collect(1) collect(1)

NAME
collect - command used to collect program performance data

SYNOPSIS
collectcollect-arguments tget target-arguments
collect
collect -V
collect -R

DESCRIPTION
The collectcommand runs the et process and records performance data and global data for the process.
Performance data is collected using profiling or tracing technidlies.data can be examined with a GUI
program &nalyzer) or a cmmand-line programe(_print). Thedata collection software run by tlcel-
lect command is referred to here as the Collector.

The data from a single run of thellect command is called arxperiment. Theexperiment is represented
in the file system as a directpwjith various files inside that directory.

Thetarget is the path name of thexeeutable, Jea(TM) .jar file, or Jaa .classfile for which you want to
collect performance data(For more information about va profiling, see AVA PROFILING, below.)
Executables that are targets for t@lect command can be compiled withyalevd of optimization, lut
must use dynamic linking. If a program is statically linked,dblkect command prints an error message.
In order to see annotated source usinglyzer or er_print, targets should be compiled with the flag,
and should not be stripped.

In order to enable dataspace profilingeautables must be compiled with thehwcprof -xdebugfor-
mat=dwarf -g flags. Thesdlags are valid for the C, C++ and Fortran compilers, but only &RE[R]
platforms. Se¢he section "BTASPACE PROFILING", below.

Thecollectcommand uses the following strategy to find its target:

- If there is a file with the name of thedat that is markedxecutable, the file is verified as an ELF
executable that can run on the target machine. If the file is not sualidaBLF executable, thecollect
command fails.

- If there is a file with the name of the target, and the file isxaotiable collect checks whether the file
is a Jag[TM] jar file or class file. If the file is a va jar file or class file, the y@TM] virtual machine
(JVM) software is inserted as the target, withy aecessary flags, and data is collected on that JVM
machine. (Thaerms "J&a \irtual machine" and "JVM" mean a virtual machine for thea[JaV] plat-
form.) Seethe section on AVA PROFILING", below.

- If there is no file with the name of thegdat, your path is searched to find amsoceitable; if an gecutable
is found, it is verified as described &bo

- If no file of the current name is found, the command looks for a file with that name and thecktsisg
appended; if a file is found, the gat of a JVM machine is inserted, with the appropriate flags, ags.abo

- If none of these procedures can find the target, the command fails.

OPTIONS
If invoked with no aguments, print a usage summangluding the default configuration of theperiment.
If the processor supports hardware counterfow profiling, print two lists containing information about
hardware counters. The first list contains "aliased" hardware counters; the second list contdiasira
ware counters.For more details, see the "Hardware Counter Overfhofiling” section belav.

Data Specifications
—p option
Collect clock-based profiling data. The allowed valuegptionare:

Value Meaning

March 2009 1

collect(1)

collect(1)

off Turn off clock-based profiling

on Turn on clock-based profiling with the default profiling interval of approxi-
mately 10 milliseconds.

lo[w] Turn on clock-based profiling with the low-resolution profiling in&rof
approximately 100 milliseconds.

hi[gh] Turn on clock-based profiling with the high-resolution profiling irdérof
approximately 1 millisecond.

n Turn on clock-based profiling with a profiling interval of The \aluen can be

an integer or a floating-point numbeiith a sufix of u for values in microsec-
onds, orm for values in millisecondslf no suffix is used, assume the value to
be in milliseconds.

If the value is smaller than the clock profiling minimum, set it to the minimum;
if it is not a multiple of the clock profiling resolution, round down to the nearest
multiple of the clock resolutionlf it exceeds the clock profiling maximum,
report an errorlf it is negdive a zero, report an errorf invdked with no agu-
ments, report the clock-profiling intervals.

An optional+ can be prepended to the clock-profiling interval, specifying ¢bdéct capture
dataspace datdt will do so by backtracking one instruction, and if that instruction is a memory
instruction, it will assume that the delay was atttétol to that instruction and record theerg,
including the virtual and physical addresses of the memory reference.

Caution must be used in interpreting clock-based dataspace data; the delay might be completely
unrelated to the memory instruction that happened to precede the instruction with the clock-profile
hit; for example, if a memory instruction hits in the cache, but is in a kaputed may times,

high counts on that instruction might appear to indicate memory stall delaybghdo not. This
situation can be disambiguated by examining the disassembly around the instruction indicating the
stall. If the surrounding instructions alsovldigh clock-profiling metrics, the memory delay is

likely to be spurious.

Clock-based dataspace profiling should be used only on machines that do not suppartehardw
counter profiling on memory-based counters.

See the section "STASRACE PROFILING", below.

If no explicit —p off agument is gien, and no hardware countevetflow profiling is specified,
turn on clock-based profiling.

—h ctr_def..[,ctr_n_def

Collect hardware countewverflow profiles. The number of counter definitionstr(defthrough
ctr_n_def) is processodependent. For example, on an UltraSPARC |ll system, updedunters

can be programmed; on an Intel Pentium IV with Hyperthreading, up to 18 countevsilatdea

You can ascertain the maximum number of hardware counters definitions for profiling geta tar
system, and the full list ofvailable hardware counters, by running the collect command without
ary arguments.

This option is nw available on systems running the Linux O%ou are responsible for installing

the required perfctr patch on the system; that patch can be downloaded from:
http://user.it.uu.se/"mikpe/linux/perfctr/2.6/perfctr-2.6.15.tar.gz

Instructions for installation are contained within that tar filbe usedevel libperfctr.solibraries

are searched for usind LIBRARY_P ATH, and then inusr/local/lib, /usr/lib/, and /lib/ for the

32-bit versions, ofusr/local/lib64 /usr/lib64/and /lib64/ for the 64-bit versions.

March 2009 2

collect(1)

collect(1)

Each counter definition takes one of the feilog forms, depending on whether attributes for
hardware counters are supported on the processor:

1. [#]ctr[/reg#][,intervall
2. [Hctr[attr=val]...["attrN=valN][/reg#][,interval]
The meanings of the counter definition options are as follows:

Value

+

ctr

attr=val

reg#

interval

Meaning

Optional parameter that can be applied to memory-related counters. Caluses
lect to collect dataspace data by backtracking to find the instruction that trig-
gered the werflow, and to find the virtual and gkical addresses of the memory
reference. Backtrackingorks on SPARC processors, and only with counters of
typeload, store, or load-store, as dsplayed in the counter list obtained by run-
ning thecollect command without gncommand-line gguments. Seéhe sec-

tion "DATASFACE PROFILING", below.

Processoespecific counter name. You can ascertain the list of counter names by
running thecollect command withoutiry command-line aguments. Ommost
systems, een if a counter is not listed, it can still be specified by a numeric
value, either in hexadecimal (0x1234) or decimtivers for older chips do not
support numeric values, but s for more recent chips do.

On some processors, attribute options can be associated with atecdwnter

If the processor supports attribute options, then runcitgct without ary
command-line arguments specifies the counter definitiondef in the second

form listed abwe, and provide a list of attribute names to usedtr. Valueval

can be in decimal or hexadecimal format. Hexadecimal format numbers are in C
program format where the number is prepended by a zero amudase x
(Oxhex_number

Hardware register to use for the countdrnot specified,collect attempts to
place the counter into the firstailable register and as a result, might be unable
to place subsequent counters due to register conflicygu specify more than
one counterthe counters must use differengisters. Thdist of allowable reg-
ister numbers can be ascertained by runningctiiect command without an
command-line arguments.

Sampling frequeng st by defining the countererflow value. \alid values are
as follows:

Value Meaning

on Select the defult rate, which can be determined by running
the collect command without ancommand-line ajuments.
Note that the defaultalue for all rav counters is the same,
and might not be the most suitabldue for a specific counter

hi Set interval to approximately 10 times shorter than
lo Set interval to approximately 10 times longer tban
value Set interval to a specific value, specified in decimal o he

adecimal format.

An experiment can specify both hardware counterflow profiling and clock-based profilinglf
hardware counter werflow profiling is specified, but clock-based profiling is ngplitly speci-
fied, turn of clock-based profiling.

For more information on hardware counters, see the "HardwCounter Carflov Profiling"

March 2009 3

collect(1) collect(1)

section belar.

—soption
Collect synchronization tracing data.

The minimum delay threshold for tracingeats is set usingption The allowed values ajiption

are:

Value Meaning

on Turn on synchronization delay tracing and set the threshold value by calibration
at runtime

calibrate Same asn

off Turn off synchronization delay tracing

n Turn on synchronization delay tracing with a threshallie ofn microseconds;
if nis zero, trace allents

all Turn on synchronization delay tracing and trace all synchronizatsnse

By default, turn dfsynchronization delay tracing.

Record synchronizationvents for Jga nonitors, lut not for natre g/nchronization within the

JVM machine.
—H option
Collect heap trace data. The allowed valuespifonare:
Value Meaning
on Turn on tracing of memory allocation requests
off Turn off tracing of memory allocation requests

By default, turn dfheap tracing.
Record heap-tracingzents for aly native alls. Treat calls tonmap as memory allocations.
Heap profiling is not supported fonvdegrograms. Specifying it is treated as an error.

Note that heap tracing might produce very langeeeéments. Suclkexperiments areary slav to
load and browse.

-M option
Specify collection of an MPIxperiment. (SedMPl PROFILING, belev.) The target ofcollect
should bampirun, and its arguments should be separated from the uget {@nat is the programs
that are to be run hypirun) by an nserted- argument. The experiment is named as usual, and is
referred to as the "founder experiment”; its directory contains subexperiments for each of the MPI
processes, named by rank. It is recommended that dmument alvays be used witimpirun, so
that an experiment can be collected by prepenclitigct and its options to theapirun command
line.

The allowed values afptionare:

Value Meaning

MPI-version Turn on collection of an MPI experiment, assuming the MPI version named
off Turn off collection of an MPI experiment

By default, turn dfcollection of an MPI gperiment. Wheran MPI experiment is turned on, the

March 2009 4

collect(1) collect(1)

default setting form (see below) is changed ¢o.

The supported ersions of MPI are printed when you typsellect with no arguments, or in
response to an unrecognized version specified-With

—m option
Collect MPI tracing data. (See MPI PROFILING, helo

The allowed values afptionare:

Value Meaning
on Turn on MPI tracing information
off Turn off MPI tracing information

By default, turn df MPI tracing, except if theM flag is enabled, in which case MPI tracing is
turned on by defult. Normally MPI experiments are collected withl, and no user control of
MPI tracing is needed. If you want to collect an MPI experiment, but not collect MPI trace data,
you can use the explicit flags:

-M on -m off.

—c option
Collect count data, using bit(1) instrumentatiorhis option is ®ailable only on SRRC-based
systems.

The allowed values afptionare:

Value Meaning
on Turn on count data
static Turn on simulated count data, based on the assumption > iestruction

was executed exactly once.
off Turn off count data

By default, turn df count data. Count data cannot be collected withather type of data. ¢t

count data or simulated count data, tlecatable and anshared-objects that are instrumented

and statically linked are counted; for count data, but not simulated count data, dynamically loaded
shared objects are also instrumented and counted.

In order to collect count data, theeeutable must be compiled with thdinopt=prepare flag.

—| directory
Specify a directory for bit(1) instrumentation. This optionviailable only on SRRC-based sys-
tems, and is meaningful only whemis specified.

—-N libname
Specify a library to be excluded from bit(1) instrumentation, whether the library is linked into the
executable, or loaded with dlopen. This option Vgikable only on SRRC-based systems, and is
meaningful only wherc is also specified. MultipleN options can be specified.

—r option
Collect thread-analyzer data.

The allowed values afptionare:
Value Meaning

March 2009 5

collect(1) collect(1)

on Turn on thread analyzer data-race-detection data

all Turn on all thread analyzer data

off Turn off thread analyzer data

dtl,...,dtN Turn on specific thread analyzer data types, as nhamed bliy*tharameters.

The specific types of thread analyzer data that can be requested are:

Value Meaning
race Collect datarace data
deadlock Collect deadlock and potential-deadlock data

By default, turn dfall thread-analyzer data.

Thread Analyzer data cannot be collected with taacing data, but can be collected in conjunc-
tion with clock- or hardware counter profiling data. Thread Analyzer data significantly slems do
the eecution of the target, and profiles might not be meaningful as applied to the user code.

Thread Analyzer xperiments can be examined with eitlaalyzer or with tha. The latter dis-
plays a simplified list of default tabs, but is otherwise identical.

In order to enable data-race detectiomcatables must be instrumented, either at compile time, or
by invoking a postprocessoif the target is not instrumented, and none of the shared objects on its
library list is instrumented, a warning is displayed, but the experiment is run. Other Thread Ana-
lyzer data do not require instrumentation.

See thagha(1l) man page for more detail.

—=Sinterval
Collect periodic samples at the interval specified (in seconds). Record data samples from the pro-
cess, and include a timestamp amdcation statistics from the kernel, among other thingke
allowed values oihterval are:

Value Meaning

off Turn off periodic sampling

on Turn on periodic sampling with the default sampling interval (1 second)

n Turn on periodic sampling with a sampling intervalnofh secondsn must be
positive.

By default, turn on periodic sampling.

If no data specification arguments are supplied, collect clock-based profiling data, using the
default resolution.

If clock-based profiling is explicitly disabled, and neither hardware coumeftaw profiling nor
ary kind of tracing is enabled, display a warning that no functigd-léata is being collected,
then eecute the target and record global data.

Experiment Controls
-L size Limit the amount of profiling and tracing data recordeditemegabytes. Thdimit applies to the
sum of all profiling data and tracing datat bot to sample points. The limit is only approximate,
and can be>eeeded. Whetthe limit is reached, stop profiling and tracing data, but keep the
experiment open and record samples until the target process terminates. The allowed values of
sizeare:

March 2009 6

collect(1) collect(1)

Value Meaning

unlimited or none
Do not impose a size limit on the experiment

n Impose a limit ofh MB.; n must be positie and greater than zero.

The default limit on the amount of data recorded is 2000 Mbytes.

—F option
Control whether or not descendant processes shouddtheir data recorded. The allowedlwes
of optionare:

Value Meaning

on Record experiments on descendant processesfdrimrandexec

all Record experiments on all descendant processes

off Do not record experiments on descendant processes

=<regex> Record experiments on all descendant processes wkesgable name (a.out

name) or lineage match the regular expression.

By default, do not record descendant procesBesmore details, read the section "FOLWING
DESCENDANT PROCESSES", b&lo

—A option
Control whether or not load objects used by the target process should bedaocitopied into
the recordedxeriment. Theallowed values obptionare:

Value Meaning

on Archive load objects into the experiment.

off Do not archie load objects into the experiment.

copy Copy and archve load objects (the target andyastared objects it uses) into the
experiment.

If you copy experiments onto a different machine, or read the experiments fronfeaedif
machine, specify-A copy. Note that doing so does not gogny sources or object files (.0’s); it is
your responsibility to ensure that those files are accessible from the machine whepetinecait
is being examined.

The default setting forA is on.

J OptlonControl Jaa profiling when the target is a JVM machine. The allowed valueptibnare:
Value Meaning
on Record profiling data for the JVM machine, and recognize methods compiled by
the Jaa HotSpot[TM] virtual machine, and also record@daallstacks.
off Do not record Ja profiling data.
<path> Record profiling data for the JVM, and use the JVM as installed in <path>.

See the section AYVA PROFILING", below.

You must use-j on to obtain profiling data if the target is a JVM machifi&e—j on option is not
needed if the target is a class or jar file. if you are on a 64-bit JVM machine, you must specify its
path explicitly as the tget; do not use thel64 option for a 32-bit JVM machine. If th¢ on

option is specified, but the target is not a JVM machine, atidnargument might be passed to

March 2009 7

collect(1) collect(1)

the taget, and no data would be recorded. Thkkect command validates the version of the JVM
machine specified for va profiling.

-Jjava_arg
Specify additional arguments to be passed to the JVM used for profifing] is specified, bt
Java rofiling is not specified, an error is generated, and no experimenTh&java_argmust be
surrounded by quotes if it contains more than one argument. It consists of a set of tokens, sepa-
rated by either a blank or a tab; each token is passed as a separate argument to the JVM. Note that
most arguments to the JVM must begin with a "-" character.

-I signal
Record a sample point whemethe given dgnal is delvered to the process.

-y signal,r]
Control recording of data witkignal Wheneer the given dgnal is delered to the process,
switch between paused (no data is recorded) and resumed (data is recordedptstetas.the
resumed state if the optionalflag is given, otherwise start in the paused state. This option does
not affect the recording of sample points.

Output Controls
-0 eXperiment_name
Useexperiment_namas the name of the experiment to be recorddu experiment_namenust
end in the stringer; if not, print an error message and do not run the experiment.

If —ois not specified, ge the experiment a name of the fostemn.er, wherestemis a string, and
nis a numberlf a group name has been specified with set stemto the group name without the
.erg suffix. If no group name has been specifiedstsatto the string test'.

If invoked from one of the commands used to run MPI jobs, farmgle,mpirun, but without-M

on, and —o is not specified, takthe value ofn used in the name from the environmeatiable
used to define the MPI rank of that process. Otherwise,teatne greater than the highest gee
currently in use. (See MPI PROFILING, beld

If the name is not specified in the fostemn.er, and the gien name is in use, print an error mes-
sage and do not run theperiment. Ifthe name is of the forstemn.er and the name supplied is
in use, record the experiment under a name corresponding to one greater than theahighesbt v
nthat is currently in use. Print a warning if the name is changed.

—d directory_name
Place the experiment in directatirectory_name If no directory is gven, place the experiment in
the current working directonyif a group is specified (segg, below), the group file is also written
to the directory named byd.

For the lightest-weight data collection, it is best to record data to a local file;-@itked to spec-
ify a directory in which to put the datddowever, for MPI experiments on a clusteéine founder

experiment must bevailable at the same path to all processes te f#h data recorded into the
founder experiment.

Experiments written to long-lateydile systems are especially problematic, and might progress
very slowly, especially if Sample data is collected on the defult). If you must record\er a
long-latengy connection, disable Sample data.

—g group_name
Add the experiment to the experiment grgupup_name Thegroup_namestring must end in the
string.erg; if not, report an error and do not run the experiment.
The first line of a group file must contain the string
#analyzer experiment group
and each subsequent line is the name of an experiment.

March 2009 8

collect(1)

collect(1)

-Ofile Append all output frontollect itself to the named file, but do not redirect the output from the

spavned taget. Iffile is set to/dev/nullsuppress all output frorpllect, including ay error mes-
sages.

—t duration

Collect data for the specified duratioduration can be a single numbedollowed by eithem,
specifying minutes, os, specifying seconds (dafilt), or two such numbers separated by sign.

If one number is gien, data is collected from the start of the run until tvergtime; if two num-
bers are gien, data is collected from the first time to the secdfthe second time is zero, data is
collected until the end of the run. If danon-zero numbers arevgh, the first must be less than
the second.

Other Arguments
-P <pid>

Write a script fordbx to attach to the process with thevayi PID, and collect data from it, and
then irvoke dbx with that script. Only profiling data, not tracing data can be specified, and timed
runs ¢t) are not supported.

—C comment

Put the comment into theotesfile for the experiment. Upto ten-C arguments can be supplied.

Dry run: do not run the target, but print all the details of the experiment that would b&uran.
on-v.

Display the text version of the performance tools README in the terminal wintfothe
README is not found, print a arning. Donot examine further guments and do no further pro-
cessing.

Print the currentersion. Donot examine further arguments and do no further processing.
Print the current version and further detailed information about the experiment being run.

Leave te target process stopped on the exit frometlee system call, in order to alloa debug-
ger to attach to it. Theollectcommand prints a message with the process PID.

To atach a debugger to the gat once it is stopped Igollect, you must follev the procedure
below.

- Obtain the PID of the process from the message printed polleet -x command

Start the debugger

Configure the debugger to ignore SIGPIRand, if you chose to collect hardware counter data,
SIGEMT on Solaris or SIGIO on Linux

Attach to the process using the PID.

As the process runs under the control of the debutigeCollector records an experiment.

FOLLOWING DESCENDANT PROCESSES
Data from the initial process spaed by collect, called the founder process,\isagé collected.Processes
can create descendant processes by calling system library functions, includiagiahts woffork , exeg
system etc. If a-F argument is used, the collector can collect data for descendant processes, and it opens
a rew periment for each descendant process inside the pasqestiraent. Thes@ew experiments are
named with their lineage as follows:

- Anunderscore is appended to the createqperiment name.

- A code letter is added: either "f* for a fork, or "x" for a®® or "c" for other descendants.

- A number is added after the code lettehich is the inde of the fork or &ec. The assignment of this
number is applied whether the process was started successfully or not.

March 2009 9

collect(1) collect(1)

- The experiment suffix, ".er" is appended to the lineage.

For example, if the experiment name for the initial process is "test.1.er", the experiment for the descendant
process created by its third fork is "test.1.er/_f3.er". If that descendant preeess @& image, the cer
responding experiment name is "test.1.er/ f3_x1.er".

If -F onis used, descendant processes initiated by calferkd?), forkl (2), fork (3F), vfork (2), and
exed2) and its ariants are follwed. Thecall to vfork is replaced internally by a call forkl. Descen-
dants creates by calls sgsten(3C), systen(3F), sh(3F), popen(3C), and similar functions, and their asso-
ciated descendant processes, are not followed.

If the -F all agument is used, all descendants are fadld, including those froraystem(3C), system(3F),
sh(3F), popen(3C), and similar functions.

If the -F =<regex>argument is used, all descendants whose name or lineage match the rquelssien
are folloved. Whemmatching lineage, the ".er" should be omitted. When matching names, both the com-
mand, and its arguments are part of the expression.

For example, to capture data on the descendant process of thexéicitom the firstfork from the first call
to systemin the founderuse:
collect -F'=_c1 _f1_x1

To capture data on all the variantsefe¢ but notfork, use:
collect -F '=.*_x[0-9]/*

To capture data from a call gystem("echo hello")
but not system("goodbye"), use:
collect -F '=echo hello’

The Analyzer ancer_print automatically read experiments for descendant processes when the founder
experiment is read, but the experiments for the descendant processes are not selected for data display.

To =lect the data for display from the command line, specify the path name explicitly tceeitent or
Analyzer The specified path must include the foundgreziment name, and the descendampeement’s
name inside the founder directory.

For example, to see the data for the third fork of the test.1.er experiment:
er_print test.1.er/ f3.er
analyzer test.1.er/_f3.er

You can prepare an experiment group file with the explicit names of descendant experiments of interest.

To examine descendant processes in the Analyaad the foundengeriment and chhoseiéfv > Filter
data. The Analyzer displays a list of experiments with only the founder experiment checked. Uncheck the
founder experiment and check the descendant experiment of interest.

JAVA PROFILING
Java rofiling consists of collecting a performance experiment on the JVM machine as it runs your .class or
Jar files. If possible, callstacks are collected in both the d@del and in the machine model.

Data can be shown with wiemode set to UseiExpert, or Machine. User mode st® each method by
name, with data for interpreted and HotSpot-compiled methodsgatgpdogether; it also suppresses data
for non-userJava threads. Experinode separates HotSpot-compiled methods from interpreted methods,
and does not suppress non-useraJareads. Machinenode shows data for interpretedvdarethods
against the JVM machine as it does the interpreting, while data for methods compiled wittvaghe Ja
HotSpot virtual machine is reported for named methods. All threads axa shoall three modes, data is
reported in the usual way foryanon-OpenMP C, C++, or Fortran code called byaJdaget. Suchcode
corresponds to Vya rative methods. TheAnalyzer and theer_print utility can switch between the vie
mode Userview mode Expert, and we mode Machine, with User being the default.

Clock-based profiling and hardware counteerfiow profiling are supportedSynchronization tracing col-
lects data only on the i nonitor calls, and synchronization calls from wattode; it does not collect data

March 2009 10

collect(1) collect(1)

about internal synchronization calls within the JVM.
Heap tracing is not supported fovdgand generates an error if specified.

Whencollectinserts a target name fva into the argument list, it examines environmeatiables for a
path to thgavatarget, in the order JDK_HOME, and the®/A PATH. For the first of these eironment
variables that is set, the resultant target is verified as an kddutable. If it is notcollect fails with an
error indicating which environment variable was used, and the full path name that was tried.

If neither of those environment variables is setciiiect command uses the the version set by y@éarP
If there is ngavain your FATH, a system default déisr/java/bin/javais tried.

Java Rofiling requires Jeg| TM] 2 SDK (JDK) 6, Update 3 or later; some earlier versions (but no earlier
than JDK 1.4.2) might work, but are not supported.

JAVA PROFILING WITH A DLOPEN’ d LIBJVM.SO

Some applications are not pureaaut are C or C++ applications thavoke dopen to loadibjvm.sq and
then start the JVM by calling into itoTprofile such applications, set the environmeatiableSP_COL-
LECTOR_USE_JAVA_OPTIONS, and add-j on to the collect command line. Do not set either
LD_LIBRARY_P ATH for this scenario.

SHARED_OBJECT HANDLING

Normally, the collect command causes data to be collected for all shared objects in the address space of the
target, whether on the initial library list, ox@icitly dlopend. Howeve, there are some circumstances
under which some shared objects are not profiled.

One such scenario is when the target progranvikéd with lazy-loading. In such cases, the library is not
loaded at startup time, and is not loaded by explicitly caltilegpen so te shared object name is not
included in the xperiment, and all PCs from it are mapped tothmknown> function. The wrkaround

is to set LD_BIND_NQV, to force the library to be loaded at startup time.

Another such scenario is when theeeutable is bilt with the-B direct. In that case the object is dynami-
cally loaded by a call specifically to the dynamic linker entry poiiafen and the libcollector interposi-
tion is bypassed. The shared object name is not included inpgkedraent, and all PCs from it are mapped
to the<Unknown> function. The workaround is to not udgdirect.

OPENMP PROFILING

Data collection for OpenMP programs collects data that can be displayeyl df the three vier modes,
just as for Jea rograms. Thepresentation is identical for user mode and expert m8twe threads are
shavn as if thg were really forked from the master thread, aneetall stacks matching the master thread.
Frames in the call stack coming from the OpenMP runtime dimfet$k.s@ are suppressed-or machine
mode, the actual na# dacks are shown.

In user mode, arious artificial functions are introduced as the leaf function of a call stack vehehe
runtime library is in one of seral states. These functions are <OMR¥bead>, <OMP-idle>, <OMP-
reduction>, <OMP-implicit_barrier>, <OMPxglicit_barrier>, <OMP-lock_wait>, <OMP-critical_sec-
tion_wait>, and <OMP-ordered_section_wait>.

Two additional clock-profiling metrics are added to the data for clock-profiling experiments:

OpenMP Work
OpenMP Wait

OpenMP Work is counted when the OpenMP runtime thinks the code is doikg Wincludes time when

the process is consuming User-CPU time, but it also can include time when the process is consuming Sys-
tem-CPU time, waiting for page faults, waiting for the CBtd, Hence, OpenMP Work caxeeed User

CPU time. OpenMP Wit is accumulated when the OpenMP runtime thinks the process is waiting. It can
include User-CPU time for busy-waits (spin-waits), but it also includes Other-Wait time for sleep-waits.

The inclusve metrics are visible by default; the@usive ae not. Together the sum of those twmetrics
equals the Total LWP Time metrid@hese metrics are added for all clock- and hardware counter profiling

March 2009 11

collect(1) collect(1)

experiments.

Collecting information for eery fork in the execution of the program can be verypensve. You can sup-
press that cost by setting thevieanment ariableSP_COLLECTOR_NO_OMP. If you do so, the pro-
gram will have aubstantially less dilation, but you will not see the data frowestareads propage up the
the callerand eventually tomain(), as it rormally will without that variable being set.

A new wmllector for OpenMP 3.0 is enabled by aef in this release. It can profile programs that use
explicit tasking. Programsuilt with earlier compilers can be profiled with thewneollector only if a
patched version dibmtsk.sas available. Ifit is not installed, you can switch data collection to use the old
collector by setting the environment varialie_ COLLECTOR_OLDOMP.

Note that the OpenMP profiling functionality is onlyagable for applications compiled with the Studio
compilers, since it depends on the Studio compiler runti@&U-compiled code will only see machine-
level callstacks.

DATASPACE PROFILING
A dataspace profile is a data collection in which memory-relatertt such as cache misses, are reported
against the data object references that causevir@serather than just the instructions where the memory-
related gents occur Dataspace profiling is notvalable on systems running the Linux OS, nor on x86
based systems running the Solaris OS.

To dlow dataspace profiling, the target can be written in C, C++ootrdn, and must be compiled for
SFARC architecture, with thexhwcprof -xdebugformat=dwarf -g flags, as described al® Furthermore,
the data collected must be hardware counter profiles and the optionat be prepended to the counter
name. Ifthe optionak is prepended to one memory-related coytugrnot all, the counters without the
reports dataspace data against ¢<hlnknown> data object, with subtyp@ataspace data noteguested
during data collection)

With the data collected, thee_print utility allows three additional commandsata_objects data_single
anddata_layout, as vell as various commands relating to Memory Obje&se theer_print(1) man page
for more information.

In addition, the Analyzer mo includes tw tabs related to dataspace profiling, labeled DataObjects and
DatalLayout, as well as a set of tabs relating to Memory Objects. Seaalyzer(1l) man page for more
information.

Clock-based dataspace profiling should only be used on machines that do not support hardware counter
profiling with memory-based counters. It requires the same compilation flags as foarteactwnter pro-
filing. Datashould be interpreted with care, as explained/@abo

MPI PROFILING
The collect command can be used for MPI profiling to manage collection of the data from the constituent
MPI processed, collect MPI trace data, andaoize the data into a single "founder" experiment, with
"subexperiments" for each MPI process.

The collectcommand can be used with MPI by simply paéfig the command that starts the MPI job and
its arguments with the desiredllect command and its arguments (assuming yoi lirzserted the- argu-
ment to indicate the end of thgpirun amguments). Br example, on an SMP machine,

% mpirun -np 16 -- a.out 3 5
can be replaced by

% oollect -M on mpirun -np 16 -- a.out 3 5
This command runs an MPI tracingperiment on each of the 16 MPI processes, collecting them all in an
MPI experiment, named by the usualwantions for naming experiments.

The initial collect process reformats th@pirun command to specify runningollect with appropriate
arguments on each of the individual MPI processes.

Note that the- agument immediately before the target name is required for MPI profiling (although it is
optional formpirun itself), so thatollect can separate thrapirun arguments from the target and itgar
ments. [fit is not suppliedgollect prints an error message, and no experiment is run.

March 2009 12

collect(1) collect(1)

Furthermore, ax PATH amgument is added to thapirun arguments bycollect, so hat the remote col-
lect's an find their tegets. Ifary environment variables in your environmentgire with "VT_" or with
"SP_COLLECTOR_", theare passed to the remote collect with -x flags for each.

MIMD MPI runs are supported, with the similar piso that there must be a "--" argument after each ""
(indicating a nes target and locaimpirun arguments for it). If it is not suppliedpllect prints an error mes-
sage, and no experiment is run.

Some versions of Sun HPC ClusterToolsehfunctionality for MPI State profiling. When clock-profiling
data is collected on an MPxmgeriment run with such a version of ClusterTools) ddditional metrics can
be shown:

MPI Work
MPI Wait

MPI Work accumulates when the process is inside the MPI runtime doing work, such as processing
requests or messages; MPal\accumulates when the process is inside the MPI runtime, but waiting for an
event, buffer or message.

In the Analyzerwhen MPI trace data is collected,avadditional tabs are shown, MPI Timeline and MPI
Chart.

The technique of usingpirun to spawn gplicit collectcommands on the MPI processes is no longer sup-
ported to collect MPI trace data, and should not be used. It can still be used for all other types of data.

MPI profiling is based on the open soura@pirTrace 5.5.3 releasdt recognizes seral supported ¥m-
pirTrace environment variables, and avrane,VT_STACKS, which controls whether or not callstacks are
recorded in the dataFor further information on the meaning of these variables, seedimpi¥Trace 5.5.3
documentation.

The deéult values of the environmenanablesVT_BUFFER_SIZE andVT_MAX_FLUSHES limit the

internal uffer of the MPI API trace collector to 64 MB and the number of times thatufer is flushed to

1, respectiely. Events that are to be recorded after the limit has been reached are no longer written into the
trace file. The environment variables apply ¥erg process of a parallel application, meaning that applica-
tions with n processes will typically create trace files n times the size of a serial application.

To remove te limit and get a complete trace of an applicationy$etMAX_ FLUSHES to 0. This setting
causes the MPI API trace collector to flush théfdy to disk wheneer the tuffer is full. To change the size

of the luffer, use the environmentaviable VT_BUFFER_SIZE. The optimal value for this ariable
depends on the application which is to be traced. Setting a small value will increase the nveitablg a

to the application but will trigger frequentuffer flushes by the MPI API trace collectofhese hffer
flushes can significantly change the behavior of the application. On the other hand, settjeguuar

like 2G, will minimize huffer flushes by the MPI API trace collectbut decrease the memoryaidable to

the application. If not enough memory igiéable to hold the bffer and the application data this might
cause parts of the application to beapped to disk leading also to a significant change in the behavior of
the application.

Another important variable T_VERBOSEwhich turns on various error and status messages, and setting
it to 2 or higher is recommended if problems arise.

USING COLLECT WITH PPGSZ
Thecollectcommand can be used witpgszby running thecollectcommand on thppgszcommand, and
specifying theF on flag. Thefounder experiment is on thpgszexecutable and is uninteresting. If your
path finds the 32-bitarsion ofppgsz and the experiment is being run on a system that supports 64-bit pro-
cesses, the first thing the collect command doegesue an rec function on its 64-bit version, creating
_xl.er. That eecutable forks, creatingxl fl.er. The descendant process attemptsxecigte anexec
function on the named @et, in the first directory on your path, then in the second, and so forth, until one
of theexecfunctions succeeds. If, for example, the third attempt succeeds, the digdeendantxeri-
ments are namedx1_fl_x1.erand_x1_ fl_x2.erand both are completely emptf¥he periment on the
target is the one from the successdkg the third one in the example, and is named f1_x3.er stored

March 2009 13

collect(1) collect(1)

under the founder@eriment. Itcan be processed directly byaking the Analyzer or ther_print utility
ontest.l.er/_x1 fl_x3.er

If the 64-bitppgszis the initial process run, or if the 32-pipgszis invoked on a 2-bit kernel, thefork
descendant thaecutesexecon the real target has its data ifd.er, and the real tayet’s experiment is in
_f1 x3.er, assuming the same path properties as in the example.abo

See the section "FOLLOWING DESCENDANT PROCESSES"yab&or more information on hardave
counters, see the "Hardware Counter Overfhoofiling" section belav.

USING COLLECT ON SETUID/SETGID TARGETS
The collect command operates by inserting a shared librliipgollector.so, into the taget's
address space (LD_PRELOAD), and by using a second shared,libodaydit.so, to record
shared-object use with the runtime kmis audit interface (LD_AJDIT). Thosetwo shared
libraries write the files that constitute the experiment.

Several problems might arise ollect is invoked on eecutables that call setuid or setgid, or that create
descendant processes that call setuid or setgid. If the user running the experiment is not root, collection
fails because the shared libraries are not installed in a trusted diredtoeyworkaround is to run the
experiments as root, or usele(1) to grant permission. Users should, of courses tpiat care when cir
cumventing security barriers, and do so at their own risk.

In addition, the umask for the user running tlolect command must be set to allavrite permission for

that userand for ary users or groups that are set by the setuid/setgid attributes of a progranexssithg

and for ay user or group to which that program sets itself. If the mask is not set prapenty files might

not be written to thexperiment, and processing of the experiment might not be possible. If the log file can
be written, an error is shown when the user attempts to process the experiment.

Other problems can arise if thegat itself makes agnof the system calls to set UID or GID, or if it
changes its umask and then forks or rutes en sme other process, orle was used to configure othe
runtime linker searches for shared objects.

If an experiment is started as root on a target that changeddtiied GD, the er_archive process that is
automatically run when the experiment terminagéls fbecause it needs a shared library that is notedark

as trusted.In that case, you can rugr_archive (or er_print or Analyzer) explicitly by hand, on the
machine on which the experiment was recorded, immediately following the termination of the experiment.

DATA COLLECTED
Three types of data are collected: profiling data, tracing data and sampling data. The dtsarpemided
in profiling and tracing include the callstack of ea®R-the LWP, thread, and CPU IDs, and some=r-
specific data. The data p&t& recorded in sampling contain global data suckxetsion statistics, but no
program-specific onent-specific data. All data packets include a timestamp.

Clock-based Profiling
The event-specific data recorded in clock-based profiling is an array of counts for each accounting
microstate. The microstate array is incremented by the system at a prescribed yreaubris
recorded by the Collector when a profiling signal is processed.

Clock-based profiling can run at a range of frequencies which must be multiples of the clock resolu-
tion used for the profiling timerf you try to do high-resolution profiling on a machine with an-oper

ating system that does not support it, the command prints a warning message and uses the highest
resolution supported. Similarlg austom setting that is not a multiple of the resolution supported by

the system is rounded wda to the nearest non-zero multiple of that resolution, and a warning mes-
sage is printed.

Clock-based profiling data is cganted into the following metrics:

User CPU Time

March 2009 14

collect(1) collect(1)

Wall Time

Total LWP Time
System CPU Time
Wait CPU Time

User Lock Time

Text Page Fault Time
Data Page Fault Time
Other Wait Time

For experiments on multithreaded applications, all of the times, other tla@inTithe, are summed
across all LWPs in the proces@fal Time is the time spent in all states for LWP 1 onfptal LWP
Time adds up to the real elapsed time, multiplied bybege number of LWPs in the process.

If clock-based profiling is performed on an OpenMP program,giditional metrics:

OpenMP Work
OpenMP Wait

are proided. Onthe Solaris OS, OpenMP Mk accumulates when work is being done in parallel.
OpenMP Wait accumulates when the OpenMP runtimeaiting for synchronization, and accumu-
lates whether the wait is using CPU time or sleeping, or whek i& being done in parallel, but the
thread is not scheduled on a CPU.

On Linux, OpenMP Work and OpenMPaW/ are accumulated only when the process ivedti
either user or system mode. Unless youehqecified that OpenMP should do asly wait, OpenMP
Wait on Linux will not be useful.

If clock-based profiling is performed on an MPI program, run under Sun HPC ClusterTools release
8.1 or latertwo additional metrics:

MPI Work
MPI Wait

is provided. OnSolaris, MPI Work accumulates when the MPI runtime isractMPI Wait accumu-
lates when the MPI runtime isaiting for the send or rea& o a message, or when the MPI runtime
is actve, but the thread is not running on a CPU.

On Linux, MPI Work and MPI Wait are accumulated only when the processvs &ctther user or
system mode. Unless youMeapecified that MPI should do augy wait, MPI Wait on Linux will not
be useful. If clock-based dataspace profiling is specified, an additional metric:

Max. Mem Stalls
is provided.

Hardwar e Counter Overflow Profiling
Hardware counter werflow profiling records the number ofients counted by the har@ne counter
at the time theerflow signal was processed. This type of profiling ismavailable on systems run-
ning the Linux OS, provided that thbavethe Perfctr patch installed.

Hardware counter eerflow profiling can be done on systems that suppeetftow profiling and that
include the hardware counter shared librébcpc.sq3). You must use aevsion of the Solaris OS
no earlier that the Solaris 10 OS. On UltrABE[R] computers, you must use a version of the hard-
ware no earlier than the UltraSPARC Il harae. Oncomputers that do not suppowtedflow profil-

ing, an attempt to select hardware counterftow profiling generates an error.

March 2009 15

collect(1) collect(1)

The counters\ailable depend on the specific CPU processor and operating system. Runriolg the

lect command with no gluments prints out a usage message that contains the names of the counters.
The counters that are aliased to common names are displayed first in the ligeddiioa list of the

raw hardware counters. If neither the performance counter subsystem nor collectiennames for

the counters on a specific chip, the tables are emptynost cases, heever, the counters can be
specified numericallyThe lines of output are formatted similar to the following:

Aliased HW countersvailable for profiling:
cycles[/{0]1}],9999991 ('CPU Cycles’, alias for Cycle_cnt; CPU-cycles)
insts[/{0]1}],9999991 (’Instructions Executed’, alias for Instr_crengs)
dcrm[/1],100003 ('D$ Read Misses’, alias for DC_rd_miss; loahts)

Raw HW counters wailable for profiling:
Cycle_cnt[/{0]1}],2000003 (CPU-cycles)
Instr_cnt[/{0]|1}],1000003 (eents)

DC rd[/0],2000003 (loadvents)
Sl_snoop[/0],1000003 (not-program-relatedregs)

In the first line of aliased counter output, the first field, "cycles’gsghe counter name that can be
used in the-h counter.. agument. It is folleved by a specification of which registers can be used for
that counter The next field, "9999991", is the defaulteflow value for that counterThe following

field in parentheses, "CPU Cycles", is the metric name, followed bywhlearaware counter name.

The last field, "CPUxxle", specifies the type of units being counted. There can be up tedres

for the type of information. The second or only word of the type information can be either "CPU-
cycles" or "&ents". If the counter can be used to provide a time-based metric, the value is CPU-
cycles; otherwise it isvents.

The second output line of the aliased counter outputeabss "events" instead of "CPU-cycles" at
the end of the line, indicating that it counters, and cannot be costed to a time.

The third output line abh@ has two words of type information, "loadvents”, at the end of the line.
The first word of type information can\eate value of"load", "store", "load-store", of'not-pro-
gram-related”. The first three of these typéues indicate that the counter is memory-related and the
counter name can be preceded by the "+" sign when used in the collect -h command. The "+" sign
indicates the request for data collection to attempt to find the precise instruction and virtual address

that caused thevent on the counter thaverflowed.

The "not-program-related"alue indicates that the counter capturemnts initiated by some other
program, such as CPU-to-CPU cache snoops. Using the counter for profiling genesatéagand
profiling does not record a call stack. It doesy&@r, show the time being spent in an artificial func-
tion called "collector_not_program_related". Thread IDs awPLIDs are recorded, but are mean-
ingless.

Each line in the ma hardware counter list includes the internal counter name as used by cputrack(1),
the register number(s) on which that counter can be used, thdtdwérflow value, and the counter
units, which is either CPU-cycles or Events.

EXAMPLES

Example 1: Using the aliased counter information listed in theeakonple output, the folleing
command:

collect -h cycles/0,hi,+dcrm,9999

March 2009 16

collect(1)

collect(1)

enables the CPU Cycle profiling on register 0. The "hiu& enables a sample rate that is approxi-
mately 10 timesdster than the default rate of 9999991. The "dcrm" value enables the D$ Read Miss
profiling on raister 1 and the preceding "+" enables Dataspace profiling for the dcrm. The "9999"
value sets the sampling to be donerg 9999 read misses, instead of the defaalte of @ery
100003 read misses.

Example 2:

Running thecollectcommand with no arguments on an AMD Opteron machimédvroduce a k&
hardware counter output similar to the following :

FP_dispatched_fpu_ops[/{0]|1]2|3}],1000008&(#s)
FP_cycles_no_fpu_ops_retired[/{0]1]|2|3}],2000003 (CPU-cycles)
Using the abee raw lardware counter output, the following command:
collect -h FP_dispatched_fpu_ops umask=0x3/2,10007
enables the Floating Point Add and Multiply operations to be dthek the rate of 1 captureeey

10007 &ents. (For more details on valid attribute values, refer to the processor documentation). The
"/2" value specifies the data is to be captured using the register 2 of the hardware.

Synchronization Delay Tracing

Synchronization delay tracing records all calls to the various thread synchronization routines where
the real-time delay in the call exceeds a specified threshold. The dath patains timestamps for

entry and exit to the synchronization routines, the thread ID, and the LWP ID at the time the request
is initiated. (Synchronization requests from a thread can be initiated orVéReblit complete on
another.)

Synchronization delay tracing data is eened into the following metrics:

Synchronization Delay Events
Synchronization Wait Time

Heap Tracing

Heap tracing records all calls toalloc, free, realloc, memalign, and valloc with the size of the
block requested, its address, andréalloc, the previous address.

Heap tracing data is ceerted into the following metrics:

Leaks

Bytes Leaked
Allocations
Bytes Allocated

Leaks are defined as allocations that are not fréeml zero-length block is allocated, it counts as an
allocation with zero bytes allocated. If a zero-length block is not freed, it counts as a leak with zero
bytes leaked.

For applications written in the a[TM] programming language, leaks are defined as allocations that
have rot been grbage-collected. Hegpofiling for such applications is obsolescent and will not be
supported in future releases.

Heap tracing experiments can be very large, and might Weslgrocess.

March 2009 17

collect(1) collect(1)

MPI Tracing
MPI tracing records calls to the MPI library for functions that cae takgnificant amount of time
to complete. MPI tracing is implemented using the Open Source Vampir Trace code.

MPI tracing data is carerted into the following metrics:

MPI Time

MPI Sends

MPI Bytes Sent
MPI Receves

MPI Bytes Receied
Other MPI Events

MPI Time is the total LWP time spent in the MPI functidi. MPI state times are also collected,
MPI Work Time plus MPI Vit Time for all MPI functions other than MPI_Init and MPI_Finalize
should approximately equal MPI Worlnife. OnLinux, MP1 Wait and Work are based on user+sys-
tem CPU time, while MPI Time is based on real tine, so the numbers will not match.

The MPI Bytes Receéed metric counts the actual number of bytes reskiin dl messages.MPI

Bytes Sent counts the actual number of bytes sent in all messages. MPI Sends counts the number of
messages sent, and MPI Reeemunts the number of messages restki MPI_Sendreceounts as

both a send and a reeei MP| Other Eents counts thevents in the trace that are neither sends nor
receves.

Count Data
Count data is recorded by instrumenting tlecatable, and counting the number of times each
instruction was xecuted. Italso counts the number of times the first instruction in a function is
executed, and calls that the functioxeeution count.

Count data is carerted into the following metric:

Bit Func Count
Bit Inst Exec
Bit Inst Annul

Data-race Detection Data
Data-race detection data consists of pairs of race-aceeds ¢hat constitute a race. Thests are
combined into a race, and races for which the call stacks for thectgss are identical are rged
into a race group.

Data-race detection data is gerted into the following metric:

Race Accesses

Deadlock Detection Data
Deadlock detection data consists of pairs of threads with conflicting locks.

Deadlock detection data is a@nted into the following metric:

Deadlocks

Sampling and Global Data
Sampling refers to the process of generating ararklong the time line okecution. At each sam-
ple point, &ecution statistics are recorded. All of the data recorded at sample points is global to the
program, and does not map to functionelemetrics.

March 2009 18

collect(1) collect(1)

Samples are afys talen at the start of the process, and at its termination. By default or if a non-zero
—S argument is specified, samples are taken periodically at the specifiedlinteraddition, sam-
ples can be taken by using titeollector(3) API.

The data recorded at each sample point consists of microstate accounting information fremn the k
nel, along with various other statistics maintained within the kernel.

RESTRICTIONS
The Collector can support up to 16K user threads. Data from additional threads is discarded, and a collec-
tor error generated. To apport more threads, set the vieonment variable SP_COLLEC-
TOR_NUMTHREADS to a larger number.

By default, the Collector collects stacks that are 256 frames deepupport deeper stacks, set thevien
ronment variable SP_COLLECTOR_ATKBUFSZ to a larger number.

The Collector interposes on some signal-handling routines to ensure that its use of SIGPROF signals for
clock-based profiling and SIGEMT (Solaris) or SIGIO (Linux) for hardware courtflaw profiling is

not disrupted by the target program. The Collector library re-installssvtssignal handler if the tget

program installs a signal handl&he Collectors dgnal handler sets a flag that ensures that system calls are
not interrupted to deler signals. This setting could change the behavior of the target program.

The Collector interposes @wtitimer(2) to ensure that the profiling timer is netitable to the target pro-
gram if clock-based profiling is enabled.

The Collector interposes on functions in the hardware counter liitanyc.so so hat an application can-
not use hardare counters while the Collector is collecting performance data. The interposed functions
return a value of -1.

Dataspace profiling are notaable on systems running the Linux OS.
For this release, the data from collecting periodic samples is not reliable on systems running the Linux OS.

For this release, wide data discrepancies are observed when profiling multithreaded applications on systems
running the RedHat Enterprise Linux OS.

Hardware counter erflow profiling cannot be run on a system whepaistatis running, becausgpustat
takes control of the counters, and does not let a user process use them.

Java Rofiling requires JDK 6 Update 3 or later updates of JDK 6.

Data is not collected on descendant processes that are created tosesaidiztribute, nor on anpdescen-
dant processes created withexecfunction run on anxecutable that is not dynamically lie. Further

more, subsequent descendant processes might produce corrupted or unreqozirecrds. The
workaround is to ensure that all processesvega are dynamically-linked and do notvaahe setuid

attribute.

Applications that calfork (2) have these calls replaced by a calfftokl (2).

SEE ALSO
analyzen(1), collector(1), dbx(1), er_archive(l), er_cp(1), er_export(1), er_mv(1l), er_print(1),
er_rm(1),tha(), libcollector(3), and thé?erformance Analyzemanual.

March 2009 19

