
Specifying Railway Interlocking
Requirements for Practical Use

Lars-Henrik Eriksson

Logikkonsult NP AB
Swedenborgsgatan 2

S-118 48 STOCKHOLM
SWEDEN

E-mail: lhe@lk.se

Abstract

An essentially complete formal specification of safety requirements for
railway interlockings has been developed. The work is part of as project with
the Swedish National Rail Administration investigating the feasibility of
using formal methods for the analysis of interlockings in a production setting.
An overview of the specification is given and two ongoing case studies on
verifying interlockings using the specification are described. Verification is
done using the very fast Stålmarck theorem prover for propositional logic.
The current limits of the technology is discussed.

1. Introduction
The Swedish National Rail Administration (Banverket) has for some years been
using formal methods as one of the techniques to verify new software releases for
the Ebilock 850 and 950 interlockings made by ABB-Daimler Benz Transportation
(Adtranz) Signal AB in Sweden. Formal methods are also used by the manufacturer
itself during software development.

In both cases, the source code of the interlocking logic software is analysed using a
software tool – CVT [1] – specifically developed by Logikkonsult NP AB for this
purpose. The tool accepts programs written in Adtranz Signal’s proprietary
programming language STERNO2L and can carry out various kind of analyses.

So far, the use of formal methods has been limited to specific low-level properties
of the software - in particular that a certain kind of execution error can never occur.
Banverket are also using formal methods to compare different versions of software
modules to pinpoint functional changes of the software.

Banverket is currently investigating the possibility of full-scale use of formal
methods to communicate safety requirements of interlockings and to verify the
correct realisation of these requirements. To this end, Logikkonsult NP AB has

developed a set of formal specifications for safety properties of interlockings under
a contract with Banverket. In this paper we will briefly describe that specification
and its use. A complete presentation of the specification is given in references [2,3]
(in Swedish). The contract also calls for the formal verification of an actual
interlocking using the specification. As of this writing, that work is still in progress
but some preliminary results can be presented.

2. The specification
In contrast with previous work on specification and/or verification of interlockings
[4,5,6,7], this work has from the beginning been intended to describe a set of
requirements which is at the same time general and complete. The scope of the
specification is essentially limited only by the fact that Banverket’s present interest
is concentrated on small rail yards1. Features relevant mainly to larger yards have
been excluded from the specification. To facilitate the acceptance and practical use
of the specification, it has been written using concepts traditionally used in Swedish
signalling practise.

The specification describes functional safety requirements only. Safety requirements
relating to the construction of the interlocking, such that certain failure modes must
not lead to dangerous situations, are not included. Also, safety requirements about
the internal workings of track side objects are not included. The track side objects
are regarded as black boxes which the interlocking requires to be in certain states,
and which report back to the interlocking whether those states have properly been
assumed or not.

The specification has been written using an extension to first-order predicate logic
known as “Delphi logic”. Formal specification using this logic is supported by the
Delphi tool2 [8,9], a prototype specification tool developed jointly by Logikkonsult
NP AB and Ellemtel Telecommunication System Laboratories in Sweden. In the
case of the present specification, the important extension involves a way to describe
state changes, so that the behaviour of a system under sequences of external events
can be described, even though the logic is not temporal.

A Delphi specification consists of two parts: the conceptual model and the rule set.
The conceptual model describes the concepts that are used in the specification, what
properties they have and how they are related. The rule set describes (the
requirements on) how the system should react to events in the environment.

The conceptual model of the present specification describes the different physical
objects and abstract concepts used by interlockings, such as rail yards, signals,

1 This is because Banverket is presently in the process of introducing a new generation of
interlockings intended for small rail yards.
2 Not to be confused with the commercial program development tool with the same name.

points, train routes3 etc. The safety properties are described as a set of invariants
(axioms) that express relations between the objects that must always hold in order to
maintain a safe situation in the yard. Apart from safety requirements, the
specification includes requirements describing the possible layouts of a rail yard.
This is needed both when using the specification to reason about arbitrary yards, and
to verify that a description of a particular rail yard makes sense.

The specification describes general safety requirements. In order to use the
specification to describe requirements for a particular interlocking – e.g. for
verification – the specification must be supplemented with a description of the
layout and properties of the particular rail yard controlled by the interlocking. This
description is given as a set of atomic facts in predicate logic.

The predicates of the conceptual model represent the different states of the
interlocking, and track side objects, as well as relations between both. For each type
of track side object – such as a point – there is a set of predicates used to express the
intended states of the object, such as the possible positions of the point.

The invariants of the specification express the safety requirements in terms of the
predicates. E.g. there is a requirement that if a point is occupied (by an engine or
car), the point must be locked (in order to prevent derailing after accidentally
manoeuvring the point while there is a train moving across it). This requirement can
be expressed simply as:

ALL pt (occupied(pt) -> point_locked(pt))

...where pt is a variable that ranges over points. Given predicates to express the
locking of train routes and to relate names of train routes to the parts of the rail yard
that makes up the route, the requirement that all points in a locked train route must
also be locked can be expressed as:

ALL pt (SOME tr (locked(tr) AND part_of(tr,pt)) ->
 point_locked(pt))

The rule set of the specification describes how the state of the interlocking (and of
track side objects controlled by the interlocking) may change as a result of events
from the environment. As an example, the train dispatcher (or traffic management
software) may request that a point be moved to a certain position. The interlocking
should accept that request only if the point is not locked. This requirement is
described using a Delphi rule:

WHEN move_right(pt) IS DETECTED
IF NOT point_locked(pt) CONCLUDE right(pt) AND NOT left(pt)

3 A train route is a part of the rail yard intended for the movement of a train. When a train is
about to use a particular route, all points in the route must be locked in the correct positions,
the route must be protected from cars accidentally rolling into it from the side, the route must
be free from obstacles etc.

When a request to put a point into the right position (move_right) is received by the
interlocking, the rule requires that the precondition NOT point_locked(pt) is
satisfied for the state change to be permitted. If that is the case, the state of the
interlocking should be changed so that the point is moved to the right position and is
no longer in the left position.

Since points are physical objects, the interlocking can not simply assume that the
point is in the correct position as described by the predicates right and left. A
separate predicate, controlled, represents information about whether the point has
actually moved to the intended position.

The specification has been validated in several ways. It has been used to simulate
the behaviour of interlockings, and the behaviour has been checked for safety.
Several safety properties not directly expressed by the specification has been
formally proved to follow from it. E.g. that two signals leading into the same track
from different directions can not both show a drive aspect (green light)
simultaneously.

Banverket has also inspected and approved a plain text translation of the
specification. We consider approval of the specification by domain experts to be
crucial for acceptance of formal methods in an application area. If the domain
experts do not have sufficient formal methods training to fully understand the
formal specification themselves, a plain text version adhering as closely as possible
to the structure and concept set of the formal specification should be used for
assessment.

3. Case studies
Presently, case studies about using the specification to formally prove the
correctness of existing interlockings are in progress. Although the studies have not
been completed, preliminary results have been obtained.

Two verification activities are taking place. Under a contract with Banverket,
Logikkonsult is verifying a particular instance of a widely used relay interlocking
system (SJ model 59). Also, under the supervision of Logikkonsult’s staff, a Ph.D.
student funded by the Danish State Railway is doing verification work on the
Ebilock 850/950 interlockings mentioned in the introduction.

The interlockings are verified by translating the relay circuits and program code,
respectively, into propositional logic and then showing that the various states that
can be assumed by the interlocking are all among the states permitted by the
specification.

The translation into logic presents no particular difficulties in general. Relay circuits
can naturally be regarded as networks of logical gates which are trivially translated
into logic formulæ. The few cases where the circuitry does not translate readily into

propositional logic (timing circuits in particular) are handled as special cases outside
the logic with little trouble.

The program code of the Ebilock 850/950 interlockings are divided into a number of
modules, each of which are translated into a logical formula describing the input-
output behaviour of the module. To accommodate all features of the STERNO2L
language, the propositional logic is extended with a limited form of arithmetic.

Since the specification has been written without any particular interlocking system
in mind, it should be expected that the same concepts are represented quite
differently in the specification and in a realisation. E.g., the specification represents
a train route as the set of the track sections making up the route, while the relay
interlocking represents a train route using a combination of two relays – one for the
beginning and one for the end of the route.

To enable analysis of an interlocking, the different representations of the concepts
must be related using formulæ in logic. This can be problematic, as it is not
necessarily obvious how concepts are represented in the actual interlocking system.
In the case of the Ebilock 850/950 interlockings in particular, this has proven to be a
major difficulty, due to incomplete documentation.

The actual verification of requirements is essentially done by proving that the
requirement formulæ of the specification are logical consequences of the translation
into logic of the interlocking system. Any erroneous state will cause the proof
process to fail and gives rise to a counter example, showing a situation where the
interlocking fails to fulfil the requirements.

The logical proofs are done using the Stålmarck theorem prover for propositional
logic [1,10,11,12]. The specification is written in predicate logic, but as any
particular rail yard has a fixed number of objects, the specification supplemented
with the rail yard description can be translated into propositional logic by expanding
the quantifiers. To accommodate translations of STERNO2L programs the theorem
prover provides limited support for arithmetic4.

The size of the formulæ that need to be proved can be quite large. The relay
interlocking under study controls a small rail yard with only two points and 12
signals. The translation of the specification into propositional logic for this rail yard
results in a formula with about 10 000 logical operators. The translation of the
interlocking circuitry itself results in a formula with about 1000 logical operators.
This is well within the capability of the theorem prover in most cases.

So far in the project, only a few requirements have actually been verified although
we expect a full verification to present no difficulties. An example of a verified
requirement is that a signal cannot show a drive aspect (green light) when there are
obstacles in the route behind the signal.

4 In particular, the theorem prover is not complete when arithmetic is used.

The particular Ebilock system under study is intended for a larger rail yard with 22
points and 33 signals. A translation of the program for this interlocking results in a
formula with about 400 000 logical operators. This touches the current limits of the
theorem prover used. For all but the most simple properties an analysis cannot be
made in reasonable time. The simplest requirements could be analysed in about 5
minutes on a SUN 4/20 computer, while the analysis of more complex requirements
needed a day or more of CPU time.

On the other hand, since the Ebilock 850/950 interlocking uses general program
modules that are combined according to the layout of a particular rail yard to form a
program for a interlocking intended for that yard, it is possible to verify the program
modules separately, a few modules in combination, or even entire parts of the rail
yard. In this way, it has been possible to analyse many requirements in only a few
minutes.

Unfortunately, the analysis of the program code has so far not led to any conclusive
results about the correctness or incorrectness of the program. For most of the
requirements tried, counter examples have been found. However, it is very difficult
to tell if the situations corresponding to the counter examples can actually occur.
The reason is that correct operation of each program module depends crucially on it
being passed correct data from other program modules during execution. When less
than an entire rail yard is analysed, it is necessary to be able to characterise formally
what “correct data” from the excluded modules mean, in order to avoid false counter
examples. This has proven to be difficult since sufficiently detailed documentation
of the software has not been available.

This example shows that in order to formally verify large systems in practise, the
systems have to be designed with formal verification in mind so that they can be
decomposed cleanly into parts that can be analysed separately.

Although the two case studies concern rail yards of very different sizes, the
difference in problem complexity can not only be explained by this. Another
important factor is the complicated design of the interlocking program and the fact
that the interlocking program is very general – intended to cope with all possible rail
yard configurations – while the relay interlocking is tailored to the specific yard.
While this brings the advantage that the same software can be used for different
yards, it does mean that attempts to verify interlockings for simple yards will still be
burdened with having to deal with program code that is unnecessary in that
particular instance.

References
1. Stålmarck G, Säflund M: Modelling and Verifying Systems and Software in

Propositional Logic. In: Daniels BK (ed) Safety of Computer Control
Systems 1990 (SAFECOMP’90). Pergamon Press, Oxford, 1990.

2. Eriksson L-H. Formalisering av krav på ställverk (delrapport fas 1). Report
NP-K-LHE-001. Logikkonsult NP AB, Stockholm, 1995. (in Swedish)

3. Eriksson L-H. Formalisering av krav på ställverk (slutrapport). Report NP-K-
LHE-003. Logikkonsult NP AB, Stockholm, 1996. (in Swedish)

4. Groote JF et.al. The Safety Guaranteeing System at Station Horn-
Kersenboogerd. Logic Group Preprint Series No. 121. Department of
Philosophy, Utrecht University, Utrecht, 1994.

5. Hansen KM: Validation of a Railway Interlocking Model. In: Naftalin,
Denvir, Bertran (eds.) FME’94: Industrial Benefit of Formal Methods.
Springer-Verlag, Heidelberg, 1994. (Lecture Notes in Computer Science no.
873)

6. Morley MJ. Modelling British Rail’s Interlocking Logic: Geographical Data
Correctness. Technical Report ECS-LFCS-91-186. Department of Computer
Science, University of Edinburgh, Edinburgh, 1991.

7. Morley MJ: Safety In Railway Signalling Data: A Behavioural Analysis. In:
Joyce, Seger (eds.) Higher Order Logic Theorem Proving and its
Applications. Springer-Verlag, Heidelberg, 1993. (Lecture Notes in Computer
Science)

8. Höök H. Delphi – A General Description of the Language. Report F 91 0881.
Ellemtel Utvecklings AB, Stockholm, 1993.

9. Stålmarck G, Widebäck F. Definition av Delphi. Report NP-FW-001.
Logikkonsult NP AB, Stockholm, 1991. (in Swedish).

10. Stålmarck G, Åkerlund O: Formal verification of hardware and software
systems using NP-Circuit. In: Malmén Y, Rouhiainen V (eds.) Reliability and
safety of processes and manufacturing systems. Elsevier, London, 1991.

11. Säflund M: Modelling and formally verifying systems and software in
industrial applications. In: Proc. of the Second International Conference on
Reliability, Maintainability and Safety (ICRMS'94). International Academic
Publishers, Beijing, 1994.

12. Widebäck F. Stålmarck’s Notion of n-saturation. Report NP-K-FW-200.
Logikkonsult NP AB, Stockholm, 1996.

