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Abstract

An essentially complete formal specification of safety requirements for 
railway interlockings has been developed. The work is part of as project with 
the Swedish National Rail Administration investigating the feasibility of 
using formal methods for the analysis of interlockings in a production setting. 
An overview of the specification is given and two ongoing case studies on 
verifying interlockings using the specification are described. Verification is 
done using the very fast Stålmarck theorem prover for propositional logic. 
The current limits of the technology is discussed.

1. Introduction
The Swedish National Rail Administration (Banverket) has for some years been 
using formal methods as one of the techniques to verify new software releases for 
the Ebilock 850 and 950 interlockings made by ABB-Daimler Benz Transportation 
(Adtranz) Signal AB in Sweden. Formal methods are also used by the manufacturer 
itself during software development.

In both cases, the source code of the interlocking logic software is analysed using a 
software tool – CVT [1] – specifically developed by Logikkonsult NP AB for this 
purpose. The tool accepts programs written in Adtranz Signal’s proprietary 
programming language STERNO2L and can carry out various kind of analyses. 

So far, the use of formal methods has been limited to specific low-level properties 
of the software - in particular that a certain kind of execution error can never occur. 
Banverket are also using formal methods to compare different versions of software 
modules to pinpoint functional changes of the software.

Banverket is currently investigating the possibility of full-scale use of formal 
methods to communicate safety requirements of interlockings and to verify the 
correct realisation of these requirements. To this end, Logikkonsult NP AB has 



developed a set of formal specifications for safety properties of interlockings under 
a contract with Banverket. In this paper we will briefly describe that specification 
and its use. A complete presentation of the specification is given in references [2,3] 
(in Swedish). The contract also calls for the formal verification of an actual 
interlocking using the specification. As of this writing, that work is still in progress 
but some preliminary results can be presented.

2. The specification
In contrast with previous work on specification and/or verification of interlockings 
[4,5,6,7], this work has from the beginning been intended to describe a set of 
requirements which is at the same time general and complete. The scope of the 
specification is essentially limited only by the fact that Banverket’s present interest 
is concentrated on small rail yards1. Features relevant mainly to larger yards have 
been excluded from the specification. To facilitate the acceptance and practical use 
of the specification, it has been written using concepts traditionally used in Swedish 
signalling practise.

The specification describes functional safety requirements only. Safety requirements 
relating to the construction of the interlocking, such that certain failure modes must 
not lead to dangerous situations, are not included. Also, safety requirements about 
the internal workings of track side objects are not included. The track side objects 
are regarded as black boxes which the interlocking requires to be in certain states, 
and which report back to the interlocking whether those states have properly been 
assumed or not. 

The specification has been written using an extension to first-order predicate logic 
known as “Delphi logic”. Formal specification using this logic is supported by the 
Delphi tool2 [8,9], a prototype specification tool developed jointly by Logikkonsult 
NP AB and Ellemtel Telecommunication System Laboratories in Sweden. In the 
case of the present specification, the important extension involves a way to describe 
state changes, so that the behaviour of a system under sequences of external events 
can be described, even though the logic is not temporal.

A Delphi specification consists of two parts: the conceptual model and the rule set. 
The conceptual model describes the concepts that are used in the specification, what 
properties they have and how they are related. The rule set describes (the 
requirements on) how the system should react to events in the environment.

The conceptual model of the present specification describes the different physical 
objects and abstract concepts used by interlockings, such as rail yards, signals, 

1 This is because Banverket is presently in the process of introducing a new generation of 
interlockings intended for small rail yards.
2 Not to be confused with the commercial program development tool with the same name.



points, train routes3 etc. The safety properties are described as a set of invariants 
(axioms) that express relations between the objects that must always hold in order to 
maintain a safe situation in the yard. Apart from safety requirements, the 
specification includes requirements describing the possible layouts of a rail yard. 
This is needed both when using the specification to reason about arbitrary yards, and 
to verify that a description of a particular rail yard makes sense.

The specification describes general safety requirements. In order to use the 
specification to describe requirements for a particular interlocking – e.g. for 
verification – the specification must be supplemented with a description of the 
layout and properties of the particular rail yard controlled by the interlocking. This 
description is given as a set of atomic facts in predicate logic.

The predicates of the conceptual model represent the different states of the 
interlocking, and track side objects, as well as relations between both. For each type 
of track side object – such as a point – there is a set of predicates used to express the 
intended states of the object, such as the possible positions of the point.

The invariants of the specification express the safety requirements in terms of the 
predicates. E.g. there is a requirement that if a point is occupied (by an engine or 
car), the point must be locked (in order to prevent derailing after accidentally 
manoeuvring the point while there is a train moving across it). This requirement can 
be expressed simply as:

ALL pt (occupied(pt) -> point_locked(pt))

...where pt is a variable that ranges over points. Given predicates to express the 
locking of train routes and to relate names of train routes to the parts of the rail yard 
that makes up the route, the requirement that all points in a locked train route must 
also be locked can be expressed as:

ALL pt (SOME tr (locked(tr) AND part_of(tr,pt)) ->
                 point_locked(pt))

The rule set of the specification describes how the state of the interlocking (and of 
track side objects controlled by the interlocking) may change as a result of events 
from the environment. As an example, the train dispatcher (or traffic management 
software) may request that a point be moved to a certain position. The interlocking 
should accept that request only if the point is not locked. This requirement is 
described using a Delphi rule:

WHEN move_right(pt) IS DETECTED
IF NOT point_locked(pt) CONCLUDE right(pt) AND NOT left(pt)

3 A train route is a part of the rail yard intended for the movement of a train. When a train is 
about to use a particular route, all points in the route must be locked in the correct positions, 
the route must be protected from cars accidentally rolling into it from the side, the route must 
be free from obstacles etc.



When a request to put a point into the right position (move_right) is received by the 
interlocking, the rule requires that the precondition NOT point_locked(pt) is 
satisfied for the state change to be permitted. If that is the case, the state of the 
interlocking should be changed so that the point is moved to the right position and is 
no longer in the left position.

Since points are physical objects, the interlocking can not simply assume that the 
point is in the correct position as described by the predicates right and left. A 
separate predicate, controlled, represents information about whether the point has 
actually moved to the intended position. 

The specification has been validated in several ways. It has been used to simulate 
the behaviour of interlockings, and the behaviour has been checked for safety. 
Several safety properties not directly expressed by the specification has been 
formally proved to follow from it. E.g. that two signals leading into the same track 
from different directions can not both show a drive aspect (green light) 
simultaneously.

Banverket has also inspected and approved a plain text translation of the 
specification. We consider approval of the specification by domain experts to be 
crucial for acceptance of formal methods in an application area. If the domain 
experts do not have sufficient formal methods training to fully understand the 
formal specification themselves, a plain text version adhering as closely as possible 
to the structure and concept set of the formal specification should be used for 
assessment.

3. Case studies
Presently, case studies about using the specification to formally prove the 
correctness of existing interlockings are in progress. Although the studies have not 
been completed, preliminary results have been obtained.

Two verification activities are taking place. Under a contract with Banverket, 
Logikkonsult is verifying a particular instance of a widely used relay interlocking 
system (SJ model 59). Also, under the supervision of Logikkonsult’s staff, a Ph.D. 
student funded by the Danish State Railway is doing verification work on the 
Ebilock 850/950 interlockings mentioned in the introduction.

The interlockings are verified by translating the relay circuits and program code, 
respectively, into propositional logic and then showing that the various states that 
can be assumed by the interlocking are all among the states permitted by the 
specification. 

The translation into logic presents no particular difficulties in general. Relay circuits 
can naturally be regarded as networks of logical gates which are trivially translated 
into logic formulæ. The few cases where the circuitry does not translate readily into 



propositional logic (timing circuits in particular) are handled as special cases outside 
the logic with little trouble.

The program code of the Ebilock 850/950 interlockings are divided into a number of 
modules, each of which are translated into a logical formula describing the input-
output behaviour of the module. To accommodate all features of the STERNO2L 
language, the propositional logic is extended with a limited form of arithmetic.

Since the specification has been written without any particular interlocking system 
in mind, it should be expected that the same concepts are represented quite 
differently in the specification and in a realisation. E.g., the specification represents 
a train route as the set of the track sections making up the route, while the relay 
interlocking represents a train route using a combination of two relays – one for the 
beginning and one for the end of the route.

To enable analysis of an interlocking, the different representations of the concepts 
must be related using formulæ in logic. This can be problematic, as it is not 
necessarily obvious how concepts are represented in the actual interlocking system. 
In the case of the Ebilock 850/950 interlockings in particular, this has proven to be a 
major difficulty, due to incomplete documentation.

The actual verification of requirements is essentially done by proving that the 
requirement formulæ of the specification are logical consequences of the translation 
into logic of the interlocking system. Any erroneous state will cause the proof 
process to fail and gives rise to a counter example, showing a situation where the 
interlocking fails to fulfil the requirements.

The logical proofs are done using the Stålmarck theorem prover for propositional 
logic [1,10,11,12]. The specification is written in predicate logic, but as any 
particular rail yard has a fixed number of objects, the specification supplemented 
with the rail yard description can be translated into propositional logic by expanding 
the quantifiers. To accommodate translations of STERNO2L programs the theorem 
prover provides limited support for arithmetic4.

The size of the formulæ that need to be proved can be quite large. The relay 
interlocking under study controls a small rail yard with only two points and 12 
signals. The translation of the specification into propositional logic for this rail yard 
results in a formula with about 10 000 logical operators. The translation of the 
interlocking circuitry itself results in a formula with about 1000 logical operators. 
This is well within the capability of the theorem prover in most cases.

So far in the project, only a few requirements have actually been verified although 
we expect a full verification to present no difficulties. An example of a verified 
requirement is that a signal cannot show a drive aspect (green light) when there are 
obstacles in the route behind the signal.

4 In particular, the theorem prover is not complete when arithmetic is used.



The particular Ebilock system under study is intended for a larger rail yard with 22 
points and 33 signals. A translation of the program for this interlocking results in a 
formula with about 400 000 logical operators. This touches the current limits of the 
theorem prover used. For all but the most simple properties an analysis cannot be 
made in reasonable time. The simplest requirements could be analysed in about 5 
minutes on a SUN 4/20 computer,  while the analysis of more complex requirements 
needed a day or more of CPU time.

On the other hand, since the Ebilock 850/950 interlocking uses general program 
modules that are combined according to the layout of a particular rail yard to form a 
program for a interlocking intended for that yard, it is possible to verify the program 
modules separately, a few modules in combination, or even entire parts of the rail 
yard. In this way, it has been possible to analyse many requirements in only a few 
minutes.

Unfortunately, the analysis of the program code has so far not led to any conclusive 
results about the correctness or incorrectness of the program. For most of the 
requirements tried, counter examples have been found. However, it is very difficult 
to tell if the situations corresponding to the counter examples can actually occur. 
The reason is that correct operation of each program module depends crucially on it 
being passed correct data from other program modules during execution. When less 
than an entire rail yard is analysed, it is necessary to be able to characterise formally 
what “correct data” from the excluded modules mean, in order to avoid false counter 
examples. This has proven to be difficult since sufficiently detailed documentation 
of the software has not been available.

This example shows that in order to formally verify large systems in practise, the 
systems have to be designed with formal verification in mind so that they can be 
decomposed cleanly into parts that can be analysed separately.

Although the two case studies concern rail yards of very different sizes, the 
difference in problem complexity can not only be explained by this. Another 
important factor is the complicated design of the interlocking program and the fact 
that the interlocking program is very general – intended to cope with all possible rail 
yard configurations – while the relay interlocking is tailored to the specific yard. 
While this brings the advantage that the same software can be used for different 
yards, it does mean that attempts to verify interlockings for simple yards will still be 
burdened with having to deal with program code that is unnecessary in that 
particular instance.
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