
Use of Domain Theories in Applied Formal

Methods

Lars-Henrik Eriksson
lhe@it.uu.se

Department of Information Technology
Uppsala University

Box 337
SE-751 05 UPPSALA, Sweden

Abstract. A formal theory of an application domain can serve a key role
in formal specification and verification of systems operating in that do-
main. This is particularly relevant when working with families of similar
systems intended to control some kind of industrial process or function
where the control principles are general while the specifics of the system
depend on the particular installation the system is intended to control. In
such situations a domain theory can facilitate writing generic specifica-
tions or implementations for the entire family of systems which can then
be configured for each particular installation. Use of concepts defined
in the domain theory can also facilitate communication with domain
experts without knowledge in formal methods.
An example of such a family is railway signalling systems which all im-
plement the same general signalling principles of ensuring safe train oper-
ation, while the exact function of a particular signalling system depends
on the railway track layout under its control.
We will give concrete examples from industrial practise in the railway
domain, showing how domain theories can help in the formal verification
process. The examples include writing and validating formal specifica-
tions, formally verifying implementations and analysing and communi-
cating the results of failed verifications.

1 Introduction

1.1 Domain theories and configurable systems

We consider the role of formal theories of the application domain in formal
specification and verification of configurable systems.

By “configurable systems” we mean families of systems where each individual
system has the same abstract behaviour, while the concrete behaviour differs
according to details specific to the particular system. An example is provided by
railway signalling systems (“interlockings”), which all have identical functions
on an abstract level as they implement the same general signalling principles.
On the concrete level, differences in function between different interlockings are
determined by the particular physical layout as well as other properties – both



abstract and concrete – of the railway track system controlled by the interlocking.
Another examples is provided by telecommunication systems, which carry out
the general function of providing telephone and other communication services,
while the specific behaviour depends on the particular structure and components
used in the particular system or subsystem.

If there is a uniform way of configuring the individual systems of a family
of systems, then the fact that the abstract behaviour is identical over the fam-
ily means that there will be a regularity in how the expected behaviour of the
concrete systems differ. This can be exploited to simplify the formal specifica-
tions by writing a generic specification for the family. The generic specification
is then parameterised by applying configuration data, so that the specification
of a specific system is obtained. In the same way, a generic implementation could
be written and then configured to implement the function of a specific system.

By a “domain theory” we mean an axiomatic description of the structure
and concepts of the application domain – in particular those concepts which
are important for configuring the specification or implementation of a system
as outlined above. In the case of the railway signalling systems, concepts which
are axiomatised include concrete and abstract objects such as signals, points,
routes etc. and their relations such as the position of signals relative to the track
system. Although the examples in this paper will be exclusively from the railway
signalling domain, the ideas and techniques presented are general and applicable
to other domains.

The use of a domain theory can be motivated also from a non-technical per-
spective. If the axiomatised concepts are similar to those used by domain experts,
a domain theory will facilitate the communication between the formal methods
practitioner and the domain expert, both regarding the formal specification and
the results of formal verification (see section 3.7). The axiomatised concepts
can also be integrated with a specification language, to obtain a domain-specific
language tailored to the application domain. See [7] for a discussion of an “In-
terlocking Specification Language” for the railway signalling domain.

The use of domain theories is in fact applicable to all aspects of systems
engineering. See e.g. [2] for an discussion of how and why a domain theory for
railways – such as the one we use in this paper – should be extended to cover
all aspects of railway operation and management.

1.2 Contributions

The contribution of this paper is to show the practical application and sig-
nificance of domain theories in formal specification and verification by giving
examples from the industrial work of Industrilogik L4i AB1.

Since the mid-90s, Industrilogik has developed and used a toolset and method-
ology for formal specification and verification of configurable systems in the sense
given above [4] [5]. The main application area has been railway signalling sys-
tems. The examples in this paper have been adapted from several industrial

1 In 2005 Industrilogik was aquired by Prover Technology, www.prover.com



projects with computer- and relay-based interlocking systems in Sweden and
Norway. Overview of some of these projects are included in [3] [4] [6].

Sample runs using the main tool of the toolset, GTO, will be shown2. GTO
supports validation using theorem proving and simulation as well as verification
by refinement proof. The notation of the tool is a simple form of temporal predi-
cate logic with finite domains (no function symbols and only a previous-moment
temporal operator). As all domains are finite, a theorem proving problem can be
reduced to a satisfiability problem in propositional logic, which is solved by an
independent SAT solver which is interfaced to GTO. This approach to modelling
and proving is similar to that used by the Alloy [8] modelling tool.

Peleska et.al. (e.g. [10]) have also worked on formal specification and verifi-
cation of configurable systems in the railways domain. They use similar data for
the configuration of the systems, but do not use a proper theory of the domain
to axiomatise the configuration data.

2 The Railway Domain

We will begin by introducing our example domain theory, what the configuration
data of the domain is, a sample configuration, and fragments of the axiomatisa-
tion.

2.1 Geographical data

In the case of railway signalling systems, a formal description of the configuration
data is called the geographical data of the particular interlocking. (This sense of
geographical data is similar, but not identical, to the one used in work on formal
verification of geographical data of the british SSI interlockings [9] [11].)

Using geographical data, generic requirements specifications that describe
general signalling principles can be specialised to give a requirements specifi-
cation for a particular interlocking installation (see section 3.4). Similarly, in-
terlockings can be implemented using generic modules (either in software or
hardware) which are configured using geographical data to give a specialised
implementation for a particular site. An example of interlockings working using
this principle are Bombardier Transportation EBILOCK family of interlockings
(see section 3.3).

Given that the precise requirements of a generic specification – as well as
the precise behaviour of a generic interlocking – are critically dependent on the
geographical data, the correctness of the geographical data is important. Some
kinds of geographical data – let us call them “primary” geographical data – are
direct descriptions of the physical track structure and its concrete properties.
Clearly, this data can not be formally verified, but its internal consistency – e.g.
that it describes a physically possible track system – can be checked using a
domain theory for rail systems (see section3.1).

2 The actual computer output has been edited slightly for brevity and clarity.



Other kinds of geographical data – let us call them “secondary” geographical
data – are data that are wholly or in part determined by the primary geographi-
cal data. One example is the description of all possible routes through the track
system – a route typically being defined as a path through (part of) the track
system on which a train could run, beginning and ending at a signal. Other
examples are the various kinds of protection areas required around a route to
prevent possible collision with trains or vehicles close to the route. The construc-
tion and verification of secondary geographical data is of critical importance to
the safety of the interlocking, while being one of the most time-consuming and
error prone tasks in the interlocking design process.

Given a sufficiently complete domain theory and generic requirements spec-
ification, secondary geographical data can be formally verified or automatically
generated given a set of primary geographical data (see section 3.2).

2.2 A simple domain theory

As the running example, we will use a simple railway system made up of signals
and railway track3.

Points 21

(PT21)

SI33SI34

SI31SI32SI42

Track 1 (TR1)

South

Points 22

(PT22)

North

SI21

Track 2 (TR2)

SI41

SI22

The geographical data for this system is given by a number of sets of objects
and relations on those objects. The sets are

UNITS – the track system is made up of as a set of “units”, a unit being a set
of points, a linear piece of track etc. In this example NORTH, PT21, TR1,
TR2, PT22 and SOUTH represent units.

POINTS – the points, a subset of UNITS. In this example PT21 and PT22
represent points.

BORDERS – the track units bordering parts of the railway outside the part
under consideration, a subset of UNITS. In this example NORTH and SOUTH
represent borders.

3 The numbering scheme of this example is the conventional one used in Swedish
railway signalling.



SIGNALS – the signals. In this example SI21, SI22, SI31, SI32, SI33, SI34,
SI41, SI42 represent signals.

ROUTES – the train routes. We will regard the routes as abstract objects
having certain properties, such as the set of the track units making up each
route. The concrete wiew of the routes actually being such sets (together
with other relevant data) would also be possible. In this example TR2131,
TR2133, TR3141, TR3341, TR2232, TR2234, TR3242, TR3442 represent
routes. E.g. TR2131 represents the route from signal 21 to signal 31.

The relations are given by the predicates:

connectsTo – relates two adjacent pieces of track.
leftBranch – relates facing points with the track unit reached by going to the

left through the points.
rightBranch – relates facing points with the track unit reached by going to

the right through the points.
ahead – relates a signal to the track unit ahead of the signal.
inRear – relates a signal to the track unit in rear of the signal.
partOf – relates a route to the track units making up the route.
before – relates a route to the track unit from which a train enters the route.
entry – relates a signal to a route starting at that signal.
conflict – relates routes which are “in conflict”, i.e. they may not be used

simultaneously by two different trains.

connectsTo, leftBranch and rightBranch determine the topology of the track
system. ahead and inRear together determine the location and direction of the
signals. partOf and before together determine the extent and direction of each
route.

Some examples of predicate instances which hold are:
connectsTo(PT21,NORTH), connectsTo(PT21,TR1), connectsTo(PT21,TR2),
connectsTo(NORTH,PT21), connectsTo(TR1,PT21), connectsTo(TR2,PT21),
leftBranch(PT21,TR2), rightBranch(PT21,TR1), ahead(SI21,NORTH),
inRear(SI21,PT21), entry(SI21,RT2131), entry(SI21,RT2133),
conflict(RT2131,RT2232), conflict(RT2133,RT2234).

The domain theory express the constraints on the geographical data which
are necessary for the data to represent a possible real system4. Fragments of
a domain theory for the track system is given by the following predicate logic
formulae:

1. 8u1; u2 2 UNITS (connectsTo(u1; u2) ! connectsTo(u2; u1)
2. 8p 2 POINTS 8u 2 UNITS (rightBranch(u; p) ! connectsTo(u; p))
3. 8u1 2 UNITS 9u2 2 UNITS connectsTo(u1; u2)
4. 8p 2 POINTS 9u1; u2; u3 2 UNITS (connectsTo(p; u1)^connectsTo(p; u2)^

connectsTo(p; u3) ^ u1 6= u2 ^ u1 6= u3 ^ u2 6= u3 ^ 8u4 2 UNITS
(connectsTo(p; u4) ! u1 = u4 _ u2 = u4 _ u3 = u4))

4 This domain theory excludes some real systems that are possible but unrealistic.



These axioms express the internal coherence of the data, such that the connects-
To relation is symmetric (1), that going right through facing points, you must
reach a unit connected to the points (2), that every unit must be connected to
some other unit (3), and that a set of points must be connected to exactly three
different units (4).

5. 8r 2 ROUTES 8u1; u2 2 UNITS
((partOf (u1; r) _ before(u1; r)) ^ (partOf (u2; r) _ before(u2; r)) !:9p 2 POINTS (partOf (p; r) ^ leftBranch(p; u1) ^ rightBranch(p; u2)))

Axiom (5) expresses a physical constraint. As trains cannot go “sideways” through
points, no route can do this either.

6. 8r 2 ROUTES 9s 2 SIGNALS entry(s; r)
7. 8r1; r2 2 ROUTES (r1 6= r2^9u 2 UNITS (partOf (u; r1)^partOf (u; r2) !

conflict(r1; r2))

Axioms (6) and (7) are examples of axioms which express constraints on the
design of the system. In the case of (6), the requirement that there must be
an “entry” signal at the beginning of every train route. In the case of (7), the
requirement that if two routes overlap, then they must be in conflict.

In this case the track units, signals and their relations are primary geograph-
ical data, while the routes and their properties are secondary geographical data.
In principle the possible routes are determined by the configuration of track
units and signals.

2.3 Interaction with the environment

In any formal specification of a control system, it is important to describe how
the system interacts with its environment. However, for the subject of this paper
it is not an important point. We will simply assume that there are predicates
which represent (parts of) the currect state of the environment without going
into any details of how to express changes to that state.

3 Applications of the domain theory

Having introduced the domain theory for railway signalling, we will now discuss
how it can be put to use in a number of situations related to specification,
configuration and verification of railway signalling systems.

3.1 Verification of the system configuration

The geographical data for a specific system (to be used either with a generic
specification or implementation) can be verified against the domain theory by
showing that every axiom of the domain theory is true given the sets and predi-
cates representing the data. This can be shown by theorem proving, but it is also



possible to do a straight calculation of the truth values of the axioms assuming
that all quantified variables in the domain axioms range over done over the sets
representing particular (finite) sets of objects of the geographical data.

Suppose that connectsTo(PT21 ;TR1 ) is included in the geographical data,
but connectsTo(TR1 ;PT21 ) is not. In this sample run of GTO, a file with
the domain theory and data is loaded. The tool detects the inconsistency by
computing the truth value of axiom (1) by iteration over all units and checking
the implication for each one. (domain 1 is the identifier of axiom (1) above.)
The user asks for a explanation for the falsity of the axiom using the GTO why

command which attempts to give a motivation for the truth value of a formula.
The tool notes that the data violates the axiom because the predicate instance
connectsTo(TR1 ;PT21 ) is missing.

> load sample1

Violated invariants: domain_1

> why domain_1

Formula is FALSE because ~connectsTo(TR1,PT21)

3.2 Generation of secondary geographical data

For a large system with complicated structure, the generation of secondary ge-
ographical data can be a complicated task, even if the correctness of that data
can be verified automatically. However, the domain theory can be used to auto-
matically generate secondary data.

In some cases, this can be done simply by turning axioms into definitions.
If the truth values of the predicates occurring in the definiens is known, then
the truth values of the defined predicates can be generated by a straightforward
calculation. E.g. axiom (7) can be turned into the definition

8. conflict(r1; r2) � r1 6= r2 ^ 9u 2 UNITS (partOf (u; r1) ^ partOf (u; r2))

which will define conflict to be the smallest relation consistent with the axiom.

GTO automatically computes the truth values of defined predicates when
the truth values of the definiens is completely known. The following sample
interaction shows the definition and lists the result.

> listdef conflict

conflict(r1,r2) == r1<>r2&SOME u:UNITS (partOf(u,r1)&partOf(u,r2))

> list conflict

conflict(RT2131,RT2133)

conflict(RT2131,RT2232)

conflict(RT2131,RT3242)

conflict(RT2131,RT3442)

conflict(RT3141,RT3341)

...



In more complicated situations, the secondary data can be generated by finding
a satisfying truth assignment to the corresponding predicates, given a known
truth assignment to the primary data predicates. The primary data gives a
“partial interpretation” of the domain axioms where secondary data predicates
are undetermined. Here “partial interpretation” can be understood both in the
logical sense of an interpretation of predicates or in the sense of simplifying the
axioms using known values of the primary geographical data. The problem of
finding values for the secondary predicates is a satisfiability problem. Since the
sets are finite, the problem can be solved automatically using a propositional
satisfiability (SAT) solver. The SAT solver would generate truth assignments to
the secondary data predicates, effectively creating correct secondary geographical
data.

A problem with using a SAT solver is that in some cases the numbers of
elements of sets belonging to the secondary data (e.g. the set ROUTES ) are not
known in advance, as they must be known in order to create a SAT problem.
One solution is making a conservative estimate of the maximum number of
elements (the Alloy [8] approach). Another one which is possible in some cases
(particularly regarding the set ROUTES ) is to include only one element, but
generate the complete set by finding successive solutions to the SAT problem.
The latter approach is implemented in the SST/SVT formal methods toolset
used by Bombardier Transportation for interlocking software development.

In this sample run of GTO, the relations defining routes have been left un-
determined. The ROUTES set includes a single identifier route. By using a SAT
solver, an assignment is found that defines a route. The (true instances of) rela-
tions before , partOf and entry are listed.

> load sample2

> satisfy

> list before partOf entry

before(route,NORTH)

partOf(route,PT21)

partOf(route,TR1)

entry(SI21,route)

3.3 Configuring an implementation

One use of configuration data is to instantiate general software modules to make
up a complete program to work with the system described by the data. An
example is the computer-based EBILOCK 950 interlocking (signalling) system
manufactured by Bombardier Transportation.

The EBILOCK software is made up of modules designed to handle all func-
tions related to specific kinds of physical objects in a railway track system such
as signals and points. To configure the software for a specific installation, one
instances is made of each module for every physical object of the corresponding
type. The modules have communication ports which are connected according to
the geographical layout of the track system. For the sample rail system above,



one signal module and one points module are instantiated 2 and 8 times, re-
spectively, and connected to give a complete software system with the following
structure:

SI42 PT21 SI32 SI31 PT22 SI41 SI22SI21

SI34 SI33
Instance of software

module
Data channel

Clearly, the correctness of the instantiated software depends on the correctness
of the geographical data. Bombardier Transportation uses a custom formal spec-
ification tool (SST) to check geographical data according to a domain theory.
The tool is an offspring of the GTO tool and uses a similar predicate logic-based
notation. It can directly read EBILOCK configuration data files and use the con-
tents to define the truth values of specific predicates, such as predicates which
relate an object instance to its neighbours. In fact, the SST tool implements
a domain-specific specification language tailored to the domain of EBILOCK
implementations.

3.4 Concept definitions for requirements

To facilitate writing and validating the requirements specification for a system,
the specification should preferably be written on a level of abstraction where
the concepts used are taken from the application domain, rather than from the
implementation domain. In the railway example, one typical requirement on
signals is that two different signals leading in to the same track section must not
display a proceed aspect5 at the same time, as that could cause a train collision.
Taken as requirement only on one of the signals, SI21, this could be formalised
as

9. proceed(SI21 ) ! :proceed(SI32 ) ^ :(proceed(SI34 ) ^ :(proceed(SI22 ) ^
(left(PT21 ) ^ left(PT22 ) _ right(PT21 ) ^ right(PT22 )))

Here proceed is a predicate that represents an abstract state of a signal controlled
by the signalling system. If proceed is true for the signal, it displays a proceed
aspect, otherwise it does not.

5 ...i.e. a “green light”.



Even in this case of a single signal in a simple example track system, such a
formal requirement is slightly tricky to formulate. In more complicated layouts
it becomes difficult and error-prone. In a generic specification, it would not even
be possible to write such a “low-level” requirement as it is not known until the
system is configured what the actual signals or their relationships are.

Signalling engineers solve this problem using the abstract concept of a “route”
explained above. Each route can be reserved (“locked”) for the movement of a
train. A requirement on the signal will be that it can display proceed only if it is
the entry signal of a locked route. An additional requirement is that the signal
can display proceed only if that route is not in conflict with another route which
also is locked.

In this case, a domain theory of the application domain provides a natural
means of expressing the requirements using formalised concepts such as “route”
and “conflict”. This simplifies both writing and validation of the specification.

We require that if a signal displays a proceed aspect, then a route beginning
at the signal must be “ready” (10). We define “ready” to mean – among other
things – that the route is locked and conflict-free (11). The predicate routeLocked
is used to represent the locking status of the routes. Finally we define that a route
is conflict-free when it is not in conflict with any other locked route (12).

10. 8s 2 SIGNALS (proceed(s) ! 9r 2 ROUTES (entry(s; r) ^ ready(r))
11. ready(r) � routeLocked(r) ^ conflictFree(r) ^ : : :)
12. conflictFree(r) � :9r1 2 ROUTES (r 6= r1^routeLocked(r1)^conflict (r; r1)

The requirement (10) with associated definitions is both more abstract and
not dependent on any particular route. Of course, using specific geographical
data to provide concrete values for the sets and conflict relation, we will obtain
the requirement (9) as a special case.

3.5 Validation of requirements specifications

By using concepts from a domain theory, validation of the requirements specifi-
cation is facilitated as the specification can be expressed in general and abstract
terms. In many cases, directly “translating” the formal requirements into natural
language will result in a text which can be given to domain experts for approval.
However, the domain theory also makes it possible to validate the specification
by stating and proving correctness properties.

In using the abstract route concept, we improved the structure of the spec-
ification, but lost the intuitiveness of the property that “two different signals
leading in to the same track section must not display a proceed aspect at the
same time”. It is not immediately obvious from the formulation of the formal
requirement (10) and associated concept definitions that this intuitive safety
condition is ensured.

Again using the domain theory, this safety condition can be formalised and
proved to follow from the formal specification – in particular formulae (10)-(12)
above. The safety condition can be formalised as



13. 8s1; s2 2 SIGNALS (proceed(s1) ^ proceed(s2) ! :9u 2 UNITS 9r1; r2 2
ROUTES (entry(s1; r1) ^ entry(s2; r2) ^ partOf (u; r1) ^ partOf (u; r2)))

This formula still uses the axiomatisation of routes, as it provides a convenient
way of describing the parts of the track system in rear of a signal, but the
concepts of locking and conflict are not used.

This proof can not be carried out using a SAT solver as the domains of quan-
tified variables is unknown. Either the proof can be done using particular sized
domains (again the Alloy [8] approach) or it can be done using an interactive
theorem prover such as Isabelle or PVS6.

3.6 Relating the implementation to the specification

The formal specifications describe requirements in abstract terms, while the im-
plementations by necessity deal with concrete events. To carry out a formal
verification, the abstract terms of the specification must be related to the im-
plementation by a set of correspondence axioms.

We will consider an implementation with colour light signals, each with a
green and a red light. Let the variables GREEN21 and RED21 represent the
state of the lights of signal 21 (true: lit, false: extinguished) – similarly for other
signals.

Suppose that the example signalling system is implemented using a computer
program7 which assigns values to the state variables of the signal lights depend-
ing on other variables representing the state of the signalling system. A formal
model of the program (obtained using a formal semantics of the implementation
language) include the following postcondition relations:

14. GREEN21 $ LOCK21^:LOCK32^:LOCK34^TC21^(LEFT21^TC2^
(:LOCK22 _ LEFT22 ) _ RIGHT21 ^ TC1 ^ (:LOCK22 _ RIGHT22 ))

15. RED21 $ :GREEN21

Here the logical variables represent parts of the concrete state of the computer
program and of the devices interfaced to it. TC21, TC1 and TC2 represent
the state of the train detection devices (“track circuits”) of track units PT21,
TRACK1 and TRACK2, respectively. The variables are true if the units are not
already occupied by trains, false otherwise. LEFT21 and RIGHT21 represent
the state of the proving devices of points 21 –– proven to be in the left or right
position, respectively (or uncontrolled if both LEFT21 and RIGHT21 are false).
Similarly for points 22.

To make the correspondence axioms below more interesting, we make the
(actually quite realistic) assumption that the concrete state variables used in
the implementation to represent route locking are associated with signals rather
than individual routes. I.e. the variable LOCK21 is true if some route is locked
from signal 21 – similarly for the other signals.

6 Industrilogik used PVS to prove this and similar safety conditions.
7 ...or relay system, which are still common in railway signalling today!



In an actual implementation, equipment faults and their detection (e.g. a
burnt lamp) would be an important consideration which we disregard here for
simplicity.

Some of the correspondence axioms for this implementation would be

16. proceed(SI21 ) $ GREEN21 ^ :RED21
17. routeLocked(RT2133 ) $ LOCK21 ^ LEFT21

These correspondence axioms are quite simple. The first states that signal 21
displays a proceed aspect if and only if its green light is lit while its red light
is not. The second states that route RT2133 is locked if a route is locked from
signal 21 while points 21 are in the left position. Frequently the abstract repre-
sentations of the system state have a more complex relationship with concrete
state variables.

The requirements of the formal specification, such as formula (10) can now
be shown to be (part of) a refinement of the specification by demonstrating
that it is a logical consequence of the implementation model, the domain and
correspondence axioms and the geographical data relations.

3.7 Analysis of counterexamples

In practise, formal verifications seldom succeed completely because of mistakes
in the implementation (or specification!). In the case of verification by proposi-
tional proof (SAT solving), a failure to prove the requirements will result in a
counterexample being generated. Using the domain theory and correspondence
axioms, such counterexamples can be used to provide information about the
failure in abstract terms, rather than only in concrete terms.

Suppose the implementation incorrectly reversed the sense of the use of
LOCK22 corresponding to its first occurrence in formula (14). We assume that
the rest of the implementation of the signalling system is correct. The part of
the implementation controlling signal 21 would then instead be modelled by the
formula

18. GREEN21 $ LOCK21 ^ :LOCK32 ^ :LOCK34 ^ TC21 ^ (LEFT21 ^
TC2 ^(LOCK22 _LEFT22 )_RIGHT21 ^TC1 ^(:LOCK22 _RIGHT22 ))

An attempt to prove requirement (10) would now fail, but it would not be
obvious why. The counterexample would make formula (10) false, and include
assignments to predicates such that SI21 would be a witness to the falsity of
the requirement – i.e. the universally quantified subformula proceed(s) ! 9r 2
ROUTES (entry(s; r)^ ready(r)) would be false when s = SI21 . In other words
proceed(SI21 ) (and thus by (16) GREEN21 ) is true when it should not be.

The reason proceed(SI21 ) should not be true is that 9r 2 ROUTES
(entry(s; r) ^ ready(r)) is false. Using information about the geographical data
which makes the relation entry relate SI21 only to the routes RT2131 and
RT2133, we see that this is because ready(RT2131 ) and ready(RT2133 ) are



both false. Looking at the assignments made by the counterexample in this
case to the predicates used in the definition (11) of ready we will find that
routeLocked(RT2131 ) is false (explaining why ready(RT2131 ) is false), while
conflictFree(RT2133 ) is false (explaining why ready(RT2133 ) is false). Further-
more left(PT21) is true, so the points are set for route RT2133 suggesting that
the problem is with that route. According to (11), as conflictFree(RT2133 ) is
false, 9r1 2 ROUTES (r 6= r1 ^ routeLocked(r1) ^ onflit(r; r1) must be true.
A witness for r1 is RT2234 because routeLocked(RT2234 ) will be true in the
assignment. Thus a possible explanation for the failure of the proof is that the
implementation does not correctly take into account the possibility of a conflict
with route RT2234 when route RT2133 is locked. Investigation of formula (18)
confirms this hypothesis.

This shows how a domain theory can help in both pinpointing and explaining
errors in the implementation. This is particularly important when communicat-
ing the findings to the domain experts.

The verification tool used by Industrilogik can assist in giving such “high-
level” explanations. (spec 10 is the identifier of requirement formula 10. # is the
symbol used by GTO for logical disjunction.)

> load sample3

> prove spec_10

The formula is falsifiable.

> why spec_10

Formula is FALSE because s=SI21, proceed(SI21)&

~SOME r (entry(SI21,r)&ready(r))

> why SOME r (entry(SI21,r) & ready(r))

Formula is FALSE because ~(ready(RT2131)#ready(RT2133))

> why ready(RT2131)

Formula is FALSE because ~routeLocked(RT2131)

> why ready(RT2133)

Formula is FALSE because ~conflictFree(RT2133)

> why conflictFree(RT2133)

Formula is FALSE because r1=RT2234, RT2133<>RT2234&

routeLocked(RT2234)&conflict(RT2133,RT2234)

4 Conclusions and future work

We have given examples of how practical formal specification and verification
work can be facilitated by using a domain theory which is directly available to the
specification and verification tools. The examples have been taken from all phases
of actual formal methods projects – from developing formal specifications to
analysis of verification results. The discussed techniques presuppose the existence
of a formal theory of the application domain, which shows that such a theory
has a concrete practical use.

Of the tasks discussed, some could benefit from a greater degree of automa-
tion.



In practise the system to be verified is never completely correct, so the anal-
ysis of counterexamples is important [4]. It is also a task which has very little
automation support and which has not attracted much research. In our experi-
ence, this takes an unproportional amount of time compared with other tasks.
Finding techniques to automate the analysis will have clear practical advantage.

Techniques based on propositional satisfiability solving require that the sizes
of sets which are quantified over are known in advance. When they are not
(e.g. when attempting to prove general correctness properties of a specification)
general theorem provers such as Isabelle or PVS must be used. This is a seri-
ous drawback, as automated tools are of major importance for the successful
deployment of formal methods in industry.

Work on fully automatic techniques for handling parameterised systems of
undetermined size (e.g. regular model checking [1]) opens the possibility of auto-
matically carrying out proofs involving generic specifications for configurable sys-
tems. Furthermore such techniques will provide countermodels for failed proofs.
We are currently investigating the possibility of using such techniques.

References

1. Abdulla, P. A., Jonsson, B., Nilsson, M., d’Orso, J. and Saksena, M., Regular
Model Checking for MSO+LTL, In Alur, R. and Peled, D. (eds.): Computer Aided
Verification, Proceedings of the 16th International Conference (CAV’04), Springer
Lecture Notes in Computer Science 3114, Springer-Verlag (2004).

2. Bjørner, D., Formal Software Techniques for Railway Systems. In: Schnieder, E:
(ed.), 9th IFAC Symposium on Control in Transportation Systems, pp 1–12, Tech-
nical University, Braunschweig, Germany (2000).

3. Eriksson, L-H., Specifying Railway Interlocking Requirements for Practical Use, In
Schoitsch, E. (ed.): Proceedings of the 15th International Conference on Computer
Safety, Reliability and Security (SAFECOMP’96), Springer-Verlag (1996).

4. Eriksson, L-H., Using Formal Methods in a Retrospective Safety Case, In Heisel,
M., Liggesmeyer, P., Wittmann, S. (eds.): Computer Safety, Reliability, and Secu-
rity – 23rd International Conference, SAFECOMP 2004, Springer Lecture Notes
in Computer Science 3219, Springer-Verlag (2004).

5. Eriksson, L-H., The GTO toolset and method, Technical Report 2006-030, Uppsala
University, Dept. of Information Technology (2006).

6. Eriksson, L-H. and Johansson, K., Using formal methods for quality assurance of
interlocking systems, In Mellit, B. et.al. (eds.): Computers in Railways IV, Com-
putational Mechanics publications (1998).

7. Eriksson, L-H. and Fahlén, M., An Interlocking Specification Language, In AS-
PECT IRSE 99, Papers of the International Conference, Institute of Railway Sig-
nalling Engineers, London (1999).

8. Jackson, D., Alloy: a lightweight object modelling notation, ACM Transactions on
Software Engineering and Methodology, Vol. 11 No. 2, pp. 256–290 (2002).

9. Morley, M. J., Safety Assurance in Interlocking Design, Ph.D. thesis, University of
Edinburgh (1996).

10. Peleska, J., Große, D., Haxthausen, A. E. and Drechsler, R., Automated Ver-
ification for Train Control Systems, In Schnieder, E. and Tarnai, G. (eds):



FORMS/FORMAT 2004 - Formal Methods for Automation and Safety in Rail-
way and Automotive Systems, Braunschweig, Germany (2004).

11. Simpson, A. C., Woodcock, J. C. P., and Davies J. W., The mechanical verification
of Solid State Interlocking geographic data. In Groves, L. and Reeves, S. (eds.),
Proceedings of Formal Methods Pacific, Wellington, New Zealand, 9–11 July, pp.
223–242. Springer-Verlag (1997).


