).

reg# Hardware register to use for the counter. If not specified,collect attempts to
place the counter into the first available register and as a result, might be unable
to place subsequent counters due to register conflicts.If you specify more than
one counter, the counters must use different registers. Thelist of allowable reg-
ister numbers can be ascertained by running thecollect command without any
command-line arguments.

interval Sampling frequency, set by defining the counter overflow value. Valid values are
as follows:

Value Meaning

on Select the default rate, which can be determined by running
the collect command without any command-line arguments.
Note that the default value for all raw counters is the same,
and might not be the most suitable value for a specific counter.

hi Set interval to approximately 10 times shorter thanon.

lo Set interval to approximately 10 times longer thanon.

value Set interval to a specific value, specified in decimal or hex-
adecimal format.

An experiment can specify both hardware counter overflow profiling and clock-based profiling.If
hardware counter overflow profiling is specified, but clock-based profiling is not explicitly speci-
fied, turn off clock-based profiling.

For more information on hardware counters, see the "Hardware Counter Overflow Profiling"

March 2009 3

collect(1) collect(1)

section below.

−soption
Collect synchronization tracing data.

The minimum delay threshold for tracing events is set usingoption. The allowed values ofoption
are:

Value Meaning

on Turn on synchronization delay tracing and set the threshold value by calibration
at runtime

calibrate Same ason

off Turn off synchronization delay tracing

n Turn on synchronization delay tracing with a threshold value ofn microseconds;
if n is zero, trace all events

all Turn on synchronization delay tracing and trace all synchronization events

By default, turn off synchronization delay tracing.

Record synchronization events for Java monitors, but not for native synchronization within the
JVM machine.

−H option
Collect heap trace data. The allowed values ofoptionare:

Value Meaning

on Turn on tracing of memory allocation requests

off Turn off tracing of memory allocation requests

By default, turn off heap tracing.

Record heap-tracing events for any native calls. Treat calls tommap as memory allocations.

Heap profiling is not supported for Java programs. Specifying it is treated as an error.

Note that heap tracing might produce very large experiments. Suchexperiments are very slow to
load and browse.

−M option
Specify collection of an MPI experiment. (SeeMPI PROFILING, below.) The target ofcollect
should bempirun , and its arguments should be separated from the user target (that is the programs
that are to be run bympirun) by an inserted-- argument. The experiment is named as usual, and is
referred to as the "founder experiment"; its directory contains subexperiments for each of the MPI
processes, named by rank. It is recommended that the-- argument always be used withmpirun , so
that an experiment can be collected by prependingcollect and its options to thempirun command
line.

The allowed values ofoptionare:

Value Meaning

MPI-version Turn on collection of an MPI experiment, assuming the MPI version named

off Turn off collection of an MPI experiment

By default, turn off collection of an MPI experiment. Whenan MPI experiment is turned on, the

March 2009 4

collect(1) collect(1)

default setting for-m (see below) is changed toon.

The supported versions of MPI are printed when you typecollect with no arguments, or in
response to an unrecognized version specified with-M .

−m option
Collect MPI tracing data. (See MPI PROFILING, below.)

The allowed values ofoptionare:

Value Meaning

on Turn on MPI tracing information

off Turn off MPI tracing information

By default, turn off MPI tracing, except if the-M flag is enabled, in which case MPI tracing is
turned on by default. Normally, MPI experiments are collected with-M , and no user control of
MPI tracing is needed. If you want to collect an MPI experiment, but not collect MPI trace data,
you can use the explicit flags:

-M on -m off.

−c option
Collect count data, using bit(1) instrumentation.This option is available only on SPARC-based
systems.

The allowed values ofoptionare:

Value Meaning

on Turn on count data

static Turn on simulated count data, based on the assumption that every instruction
was executed exactly once.

off Turn off count data

By default, turn off count data. Count data cannot be collected with any other type of data. For
count data or simulated count data, the executable and any shared-objects that are instrumented
and statically linked are counted; for count data, but not simulated count data, dynamically loaded
shared objects are also instrumented and counted.

In order to collect count data, the executable must be compiled with the-xbinopt=prepare flag.

−I directory
Specify a directory for bit(1) instrumentation. This option is available only on SPARC-based sys-
tems, and is meaningful only when-c is specified.

−N libname
Specify a library to be excluded from bit(1) instrumentation, whether the library is linked into the
executable, or loaded with dlopen. This option is available only on SPARC-based systems, and is
meaningful only when-c is also specified. Multiple-N options can be specified.

−r option
Collect thread-analyzer data.

The allowed values ofoptionare:

Value Meaning

March 2009 5

collect(1) collect(1)

on Turn on thread analyzer data-race-detection data

all Turn on all thread analyzer data

off Turn off thread analyzer data

dt1,...,dtN Turn on specific thread analyzer data types, as named by thedt* parameters.

The specific types of thread analyzer data that can be requested are:

Value Meaning

race Collect datarace data

deadlock Collect deadlock and potential-deadlock data

By default, turn off all thread-analyzer data.

Thread Analyzer data cannot be collected with any tracing data, but can be collected in conjunc-
tion with clock- or hardware counter profiling data. Thread Analyzer data significantly slows down
the execution of the target, and profiles might not be meaningful as applied to the user code.

Thread Analyzer experiments can be examined with eitheranalyzer or with tha. The latter dis-
plays a simplified list of default tabs, but is otherwise identical.

In order to enable data-race detection, executables must be instrumented, either at compile time, or
by invoking a postprocessor. If the target is not instrumented, and none of the shared objects on its
library list is instrumented, a warning is displayed, but the experiment is run. Other Thread Ana-
lyzer data do not require instrumentation.

See thetha(1) man page for more detail.

−S interval
Collect periodic samples at the interval specified (in seconds). Record data samples from the pro-
cess, and include a timestamp and execution statistics from the kernel, among other things.The
allowed values ofintervalare:

Value Meaning

off Turn off periodic sampling

on Turn on periodic sampling with the default sampling interval (1 second)

n Turn on periodic sampling with a sampling interval ofn in seconds;n must be
positive.

By default, turn on periodic sampling.

If no data specification arguments are supplied, collect clock-based profiling data, using the
default resolution.

If clock-based profiling is explicitly disabled, and neither hardware counter overflow profiling nor
any kind of tracing is enabled, display a warning that no function-level data is being collected,
then execute the target and record global data.

Experiment Controls
−L size Limit the amount of profiling and tracing data recorded tosizemegabytes. Thelimit applies to the

sum of all profiling data and tracing data, but not to sample points. The limit is only approximate,
and can be exceeded. Whenthe limit is reached, stop profiling and tracing data, but keep the
experiment open and record samples until the target process terminates. The allowed values of
sizeare:

March 2009 6

collect(1) collect(1)

Value Meaning

unlimited or none
Do not impose a size limit on the experiment

n Impose a limit ofn MB.; n must be positive and greater than zero.

The default limit on the amount of data recorded is 2000 Mbytes.

−F option
Control whether or not descendant processes should have their data recorded. The allowed values
of optionare:

Value Meaning

on Record experiments on descendant processes fromfork andexec

all Record experiments on all descendant processes

off Do not record experiments on descendant processes

=<regex> Record experiments on all descendant processes whose executable name (a.out
name) or lineage match the regular expression.

By default, do not record descendant processes.For more details, read the section "FOLLOWING
DESCENDANT PROCESSES", below.

−A option
Control whether or not load objects used by the target process should be archived or copied into
the recorded experiment. Theallowed values ofoptionare:

Value Meaning

on Archive load objects into the experiment.

off Do not archive load objects into the experiment.

copy Copy and archive load objects (the target and any shared objects it uses) into the
experiment.

If you copy experiments onto a different machine, or read the experiments from a different
machine, specify−A copy. Note that doing so does not copy any sources or object files (.o’s); it is
your responsibility to ensure that those files are accessible from the machine where the experiment
is being examined.

The default setting for−A is on.

−j option
Control Java profiling when the target is a JVM machine. The allowed values ofoptionare:

Value Meaning

on Record profiling data for the JVM machine, and recognize methods compiled by
the Java HotSpot[TM] virtual machine, and also record Java callstacks.

off Do not record Java profiling data.

<path> Record profiling data for the JVM, and use the JVM as installed in <path>.

See the section "JAVA PROFILING", below.

You must use−j on to obtain profiling data if the target is a JVM machine.The−j on option is not
needed if the target is a class or jar file. if you are on a 64-bit JVM machine, you must specify its
path explicitly as the target; do not use the-d64 option for a 32-bit JVM machine. If the-j on
option is specified, but the target is not a JVM machine, an invalid argument might be passed to

March 2009 7

collect(1) collect(1)

the target, and no data would be recorded. Thecollect command validates the version of the JVM
machine specified for Java profiling.

−J java_arg
Specify additional arguments to be passed to the JVM used for profiling.If −J is specified, but
Java profiling is not specified, an error is generated, and no experiment run.The java_argmust be
surrounded by quotes if it contains more than one argument. It consists of a set of tokens, sepa-
rated by either a blank or a tab; each token is passed as a separate argument to the JVM. Note that
most arguments to the JVM must begin with a "-" character.

−l signal
Record a sample point whenever the given signal is delivered to the process.

−y signal[,r]
Control recording of data withsignal. Whenever the given signal is delivered to the process,
switch between paused (no data is recorded) and resumed (data is recorded) states.Start in the
resumed state if the optional,r flag is given, otherwise start in the paused state. This option does
not affect the recording of sample points.

Output Controls
−o experiment_name

Useexperiment_nameas the name of the experiment to be recorded.Theexperiment_namemust
end in the string.er; if not, print an error message and do not run the experiment.

If −o is not specified, give the experiment a name of the formstem.n.er, wherestemis a string, and
n is a number. If a group name has been specified with−g, set stemto the group name without the
.erg suffix. If no group name has been specified, setstemto the string "test".

If invoked from one of the commands used to run MPI jobs, for example,mpirun , but without-M
on, and −o is not specified, take the value ofn used in the name from the environment variable
used to define the MPI rank of that process. Otherwise, setn to one greater than the highest integer
currently in use. (See MPI PROFILING, below.)

If the name is not specified in the formstem.n.er, and the given name is in use, print an error mes-
sage and do not run the experiment. Ifthe name is of the formstem.n.er and the name supplied is
in use, record the experiment under a name corresponding to one greater than the highest value of
n that is currently in use. Print a warning if the name is changed.

−d directory_name
Place the experiment in directorydirectory_name. If no directory is given, place the experiment in
the current working directory. If a group is specified (see−g, below), the group file is also written
to the directory named by−d.

For the lightest-weight data collection, it is best to record data to a local file, with−d used to spec-
ify a directory in which to put the data.However, for MPI experiments on a cluster, the founder
experiment must be available at the same path to all processes to have all data recorded into the
founder experiment.

Experiments written to long-latency file systems are especially problematic, and might progress
very slowly, especially if Sample data is collected (−S on, the default). If you must record over a
long-latency connection, disable Sample data.

−g group_name
Add the experiment to the experiment groupgroup_name. Thegroup_namestring must end in the
string.erg; if not, report an error and do not run the experiment.
The first line of a group file must contain the string

#analyzer experiment group
and each subsequent line is the name of an experiment.

March 2009 8

collect(1) collect(1)

−O file Append all output fromcollect itself to the named file, but do not redirect the output from the
spawned target. If file is set to/dev/nullsuppress all output fromcollect, including any error mes-
sages.

−t duration
Collect data for the specified duration.duration can be a single number, followed by eitherm,
specifying minutes, ors, specifying seconds (default), or two such numbers separated by a- sign.
If one number is given, data is collected from the start of the run until the given time; if two num-
bers are given, data is collected from the first time to the second.If the second time is zero, data is
collected until the end of the run. If two non-zero numbers are given, the first must be less than
the second.

Other Arguments
−P <pid>

Write a script fordbx to attach to the process with the given PID, and collect data from it, and
then invoke dbx with that script.Only profiling data, not tracing data can be specified, and timed
runs (-t) are not supported.

−C comment
Put the comment into thenotesfile for the experiment. Upto ten-C arguments can be supplied.

−n Dry run: do not run the target, but print all the details of the experiment that would be run.Turn
on -v.

−R Display the text version of the performance tools README in the terminal window. If the
README is not found, print a warning. Donot examine further arguments and do no further pro-
cessing.

−V Print the current version. Donot examine further arguments and do no further processing.

−v Print the current version and further detailed information about the experiment being run.

−x Leave the target process stopped on the exit from theexecsystem call, in order to allow a debug-
ger to attach to it. Thecollectcommand prints a message with the process PID.

To attach a debugger to the target once it is stopped bycollect, you must follow the procedure
below.

- Obtain the PID of the process from the message printed by thecollect -xcommand

- Start the debugger

- Configure the debugger to ignore SIGPROF and, if you chose to collect hardware counter data,
SIGEMT on Solaris or SIGIO on Linux

- Attach to the process using the PID.

As the process runs under the control of the debugger, the Collector records an experiment.

FOLLOWING DESCENDANT PROCESSES
Data from the initial process spawned by collect, called the founder process, is always collected.Processes
can create descendant processes by calling system library functions, including the variants offork , exec,
system, etc.. If a -F argument is used, the collector can collect data for descendant processes, and it opens
a new experiment for each descendant process inside the parent experiment. Thesenew experiments are
named with their lineage as follows:

- An underscore is appended to the creator’s experiment name.

- A code letter is added: either "f" for a fork, or "x" for an exec, or "c" for other descendants.

- A number is added after the code letter, which is the index of the fork or exec. The assignment of this
number is applied whether the process was started successfully or not.

March 2009 9

collect(1) collect(1)

- The experiment suffix, ".er" is appended to the lineage.

For example, if the experiment name for the initial process is "test.1.er", the experiment for the descendant
process created by its third fork is "test.1.er/_f3.er". If that descendant process execs a new image, the cor-
responding experiment name is "test.1.er/_f3_x1.er".

If -F on is used, descendant processes initiated by calls tofork (2), fork1 (2), fork (3F), vfork (2), and
exec(2) and its variants are followed. Thecall to vfork is replaced internally by a call tofork1 . Descen-
dants creates by calls tosystem(3C),system(3F),sh(3F),popen(3C), and similar functions, and their asso-
ciated descendant processes, are not followed.

If the -F all argument is used, all descendants are followed, including those fromsystem(3C), system(3F),
sh(3F),popen(3C), and similar functions.

If the -F =<regex>argument is used, all descendants whose name or lineage match the regular expression
are followed. Whenmatching lineage, the ".er" should be omitted. When matching names, both the com-
mand, and its arguments are part of the expression.

For example, to capture data on the descendant process of the firstexecfrom the firstfork from the first call
to systemin the founder, use:

collect -F ’=_c1_f1_x1’

To capture data on all the variants ofexec, but notfork , use:
collect -F ’=.*_x[0-9]/*’

To capture data from a call tosystem("echo hello")
but not system("goodbye"), use:

collect -F ’=echo hello’

The Analyzer ander_print automatically read experiments for descendant processes when the founder
experiment is read, but the experiments for the descendant processes are not selected for data display.

To select the data for display from the command line, specify the path name explicitly to eitherer_print or
Analyzer. The specified path must include the founder experiment name, and the descendant experiment’s
name inside the founder directory.

For example, to see the data for the third fork of the test.1.er experiment:
er_print test.1.er/_f3.er
analyzer test.1.er/_f3.er

You can prepare an experiment group file with the explicit names of descendant experiments of interest.

To examine descendant processes in the Analyzer, load the founder experiment and chhose View > Filter
data. The Analyzer displays a list of experiments with only the founder experiment checked. Uncheck the
founder experiment and check the descendant experiment of interest.

JAVA PROFILING
Java profiling consists of collecting a performance experiment on the JVM machine as it runs your .class or
.jar files. If possible, callstacks are collected in both the Java model and in the machine model.

Data can be shown with view mode set to User, Expert, or Machine. User mode shows each method by
name, with data for interpreted and HotSpot-compiled methods aggregated together; it also suppresses data
for non-user-Java threads. Expertmode separates HotSpot-compiled methods from interpreted methods,
and does not suppress non-user Java threads. Machinemode shows data for interpreted Java methods
against the JVM machine as it does the interpreting, while data for methods compiled with the Java
HotSpot virtual machine is reported for named methods. All threads are shown. In all three modes, data is
reported in the usual way for any non-OpenMP C, C++, or Fortran code called by a Java target. Suchcode
corresponds to Java native methods. TheAnalyzer and theer_print utility can switch between the view
mode User, view mode Expert, and view mode Machine, with User being the default.

Clock-based profiling and hardware counter overflow profiling are supported.Synchronization tracing col-
lects data only on the Java monitor calls, and synchronization calls from native code; it does not collect data

March 2009 10

collect(1) collect(1)

about internal synchronization calls within the JVM.

Heap tracing is not supported for Java, and generates an error if specified.

Whencollect inserts a target name ofjava into the argument list, it examines environment variables for a
path to thejava target, in the order JDK_HOME, and then JAVA _PATH. For the first of these environment
variables that is set, the resultant target is verified as an ELF executable. If it is not,collect fails with an
error indicating which environment variable was used, and the full path name that was tried.

If neither of those environment variables is set, thecollect command uses the the version set by your PATH.
If there is nojava in your PATH, a system default of/usr/java/bin/javais tried.

Java Profiling requires Java[TM] 2 SDK (JDK) 6, Update 3 or later; some earlier versions (but no earlier
than JDK 1.4.2) might work, but are not supported.

JAVA PROFILING WITH A DLOPEN’ d LIBJVM.SO
Some applications are not pure Java, but are C or C++ applications that invoke dlopen to loadlibjvm.so, and
then start the JVM by calling into it. To profile such applications, set the environment variableSP_COL-
LECTOR_USE_JAV A_OPTIONS, and add -j on to the collect command line. Do not set either
LD_LIBRARY_P ATH for this scenario.

SHARED_OBJECT HANDLING
Normally, the collect command causes data to be collected for all shared objects in the address space of the
target, whether on the initial library list, or explicitly dlopen’d. Howev er, there are some circumstances
under which some shared objects are not profiled.

One such scenario is when the target program is invoked with lazy-loading. In such cases, the library is not
loaded at startup time, and is not loaded by explicitly callingdlopen, so the shared object name is not
included in the experiment, and all PCs from it are mapped to the<Unknown> function. The workaround
is to set LD_BIND_NOW, to force the library to be loaded at startup time.

Another such scenario is when the executable is built with the -B direct. In that case the object is dynami-
cally loaded by a call specifically to the dynamic linker entry point ofdlopen, and the libcollector interposi-
tion is bypassed. The shared object name is not included in the experiment, and all PCs from it are mapped
to the<Unknown> function. The workaround is to not use-B direct.

OPENMP PROFILING
Data collection for OpenMP programs collects data that can be displayed in any of the three view modes,
just as for Java programs. Thepresentation is identical for user mode and expert mode.Slave threads are
shown as if they were really forked from the master thread, and have call stacks matching the master thread.
Frames in the call stack coming from the OpenMP runtime code (libmtsk.so) are suppressed.For machine
mode, the actual native stacks are shown.

In user mode, various artificial functions are introduced as the leaf function of a call stack whenever the
runtime library is in one of several states. These functions are <OMP-overhead>, <OMP-idle>, <OMP-
reduction>, <OMP-implicit_barrier>, <OMP-explicit_barrier>, <OMP-lock_wait>, <OMP-critical_sec-
tion_wait>, and <OMP-ordered_section_wait>.

Tw o additional clock-profiling metrics are added to the data for clock-profiling experiments:

OpenMP Work
OpenMP Wait

OpenMP Work is counted when the OpenMP runtime thinks the code is doing work. It includes time when
the process is consuming User-CPU time, but it also can include time when the process is consuming Sys-
tem-CPU time, waiting for page faults, waiting for the CPU,etc.. Hence, OpenMP Work can exceed User-
CPU time. OpenMP Wait is accumulated when the OpenMP runtime thinks the process is waiting. It can
include User-CPU time for busy-waits (spin-waits), but it also includes Other-Wait time for sleep-waits.

The inclusive metrics are visible by default; the exclusive are not. Together, the sum of those two metrics
equals the Total LWP Time metric.These metrics are added for all clock- and hardware counter profiling

March 2009 11

collect(1) collect(1)

experiments.

Collecting information for every fork in the execution of the program can be very expensive. You can sup-
press that cost by setting the environment variableSP_COLLECTOR_NO_OMP. If you do so, the pro-
gram will have substantially less dilation, but you will not see the data from slave threads propagate up the
the caller, and eventually tomain(), as it normally will without that variable being set.

A new collector for OpenMP 3.0 is enabled by default in this release. It can profile programs that use
explicit tasking. Programs built with earlier compilers can be profiled with the new collector only if a
patched version oflibmtsk.sois available. If it is not installed, you can switch data collection to use the old
collector by setting the environment variableSP_COLLECTOR_OLDOMP .

Note that the OpenMP profiling functionality is only available for applications compiled with the Studio
compilers, since it depends on the Studio compiler runtime.GNU-compiled code will only see machine-
level callstacks.

DATASPACE PROFILING
A dataspace profile is a data collection in which memory-related events, such as cache misses, are reported
against the data object references that cause the events rather than just the instructions where the memory-
related events occur. Dataspace profiling is not available on systems running the Linux OS, nor on x86
based systems running the Solaris OS.

To allow dataspace profiling, the target can be written in C, C++ or Fortran, and must be compiled for
SPARC architecture, with the-xhwcprof -xdebugformat=dwarf -g flags, as described above. Furthermore,
the data collected must be hardware counter profiles and the optional+ must be prepended to the counter
name. Ifthe optional+ is prepended to one memory-related counter, but not all, the counters without the+
reports dataspace data against the<Unknown> data object, with subtype(Dataspace data not requested
during data collection).

With the data collected, theer_print utility allows three additional commands:data_objects, data_single,
anddata_layout, as well as various commands relating to Memory Objects.See theer_print(1) man page
for more information.

In addition, the Analyzer now includes two tabs related to dataspace profiling, labeled DataObjects and
DataLayout, as well as a set of tabs relating to Memory Objects. See theanalyzer(1) man page for more
information.

Clock-based dataspace profiling should only be used on machines that do not support hardware counter
profiling with memory-based counters. It requires the same compilation flags as for hardware counter pro-
filing. Datashould be interpreted with care, as explained above.

MPI PROFILING
The collect command can be used for MPI profiling to manage collection of the data from the constituent
MPI processed, collect MPI trace data, and organize the data into a single "founder" experiment, with
"subexperiments" for each MPI process.

Thecollect command can be used with MPI by simply prefacing the command that starts the MPI job and
its arguments with the desiredcollect command and its arguments (assuming you have inserted the-- argu-
ment to indicate the end of thempirun arguments). For example, on an SMP machine,

% mpirun -np 16 -- a.out 3 5
can be replaced by

% collect -M on mpirun -np 16 -- a.out 3 5
This command runs an MPI tracing experiment on each of the 16 MPI processes, collecting them all in an
MPI experiment, named by the usual conventions for naming experiments.

The initial collect process reformats thempirun command to specify runningcollect with appropriate
arguments on each of the individual MPI processes.

Note that the-- argument immediately before the target name is required for MPI profiling (although it is
optional formpirun itself), so thatcollect can separate thempirun arguments from the target and its argu-
ments. Ifit is not supplied,collectprints an error message, and no experiment is run.

March 2009 12

collect(1) collect(1)

Furthermore, a-x PATH argument is added to thempirun arguments bycollect, so that the remote col-
lect’s can find their targets. Ifany environment variables in your environment begin with "VT_" or with
"SP_COLLECTOR_", they are passed to the remote collect with -x flags for each.

MIMD MPI runs are supported, with the similar proviso that there must be a "--" argument after each ":"
(indicating a new target and localmpirun arguments for it). If it is not supplied,collect prints an error mes-
sage, and no experiment is run.

Some versions of Sun HPC ClusterTools have functionality for MPI State profiling. When clock-profiling
data is collected on an MPI experiment run with such a version of ClusterTools, two additional metrics can
be shown:

MPI Work
MPI Wait

MPI Work accumulates when the process is inside the MPI runtime doing work, such as processing
requests or messages; MPI Wait accumulates when the process is inside the MPI runtime, but waiting for an
ev ent, buffer, or message.

In the Analyzer, when MPI trace data is collected, two additional tabs are shown, MPI Timeline and MPI
Chart.

The technique of usingmpirun to spawn explicit collect commands on the MPI processes is no longer sup-
ported to collect MPI trace data, and should not be used. It can still be used for all other types of data.

MPI profiling is based on the open source VampirTrace 5.5.3 release.It recognizes several supported Vam-
pirTrace environment variables, and a new one,VT_STACKS, which controls whether or not callstacks are
recorded in the data.For further information on the meaning of these variables, see the VampirTrace 5.5.3
documentation.

The default values of the environment variablesVT_BUFFER_SIZE andVT_MAX_FLUSHES limit the
internal buffer of the MPI API trace collector to 64 MB and the number of times that the buffer is flushed to
1, respectively. Events that are to be recorded after the limit has been reached are no longer written into the
trace file. The environment variables apply to every process of a parallel application, meaning that applica-
tions with n processes will typically create trace files n times the size of a serial application.

To remove the limit and get a complete trace of an application, setVT_MAX_FLUSHES to 0. This setting
causes the MPI API trace collector to flush the buffer to disk whenever the buffer is full. To change the size
of the buffer, use the environment variable VT_BUFFER_SIZE. The optimal value for this variable
depends on the application which is to be traced. Setting a small value will increase the memory available
to the application but will trigger frequent buffer flushes by the MPI API trace collector. These buffer
flushes can significantly change the behavior of the application. On the other hand, setting a large value,
like 2G, will minimize buffer flushes by the MPI API trace collector, but decrease the memory available to
the application. If not enough memory is available to hold the buffer and the application data this might
cause parts of the application to be swapped to disk leading also to a significant change in the behavior of
the application.

Another important variable isVT_VERBOSE, which turns on various error and status messages, and setting
it to 2 or higher is recommended if problems arise.

USING COLLECT WITH PPGSZ
Thecollectcommand can be used withppgszby running thecollectcommand on theppgszcommand, and
specifying the-F on flag. Thefounder experiment is on theppgszexecutable and is uninteresting. If your
path finds the 32-bit version ofppgsz, and the experiment is being run on a system that supports 64-bit pro-
cesses, the first thing the collect command does is execute an exec function on its 64-bit version, creating
_x1.er. That executable forks, creating_x1_f1.er. The descendant process attempts to execute anexec
function on the named target, in the first directory on your path, then in the second, and so forth, until one
of theexecfunctions succeeds. If, for example, the third attempt succeeds, the first two descendant experi-
ments are named_x1_f1_x1.erand_x1_f1_x2.er, and both are completely empty. The experiment on the
target is the one from the successfulexec, the third one in the example, and is named_x1_f1_x3.er, stored

March 2009 13

collect(1) collect(1)

under the founder experiment. Itcan be processed directly by invoking the Analyzer or theer_print utility
on test.1.er/_x1_f1_x3.er.

If the 64-bitppgsz is the initial process run, or if the 32-bitppgsz is invoked on a 32-bit kernel, thefork
descendant that executesexecon the real target has its data in_f1.er, and the real target’s experiment is in
_f1_x3.er, assuming the same path properties as in the example above.

See the section "FOLLOWING DESCENDANT PROCESSES", above. For more information on hardware
counters, see the "Hardware Counter Overflow Profiling" section below.

USING COLLECT ON SETUID/SETGID TARGETS
The collect command operates by inserting a shared library, libcollector.so, into the target’s
address space (LD_PRELOAD), and by using a second shared library, collaudit.so, to record
shared-object use with the runtime linker’s audit interface (LD_AUDIT). Those two shared
libraries write the files that constitute the experiment.

Several problems might arise ifcollect is invoked on executables that call setuid or setgid, or that create
descendant processes that call setuid or setgid. If the user running the experiment is not root, collection
fails because the shared libraries are not installed in a trusted directory. The workaround is to run the
experiments as root, or usecrle(1) to grant permission. Users should, of course, take great care when cir-
cumventing security barriers, and do so at their own risk.

In addition, the umask for the user running thecollect command must be set to allow write permission for
that user, and for any users or groups that are set by the setuid/setgid attributes of a program beingexec’d
and for any user or group to which that program sets itself. If the mask is not set properly, some files might
not be written to the experiment, and processing of the experiment might not be possible. If the log file can
be written, an error is shown when the user attempts to process the experiment.

Other problems can arise if the target itself makes any of the system calls to set UID or GID, or if it
changes its umask and then forks or runs exec on some other process, orcrle was used to configure how the
runtime linker searches for shared objects.

If an experiment is started as root on a target that changes its effective GID, theer_archive process that is
automatically run when the experiment terminates fails, because it needs a shared library that is not marked
as trusted.In that case, you can runer_archive (or er_print or Analyzer) explicitly by hand, on the
machine on which the experiment was recorded, immediately following the termination of the experiment.

DATA COLLECTED
Three types of data are collected: profiling data, tracing data and sampling data. The data packets recorded
in profiling and tracing include the callstack of each LWP, the LWP, thread, and CPU IDs, and some event-
specific data. The data packets recorded in sampling contain global data such as execution statistics, but no
program-specific or event-specific data. All data packets include a timestamp.

Clock-based Profiling
The event-specific data recorded in clock-based profiling is an array of counts for each accounting
microstate. The microstate array is incremented by the system at a prescribed frequency, and is
recorded by the Collector when a profiling signal is processed.

Clock-based profiling can run at a range of frequencies which must be multiples of the clock resolu-
tion used for the profiling timer. If you try to do high-resolution profiling on a machine with an oper-
ating system that does not support it, the command prints a warning message and uses the highest
resolution supported. Similarly, a custom setting that is not a multiple of the resolution supported by
the system is rounded down to the nearest non-zero multiple of that resolution, and a warning mes-
sage is printed.

Clock-based profiling data is converted into the following metrics:

User CPU Time

March 2009 14

collect(1) collect(1)

Wall Time
Total LWP Time
System CPU Time
Wait CPU Time
User Lock Time
Te xt Page Fault Time
Data Page Fault Time
Other Wait Time

For experiments on multithreaded applications, all of the times, other than Wall Time, are summed
across all LWPs in the process;Wall Time is the time spent in all states for LWP 1 only. Total LWP
Time adds up to the real elapsed time, multiplied by the average number of LWPs in the process.

If clock-based profiling is performed on an OpenMP program, two additional metrics:

OpenMP Work
OpenMP Wait

are provided. Onthe Solaris OS, OpenMP Work accumulates when work is being done in parallel.
OpenMP Wait accumulates when the OpenMP runtime is waiting for synchronization, and accumu-
lates whether the wait is using CPU time or sleeping, or when work is being done in parallel, but the
thread is not scheduled on a CPU.

On Linux, OpenMP Work and OpenMP Wait are accumulated only when the process is active in
either user or system mode. Unless you have specified that OpenMP should do a busy wait, OpenMP
Wait on Linux will not be useful.

If clock-based profiling is performed on an MPI program, run under Sun HPC ClusterTools release
8.1 or later, two additional metrics:

MPI Work
MPI Wait

is provided. OnSolaris, MPI Work accumulates when the MPI runtime is active. MPI Wait accumu-
lates when the MPI runtime is waiting for the send or receive of a message, or when the MPI runtime
is active, but the thread is not running on a CPU.

On Linux, MPI Work and MPI Wait are accumulated only when the process is active in either user or
system mode. Unless you have specified that MPI should do a busy wait, MPI Wait on Linux will not
be useful. If clock-based dataspace profiling is specified, an additional metric:

Max. Mem Stalls
is provided.

Hardwar e Counter Overflow Profiling
Hardware counter overflow profiling records the number of events counted by the hardware counter
at the time the overflow signal was processed. This type of profiling is now available on systems run-
ning the Linux OS, provided that they hav ethe Perfctr patch installed.

Hardware counter overflow profiling can be done on systems that support overflow profiling and that
include the hardware counter shared library, libcpc.so(3). You must use a version of the Solaris OS
no earlier that the Solaris 10 OS. On UltraSPARC[R] computers, you must use a version of the hard-
ware no earlier than the UltraSPARC III hardware. Oncomputers that do not support overflow profil-
ing, an attempt to select hardware counter overflow profiling generates an error.

March 2009 15

collect(1) collect(1)

The counters available depend on the specific CPU processor and operating system. Running thecol-
lect command with no arguments prints out a usage message that contains the names of the counters.
The counters that are aliased to common names are displayed first in the list, followed by a list of the
raw hardware counters. If neither the performance counter subsystem nor collect know the names for
the counters on a specific chip, the tables are empty. In most cases, however, the counters can be
specified numerically. The lines of output are formatted similar to the following:

Aliased HW counters available for profiling:
cycles[/{0|1}],9999991 (’CPU Cycles’, alias for Cycle_cnt; CPU-cycles)
insts[/{0|1}],9999991 (’Instructions Executed’, alias for Instr_cnt; events)
dcrm[/1],100003 (’D$ Read Misses’, alias for DC_rd_miss; load events)
...

Raw HW counters available for profiling:
Cycle_cnt[/{0|1}],1000003 (CPU-cycles)
Instr_cnt[/{0|1}],1000003 (events)
DC_rd[/0],1000003 (load events)
SI_snoop[/0],1000003 (not-program-related events)
...

In the first line of aliased counter output, the first field, "cycles", gives the counter name that can be
used in the−h counter... argument. It is followed by a specification of which registers can be used for
that counter. The next field, "9999991", is the default overflow value for that counter. The following
field in parentheses, "CPU Cycles", is the metric name, followed by the raw hardware counter name.
The last field, "CPU-cycle", specifies the type of units being counted. There can be up to two words
for the type of information. The second or only word of the type information can be either "CPU-
cycles" or "events". If the counter can be used to provide a time-based metric, the value is CPU-
cycles; otherwise it is events.

The second output line of the aliased counter output above has "events" instead of "CPU-cycles" at
the end of the line, indicating that it counts events, and cannot be converted to a time.

The third output line above has two words of type information, "load events", at the end of the line.
The first word of type information can have the value of "load", "store", "load-store", or"not-pro-
gram-related". The first three of these type values indicate that the counter is memory-related and the
counter name can be preceded by the "+" sign when used in the collect -h command. The "+" sign
indicates the request for data collection to attempt to find the precise instruction and virtual address
that caused the event on the counter that overflowed.

The "not-program-related" value indicates that the counter captures events initiated by some other
program, such as CPU-to-CPU cache snoops. Using the counter for profiling generates a warning and
profiling does not record a call stack. It does, however, show the time being spent in an artificial func-
tion called "collector_not_program_related". Thread IDs and LWP IDs are recorded, but are mean-
ingless.

Each line in the raw hardware counter list includes the internal counter name as used by cputrack(1),
the register number(s) on which that counter can be used, the default overflow value, and the counter
units, which is either CPU-cycles or Events.

EXAMPLES:

Example 1: Using the aliased counter information listed in the above sample output, the following
command:

collect -h cycles/0,hi,+dcrm,9999

March 2009 16

collect(1) collect(1)

enables the CPU Cycle profiling on register 0. The "hi" value enables a sample rate that is approxi-
mately 10 times faster than the default rate of 9999991. The "dcrm" value enables the D$ Read Miss
profiling on register 1 and the preceding "+" enables Dataspace profiling for the dcrm. The "9999"
value sets the sampling to be done every 9999 read misses, instead of the default value of every
100003 read misses.

Example 2:

Running thecollectcommand with no arguments on an AMD Opteron machine would produce a raw
hardware counter output similar to the following :

FP_dispatched_fpu_ops[/{0|1|2|3}],1000003 (events)
FP_cycles_no_fpu_ops_retired[/{0|1|2|3}],1000003 (CPU-cycles)
...

Using the above raw hardware counter output, the following command:

collect -h FP_dispatched_fpu_ops˜umask=0x3/2,10007

enables the Floating Point Add and Multiply operations to be tracked at the rate of 1 capture every
10007 events. (For more details on valid attribute values, refer to the processor documentation). The
"/2" value specifies the data is to be captured using the register 2 of the hardware.

Synchronization Delay Tracing
Synchronization delay tracing records all calls to the various thread synchronization routines where
the real-time delay in the call exceeds a specified threshold. The data packet contains timestamps for
entry and exit to the synchronization routines, the thread ID, and the LWP ID at the time the request
is initiated. (Synchronization requests from a thread can be initiated on one LWP, but complete on
another.)

Synchronization delay tracing data is converted into the following metrics:

Synchronization Delay Events
Synchronization Wait Time

Heap Tracing
Heap tracing records all calls tomalloc, free, realloc, memalign, and valloc with the size of the
block requested, its address, and forrealloc, the previous address.

Heap tracing data is converted into the following metrics:

Leaks
Bytes Leaked
Allocations
Bytes Allocated

Leaks are defined as allocations that are not freed.If a zero-length block is allocated, it counts as an
allocation with zero bytes allocated. If a zero-length block is not freed, it counts as a leak with zero
bytes leaked.

For applications written in the Java[TM] programming language, leaks are defined as allocations that
have not been garbage-collected. Heapprofiling for such applications is obsolescent and will not be
supported in future releases.

Heap tracing experiments can be very large, and might be slow to process.

March 2009 17

collect(1) collect(1)

MPI Tracing
MPI tracing records calls to the MPI library for functions that can take a significant amount of time
to complete. MPI tracing is implemented using the Open Source Vampir Trace code.

MPI tracing data is converted into the following metrics:

MPI Time
MPI Sends
MPI Bytes Sent
MPI Receives
MPI Bytes Received
Other MPI Events

MPI Time is the total LWP time spent in the MPI function.IF MPI state times are also collected,
MPI Work Time plus MPI Wait Time for all MPI functions other than MPI_Init and MPI_Finalize
should approximately equal MPI Work Time. OnLinux, MPI Wait and Work are based on user+sys-
tem CPU time, while MPI Time is based on real tine, so the numbers will not match.

The MPI Bytes Received metric counts the actual number of bytes received in all messages.MPI
Bytes Sent counts the actual number of bytes sent in all messages. MPI Sends counts the number of
messages sent, and MPI Recieves counts the number of messages received. MPI_Sendrecvcounts as
both a send and a receive. MPI Other Events counts the events in the trace that are neither sends nor
receives.

Count Data
Count data is recorded by instrumenting the executable, and counting the number of times each
instruction was executed. Italso counts the number of times the first instruction in a function is
executed, and calls that the function execution count.

Count data is converted into the following metric:

Bit Func Count
Bit Inst Exec
Bit Inst Annul

Data−race Detection Data
Data-race detection data consists of pairs of race-access events that constitute a race. The events are
combined into a race, and races for which the call stacks for the two access are identical are merged
into a race group.

Data-race detection data is converted into the following metric:

Race Accesses

Deadlock Detection Data
Deadlock detection data consists of pairs of threads with conflicting locks.

Deadlock detection data is converted into the following metric:

Deadlocks

Sampling and Global Data
Sampling refers to the process of generating markers along the time line of execution. At each sam-
ple point, execution statistics are recorded. All of the data recorded at sample points is global to the
program, and does not map to function-level metrics.

March 2009 18

collect(1) collect(1)

Samples are always taken at the start of the process, and at its termination. By default or if a non-zero
−S argument is specified, samples are taken periodically at the specified interval. In addition, sam-
ples can be taken by using thelibcollector(3) API.

The data recorded at each sample point consists of microstate accounting information from the ker-
nel, along with various other statistics maintained within the kernel.

RESTRICTIONS
The Collector can support up to 16K user threads. Data from additional threads is discarded, and a collec-
tor error generated. To support more threads, set the environment variable SP_COLLEC-
TOR_NUMTHREADS to a larger number.

By default, the Collector collects stacks that are 256 frames deep.To support deeper stacks, set the envi-
ronment variable SP_COLLECTOR_STACKBUFSZ to a larger number.

The Collector interposes on some signal-handling routines to ensure that its use of SIGPROF signals for
clock-based profiling and SIGEMT (Solaris) or SIGIO (Linux) for hardware counter overflow profiling is
not disrupted by the target program. The Collector library re-installs its own signal handler if the target
program installs a signal handler. The Collector’s signal handler sets a flag that ensures that system calls are
not interrupted to deliver signals. This setting could change the behavior of the target program.

The Collector interposes onsetitimer(2) to ensure that the profiling timer is not available to the target pro-
gram if clock-based profiling is enabled.

The Collector interposes on functions in the hardware counter library, libcpc.so, so that an application can-
not use hardware counters while the Collector is collecting performance data. The interposed functions
return a value of -1.

Dataspace profiling are not available on systems running the Linux OS.

For this release, the data from collecting periodic samples is not reliable on systems running the Linux OS.

For this release, wide data discrepancies are observed when profiling multithreaded applications on systems
running the RedHat Enterprise Linux OS.

Hardware counter overflow profiling cannot be run on a system wherecpustat is running, becausecpustat
takes control of the counters, and does not let a user process use them.

Java Profiling requires JDK 6 Update 3 or later updates of JDK 6.

Data is not collected on descendant processes that are created to use thesetuid attribute, nor on any descen-
dant processes created with anexecfunction run on an executable that is not dynamically linked. Further-
more, subsequent descendant processes might produce corrupted or unreadable experiments. The
workaround is to ensure that all processes spawned are dynamically-linked and do not have the setuid
attribute.

Applications that callvfork (2) have these calls replaced by a call tofork1 (2).

SEE ALSO
analyzer(1), collector(1), dbx(1), er_archive(1), er_cp(1), er_export(1), er_mv(1), er_print (1),
er_rm(1), tha(1), libcollector(3), and thePerformance Analyzermanual.

March 2009 19

