
FORMAL METHODS STRATEGY STUDY
REPORT

Defines a strategy and programme to introduce
formal methods into EURO-INTERLOCKING

Project 2

Version 1.1

Created: 11.05.00

Saved: 15/05/00 09:41

Total Number of Pages: 26

Filing Name: R019 FMStrategy Study.DOC

R019 FM Report 16.05.00 13:36 Page 2 of 2

EURO-INTERLOCKING Formal Methods Strategy Study Report

Document Data Sheet

Filing name

R019 FMStrategy
Study.DOC

Document Type Last saved

15/05/00 09:41

This version

1.1

Last saved by

N. König

Languages Title of Document

Formal Methods Strategy Study Report Original

English

Translations

Pages Figures Tables Subject

 26

Price Author(s)

L.-H. Eriksson (Industrilogik), G. Finnie (Praxis
Critical Systems), I. Herttua, N. König

Document

Right of Use

Performing Body

Sponsoring Body

Approved by Performing Body Approved by Sponsoring Body Availability of Document

Name

Project Manager

Name

Unrestricted

Application Used

Template Name

Study final.dot

Last Printed

18.05.00 11:05

Date of Publication

May 2000

Abstract

Defines a strategy and programme to introduce formal methods into EURO-
INTERLOCKING Project 2

R019 FM Report 16.05.00 13:36 Page 3 of 3

EURO-INTERLOCKING Formal Methods Strategy Study Report

Document Control Sheet

Name Institution Level Task Date

R019 FM Report 16.05.00 13:36 Page 4 of 4

EURO-INTERLOCKING Formal Methods Strategy Study Report

Table of Contents

Document Data Sheet ..2

Document Control Sheet ..3

Table of Contents ...4

References to Cited Texts ..6

1. Introduction...7

1.1 Background ..7

1.2 Purpose of this document...7

1.3 Scope of this document ..7

1.4 Structure...8

2. Interlocking Requirement Language (IRL)..9

2.1 Language Selection Criteria ...9

2.2 Tool Selection Criteria ..12

3. Evaluation of Languages and Tools ...14

3.1 Language Evaluation..14

3.1.1 Z...14

3.1.2 B ..15

3.1.3 PVS..15

3.2 Conclusions ..16

3.3 Tool Survey ..16

3.3.1 Z tools ..16

3.3.2 B tools..17

3.3.3 PVS tools ...17

3.4 Summary ..18

4. Describing Requirements Informally...19

4.1 Structured English Requirements ...19

4.2 Examples..20

5. Long-Term Strategy and Action Plan for Project 2 ...22

5.1 Actions in Project 2...22

5.2 Long-Term Strategy..23

5.2.1 Banverket’s ISL study ..23

5.2.2 IRL and EURO-INTERLOCKING...24

R019 FM Report 16.05.00 13:36 Page 5 of 5

EURO-INTERLOCKING Formal Methods Strategy Study Report

6. Conclusions and recommendations..25

Amendment Sheet..26

R019 FM Report 16.05.00 13:36 Page 6 of 6

EURO-INTERLOCKING Formal Methods Strategy Study Report

References to Cited Texts

1. Eriksson, L-H and Fahlén, M.: An Interlocking Specification Language, In:
ASPECT99, Papers of the International Conference, The Institution of
Railway Signalling Engineers, London 1999.

2. Spivey, J.M.: The Z Notation, Prentice-Hall 1992

3. Abrial, J-R., The B-Book, Cambridge University Press 1996.

4. Owre, S., Rushby, J. and Shankar, N., PVS: A Prototype Verification System,
In: Conference on Automated Deduction, Lecture Notes in Artificial
Intelligence 607, Springer-Verlag 1992.

5. The RAISE Development Method, Prentice-Hall 1995.

6. Jones, C.: Systematic Software Development Using VDM, Prentice-Hall
1990.

7. Ghezzi, G., Mandrioli, D. and Morzenti, A, TRIO: a logic language for
executable specifications of real-time systems, The Journal of Systems and
Software, vol. 12, no. 2, May 1990.

8. Behm, P. and Meynadier, J.-M.: Météor; A Successful Application of B in a
Large Project, In: J.M. Wing, J. Woodcock and J. Davies (eds.): FM’99 –
Formal Methods, Vol. I, Springer Lecture Notes in Computer Science 1708,
Springer-Verlag 1999.

9. Eriksson, L-H: ISL – Interlocking Specification Language, Industrilogik report
L4i-99/361, 1999. (In Swedish.)

R019 FM Report 16.05.00 13:36 Page 7 of 7

EURO-INTERLOCKING Formal Methods Strategy Study Report

1. Introduction

1.1 Background

The immediate goal of the EURO-INTERLOCKING project is to develop a set of
requirements that will capture the full range of requirements for interlocking
across Europe. This stage is called Project 2 – Railway Requirements.

The EURO-INTERLOCKING Core Team in Zurich (about 8 people from several
different rail authorities across Europe) will collect requirements from the
supporting organisations, and other relevant sources (eg standards bodies).
They will analyse the information obtained to produce clear consistent generic
interlocking requirements. The draft requirements will then be reviewed by the
supporting organisations, prior to their approval.

A goal of Project 2 is to utilise Formal Methods to describe the requirements in
an unambiguous manner, to facilitate the maintenance of the requirements and
to assist in the verification and validation of systems to meet the requirements.
Praxis Critical Systems and Industrilogik L4i AB have been contracted by the
EURO-INTERLOCKING project to carry out a short study to define a strategy
and programme for the introduction of Formal Methods in Project 2.

1.2 Purpose of this document

This document contains the results of the Formal Methods Strategy Study. It
therefore:

• describes the issues that need to be addressed and the decisions that need
to be made in order to make effective use of Formal Methods for the EURO-
INTERLOCKING Requirements;

• recommends solutions to the key issues, based on the technical judgement
and experience of the study team;

• identifies both a long-term strategy and an outline action plan for the
introduction of formal notation into Project 2.

1.3 Scope of this document

The main issue addressed by the study is the choice of formal notation
(informally referred to as IRL, Interlocking Requirements Language) to be
promoted by the EURO-INTERLOCKING project. This includes consideration of
how that notation should be used and its support by tools. The formal notation
needs to be complemented in use by a less mathematical, though still coherent,
description of the EURO-INTERLOCKING requirements. The document
therefore also identifies a structured approach to expressing EURO-
INTERLOCKING requirements in natural (English) language along with other
rigorous techniques (eg diagrams) and discusses the relationship between these
and the mathematically formal requirements description.

R019 FM Report 16.05.00 13:36 Page 8 of 8

EURO-INTERLOCKING Formal Methods Strategy Study Report

To satisfy budget and time constraints, the report does not set out to provide a
detailed justification of all its recommendations. These recommendations are
based on the technical judgement and experience of the study team rather than
an exhaustive investigation of all possible options.

1.4 Structure

Section 2 describes the key issues for IRL that must be considered and the
selection criteria for choosing appropriate components (principally language and
tools) of a formal methods strategy for the EURO-INTERLOCKING Project.

Section 3 describes the candidate choices for language and tools, outlines their
key features and evaluates their suitability for the project.

Section 4 discusses how a less mathematical description of the requirements
will be necessary to complement the formal notation, and sets out a
recommended approach to achieve this in the most effective way, including the
structured use of natural (English) language.

Section 5 provides both a long-term strategy and outline action plan for the
introduction of formal notation into Project 2.

Section 6 presents a summary of the main conclusions and recommendations of
the study.

R019 FM Report 16.05.00 13:36 Page 9 of 9

EURO-INTERLOCKING Formal Methods Strategy Study Report

2. Interlocking Requirement Language (IRL)
The overall aim of the EURO-INTERLOCKING project is to reduce total life cycle
cost of interlocking systems and using formal methods is one way to achieve it.
Interlocking Requirement Language is foreseen as a method to express
signalling requirements. A railway specific language gives the possibility to use a
mathematically precise technique to describe an interlocking within its domain,
and improve the quality and productivity of the development process.

The main aim of IRL is to give an unambiguous definition of requirements based
on a formal notation and enable the verification and validation processes.
Reducing development and verification cost by using automated tools and
methods are some of the possible contributions. The use of formal language like
IRL specially designed to engineering domain will lead to a higher quality
requirements definition and reduce the costs of requirements maintenance.

Among the issues involved in the formal methods strategy for EURO-
INTERLOCKING, the choice of formal language and tools is considered to be
one of the most important. An established and generally known language (like B
or Z) should be used to achieve the widest possible dissemination and use of
the formal specification. IRL is to be a further development of a know language
in order to adapt it to the needs of the interlocking development process while
using existing language notation and tools. The chosen notation and tools must
also satisfy several diverse and partly contradictory requirements. The question
of language selection criteria will be addressed first and then it will turn to the
question of tools.

The discussion in this section is mainly motivated by Industrilogik’s concept of
an Interlocking Specification Language (ISL) [Ref.1].

2.1 Language Selection Criteria

The practical use of formal methods requires a good tool support. The choice of
formal language must take into account the availability of tools. The need for a
good toolset to support the writer and user of formal specifications can hardly be
overstated. Tools must be available for such tasks as type checking, animation
and theorem proving (see section 2.2). The EURO-INTERLOCKING project
cannot be expected to do any development of tools apart from necessary
adaptations of tools to the task at hand (e.g. development of theorem proving
tactics for the library concepts). Choosing a notation supported by a good
selection of tools increases the likelihood of finding the right tool for the task and
reduces the risks of being left without support if some tool should be withdrawn
from the market.

An obvious criterion is that the language be sufficient in the sense that
essentially all requirements can be expressed with a minimum of reformulation
or ‘encoding’. However, in any formal language, there is a conflict between the
expressiveness of the language and ease of implementing tools to process the
language. A high degree of expressiveness means that the language offers
powerful and flexible means of expression – much can be said in few words – so

R019 FM Report 16.05.00 13:36 Page 10 of 10

EURO-INTERLOCKING Formal Methods Strategy Study Report

that the writer of requirements finds the language a natural means in which to
express himself. Since the use of computer tools is of major importance for the
practical use of formal methods, it is important that the language is carefully
designed to obtain maximum benefit from state of the art of tool technology.

This is particularly important for tools performing animation or theorem proving
tasks. Unfortunately, there is a conflict between the expressiveness of a
language and the extent to which the language can be automatically processed
by tools. A high degree of expressiveness has the drawback that the task of
tools becomes harder. In particular, to utilise modern highly efficient automated
propositional theorem proving and/or model checking tools, it must be possible
to translate the requirements into propositional logic. This is possible in principle
in many applications once the requirement has been ‘instantiated’ by giving
particular finite values to free variables and sets (e.g. the ‘given sets’ in Z).

To resolve this conflict, it has been noted that there are two fundamentally
different kinds of facts that need to be expressed in a formal requirement. The
first one being the actual requirements that one wishes to formalise (e.g.
requirements such as those given in section 4.2). The second one being the
domain theory or ‘conceptual model’, comprising descriptions of the basic
concepts (such as ‘route’, geographical relations etc.) used to express the actual
requirements.

The parts of a formal requirement generally requiring the greatest expressibility
are the ones dealing with the domain theory. The parts dealing with the actual
requirements require less expressiveness. If the language is sufficiently
expressive to permit a natural description of the domain theory, the possibility of
automating formal reasoning is reduced. Thus, there is a conflict between the
expressiveness needed for the domain theory and the lack thereof needed for
efficient implementation.

The previous experience with domain theories for railway signalling applications
shows that the domain theory itself would not be difficult for a tool to handle
efficiently. The difficulty lies in the generality of the language constructs needed
to express the theory. As the core of the domain theory can be expected to
change little or not at all once it has found its proper form, a possible solution
could be to use a language with limited expressiveness, but with a fixed,
predefined, domain theory. A tool could then implement the domain theory
directly without having to handle a description of it in a very general formal
notation.

In fact, making a domain theory requires a considerable expertise in the use of
formal methods, while making use of that theory in formalising actual
requirements can generally be done by domain experts (i.e. signalling
engineers) trained in formal methods use (possibly with the support of formal
methods experts). This makes it more likely that the domain theory will remain
essentially fixed in a given application.

From a technical point of view, having a simple language with a built-in domain
theory would seem to be the best approach, the major drawback being that
specialised tools would be needed. However, practical considerations below will
force us to modify this conclusion.

R019 FM Report 16.05.00 13:36 Page 11 of 11

EURO-INTERLOCKING Formal Methods Strategy Study Report

The overall aim of the EURO-INTERLOCKING project is to reduce total life cycle
cost of interlocking systems and the choice of formal language must be made in
light of this. For a formal requirement effort to contribute towards this goal, the
formal requirement must be usable by prospective suppliers in their product
development processes. This means that although tailored solutions like the
specialised language with built-in domain theory outlined above could be
preferable for the internal work of the EURO-INTERLOCKING project, an
established and generally known language should be used to achieve the widest
possible dissemination and use of the formal specification.

The intended users of the EURO-INTERLOCKING requirements are more likely
to accept a formal notation if it is based on an existing notation which is widely
used, or at least widely accepted. It will also make it easier to find staff with
knowledge of the notation or to find training material. Likewise, the availability
and quality of tools is likely to be greater.

A solution to this dilemma is to use an established highly expressive language,
but to use the full power of the language only for describing the domain theory.
This domain theory could be seen as an unchanging library which is referenced
by the proper specification. For writing the actual requirements, a suitable less
expressive subset of the language would be chosen. Coding rules could also be
used to restrict the expressiveness. Since the domain theory is presumed to be
essentially fixed, tools could still treat references to is as special cases, while
being able to efficiently process the subset language used for the actual
requirements.

This approach has the additional advantage that specialised tools are not strictly
needed. The requirement could still be used by a general tool, although
performance would suffer.

When evaluating a language for EURO-INTERLOCKING requirements, in
addition to the general language features discussed above, two particular
language features should be considered.

The first one is the extent to which the language supports modularisation of
specifications. It is generally a good idea to break up a large specification into
smaller parts. Also, as it has been outlined above, the domain theory will likely
have to be a separate library module. Since the EURO-INTERLOCKING project
aims at presenting several national requirements in a common format, it can be
expected that the presentation can be simplified if common or similar parts are
shared and the requirements structured accordingly. To support these needs,
the chosen notation must provide adequate support for modularising
requirements.

The second feature is the description of change over time (temporal properties).
Experience shows that most requirements involved in railway signalling only
refer to a single moment of time. (This is in contrast to many other application
areas where the sequencing of events is of major importance.) Still, in some
cases (e.g. route locking/release) requirements will need to reference time or
event sequences. The more powerful the language facilities for expressing
relations over time, the more natural the formalisation of such requirements will
be.

R019 FM Report 16.05.00 13:36 Page 12 of 12

EURO-INTERLOCKING Formal Methods Strategy Study Report

In summary, the language selection criteria are :

1. Tool availability – availability must be evaluated in relation to the Tool
selection criteria below.

2. Good expressiveness – the task of writing the domain theory will likely be
carried out by formal methods experts, and the core of the theory will seldom
or never be modified after its initial development, it is only moderately
important that the notation fulfils this criterion.

3. Established/accepted – notations not fulfilling this criterion should not be
considered unless they are expected to bring major technical advantages
over other notations.

4. Possibility of defining subset/coding rules to allow efficient automatic
processing by tools.

5. Support for modular requirements – basic support is expected to be
needed

6. Temporal expressiveness – most requirements can be expected to refer to
the same time instance, so only very basic expressiveness in this area will
actually be needed.

2.2 Tool Selection Criteria

As mentioned in the previous section, tool support is a necessity for the practical
use of formal methods.

There are four major kinds of tool-supported tasks that are of use to the writer of
a formal requirement (e.g. a EURO-INTERLOCKING team member or
consultant).

• Type checking. This involves checking that the specification is well-formed
and does not include undefined or poorly defined constructs. Type checking
may involve theorem proving as a subtask.

• Animation. The animator tool will regard the specification as a very high level
program and ‘execute’ it. Animation is a very powerful technique to validate a
specification and to learn how the specification works.

• Theorem proving. This involves making a logical analysis to check whether
or not some statement is a logical consequence of a set of formulae (e.g. the
specification). Theorem proving is a complex task that should be automated
to the fullest extent possible. Generally, some amount of manual guidance of
the theorem proving process will be needed.

• Clerical tasks like version control, formatting, document preparation etc.

All these functions should be available, either in an integrated toolset or in a
collection of individual tools. If a suite of individual tools is chosen, it is important
that the tools used fit together well (or can be made to do so with a reasonable

R019 FM Report 16.05.00 13:36 Page 13 of 13

EURO-INTERLOCKING Formal Methods Strategy Study Report

effort) – in particular, that the language versions accepted by the individual tools
are compatible.

It can be expected that a future need will arise to use new and/or tailored tools
for particular functions, e.g. in a formal verification environment. In particular it is
important that an integrated toolset is ‘open’ and provides some way of
interfacing with other tools. Although this is more likely to be of use to suppliers
of signalling equipment using the EURO-INTERLOCKING requirements than to
the EURO-INTERLOCKING project itself, tools should be selected with an eye
to facilitate future use of the requirement by other parties.

To allow efficient animation and automatic theorem proving, the operation of the
tools should be adaptable to the specification at hand. In particular, it should be
possible to make the tool handle the concepts of the domain theory directly as if
they were built- it. This could be done by programming new tactics, proof or
execution rules.

Some criteria are no different from those applied to any software. The quality of
the user interface should be taken into account. The tool should preferably be
available on a number of different platforms. The quality of documentation and
level of support that can be expected from the tool vendor (or other organisation)
should be taken into account, as should the future prospects of the tool – in
particular, what user base the tool has and how established it is in the formal
methods community. This is especially important for formal methods tools which
typically have a small, highly specialised user base and run a higher than
average risk of being discontinued by their vendors.

Note that ‘academic’ tools should not be prejudiced against. Many tools
developed by universities and research organisations have high quality, good
support and a (comparatively) large user base.

In summary, the tool selection criteria are:

1. Complete functionality – all required functions should be available
(possibly in conjunction with other tools).

2. Integrated environment – if the environment is based on individual tools,
they must fit together well.

3. Ease of interfacing with other tools for future applications.

4. Adaptable/programmable – important to allow a high degree of automation.

5. Good user interface – a modern graphical interface is desirable.

6. Good support/documentation/future development – this does not
necessarily mean that the tool has to be ‘commercial’.

R019 FM Report 16.05.00 13:36 Page 14 of 14

EURO-INTERLOCKING Formal Methods Strategy Study Report

3. Evaluation of Languages and Tools

3.1 Language Evaluation

There are a large number of notations that could possibly be used for
expressing the EURO-INTERLOCKING requirements. An evaluation that can be
said to be in any way complete is unfortunately outside the scope of this study.
Instead, two notations (Z [Ref. 2] and B [Ref. 3]) have been selected for
evaluation. The selected languages are clearly established and have also been
used for substantial specification work in the railway signalling domain. Also the
PVS notation has been chosen to be evaluated. PVS has been developed by
SRI International [Ref. 4]. Although not as established as Z or B, it has been
used for a large number of studies and it features an excellent theorem-proving
tool.

There are many other notations (e.g. RAISE [Ref. 5], VDM–SL [Ref. 6], TRIO
[Ref. 7]) which are arguably candidates for EURO-INTERLOCKING specification
work, but which had to be left out due to time constraints

Below the evaluation of the three selected notations has been done against
each of the criteria given above.

3.1.1 Z

1. Tool availability is good. However, it is unclear to what extent the available
tools satisfy the tool selection criteria. (See 3.2.2)

2. Expressiveness is good. Z is based on set theory and provides a rich set of
operations.

3. Z is one of the oldest and most widely used and taught specification
notations.

4. It is unclear to what extent it is possible to define a subset that can be
efficiently processed by an automatic tool. While powerful, operations on sets
can require substantial computation in an animator. Also, state transitions in
Z are expressed as relations between the old and the new state. These
relations may not have a form that permits an animator to directly compute a
new state given an old one. Transforming of set theory into logic for the
purpose of theorem proving is naturally done using characteristic predicates
for each occurring set. Since many Z operators create new intermediate sets,
a fair amount of analysis of the Z expressions may be required by the
translator to keep down the size of the translation.

5. The Z schema calculus is a very powerful mechanism for modularising
specifications.

6. The temporal expressiveness of Z is poor. Only relations between a state
and the next can be expressed.

R019 FM Report 16.05.00 13:36 Page 15 of 15

EURO-INTERLOCKING Formal Methods Strategy Study Report

3.1.2 B

1. Tool availability is very good. Two complete toolsets are available which are
both used in industrial applications.

2. Expressiveness is good. Like Z, B is based on set theory and provides a rich
set of operations.

3. B is quite well-known. Although not as established as Z, B figures in some
remarkable success stories of industrial applications of formal methods, eg
by MATRA [Ref. 8].

4. It is unclear to what extent it is possible to define a subset that can be
efficiently processed by an automatic tool, but the situation is better than for
Z. The same comments given for Z apply here, with one important exception:
A new state is given as a function of the old one, so it is straightforward for
an animation tool to compute the new state. Non-deterministic state
transitions are obtained using operations for explicit non-determinism.

5. B includes facilities for modular specifications, although not as powerful as
those of Z.

6. The temporal expressiveness of B is poor. Only relations between a state
and the next can be expressed.

3.1.3 PVS

1. Tool availability is poor. Only a single tool is available, providing type
checking and theorem proving – no animation. (Although the tool is an
excellent one.)

2. Expressiveness is good. PVS is based on higher-order logic which is a
formalism at least as powerful as set theory. It also provides a powerful
typing mechanism.

3. PVS is not well-known outside the research community. It has been used
rather extensively as a vehicle for experimental work in formal verification.

4. There is a good possibility to define a subset for efficient processing by tools.
It has been argued that a logic-based language is generally better suited for
implementations since sets are difficult objects to compute with efficiently.

5. PVS includes facilities for modular specifications, although not as powerful
as those of Z.

6. The temporal expressiveness of PVS is potentially good. The basic language
does not include any temporal features, however it is straightforward to
extend the language to include arbitrary temporal features. The PVS library
includes an extension for model checking in CTL (computational tree logic)
and the -calculus.

R019 FM Report 16.05.00 13:36 Page 16 of 16

EURO-INTERLOCKING Formal Methods Strategy Study Report

3.2 Conclusions

All three languages evaluated are suitable as specification languages for the
EURO-INTERLOCKING requirements. PVS appears to be a better choice than
B or Z from a purely technical point of view (criteria 2, 4, 5 and 6), although for
the purposes of EURO-INTERLOCKING, the differences are minor. B and,
particularly, Z are much more well known than PVS.

The result of the tool survey (section 3.3) indicates that B is by far the best
choice, followed by Z and then PVS. Considering the importance of tool support,
the relatively minor differences in technical merit and that PVS is considerably
less known than B or Z, the conclusion is that B is the language that best
fulfils the criteria as a whole.

3.3 Tool Survey

The timescale for this study did not permit a practical evaluation of any tools. It
was only possible to survey the tools known to be available, based on subjective
experience and on information available via the Internet.

3.3.1 Z tools

A very wide range of tools is available to support Z. The Z page on the Oxford
University Programming Research Group’s web site at
oldwww.comlab.ox.ac.uk/archive/z.html lists over thirty tools, among which the
best known are:

• Mike Spivey's FuZZ Z type-checker, available commercially together with an
associated fuzz.sty LateX style file which has better fonts for the more
esoteric Z symbols. The type-checker runs on Sun workstation, PC and
VAX/VMS equipment.

• CADiZ from York Software Engineering Ltd provides support for Z using troff
and LateX on Unix systems and Microsoft Word on PCs

• ProofPower, available from ICL, is an industrial strength Z theorem prover
based on Higher Order Logic

• Z/EVES, providing a Z front-end to the EVES proof tool based on ZF set
theory from ORA, Canada, is available via on-line distribution.

Fonts and style files to support the mathematical symbols are available from a
number of sources.

The number of tools available for Z does indicate a wide interest in the language
and those listed above are known to be sufficiently robust for industrial use.
However, it also shows the fragmented nature of the Z tools market. There is no
single tool for Z that would provide all the facilities needed for the EURO-
INTERLOCKING project (type checking, theorem proving and animation) and no
integrated Z toolset is available.

R019 FM Report 16.05.00 13:36 Page 17 of 17

EURO-INTERLOCKING Formal Methods Strategy Study Report

3.3.2 B tools

The B Method was developed from the start with industrial-scale tool support in
mind. Consequently, powerful and integrated tool support exists, providing
assistance for all stages of the B development process.

Currently there are two different B toolkits on the market:

• The B-Toolkit is a set of integrated tools which fully supports the B-Method
for formal software development, built on top of the B-Tool, a language
interpreter and a run-time environment for supporting B. These tools are
available from B-Core (UK) Limited, UK. The B-Toolkit provides syntax and
type checking, proof obligation generation, a combination of automatic and
interactive theorem proving, and animation. It also provides support for
document production and has a graphical user interface. For full
development using the B-Method, the B-Toolkit provides code generation in
ANSI C.

The EURO-INTERLOCKING project is using the DOORS requirements
analysis tool from QSS. It has been understand that QSS, in conjunction with
B-Core, have developed an interface between DOORS and the B-Toolkit.

• Atelier B is an integrated toolkit for the B method developed by Steria
Mediterranee (France), with the collaboration of Jean-Raymond Abrial and
GEC Alsthom Transport. Atelier B is sponsored by RATP, SNCF and
INRETS and developed with their technical co-operation. The range of
facilities in Atelier B is broadly similar to those of the B-Toolkit and includes
syntax analysis, type checking, proof obligation generation, theorem proving
and animation. Code generation into C and Ada is available. Access to
Atelier B software tools is by a graphical MOTIF interface or by a batch
language, and in each mode it manages multi-user projects. The first version
of Atelier B was upgraded in 1995 with an animator, a new generation of
prover, a powerful project documentation generator and various interfaces
with standard tools including Word and Interleaf.

A small number of other independent tools are available, such as editors,
parsers and supporting fonts, but are unlikely to be of interest given the
integrated and comprehensive nature of the two main contenders.

The B-Toolkit and Atelier B appear to be broadly equivalent in terms of technical
specification and both seem capable of satisfying the requirements of the
EURO-INTERLOCKING project. A detailed practical evaluation would be
required in order to make a choice between them; ultimately, the decisive factors
are likely to be usability and commercial considerations.

3.3.3 PVS tools

PVS is supported by a theorem proving tool available from SRI International.

The PVS theorem prover provides a collection of powerful primitive inference
procedures that are applied interactively under user guidance within a sequent
calculus framework. The primitive inferences include propositional and quantifier

R019 FM Report 16.05.00 13:36 Page 18 of 18

EURO-INTERLOCKING Formal Methods Strategy Study Report

rules, induction, rewriting, and decision procedures for linear arithmetic. User-
defined procedures can combine these primitive inferences to yield higher-level
proof strategies. Proofs yield scripts that can be edited, attached to additional
formulas, and rerun. This allows many similar theorems to be proved efficiently,
permits proofs to be adjusted economically to follow changes in requirements or
design, and encourages the development of readable proofs. PVS includes a
BDD-based decision procedure for the relational mu-calculus and thereby
provides an experimental integration between theorem proving and CTL model
checking.

PVS uses Gnu or X Emacs to provide an integrated interface to its specification
language and prover. Commands can be selected either by pull-down menus or
by extended Emacs commands. Extensive help, status-reporting and browsing
tools are available, as well as the ability to generate typeset specifications (in
user-defined notation) using LaTeX. Proof trees and theory hierarchies can be
displayed graphically using Tcl/Tk.

Although clearly PVS has an excellent theorem prover, it is weak in the other
areas of tool support required by the EURO-INTERLOCKING project. In
particular, it lacks an animation tool.

3.4 Summary

As far as appropriate tool support is concerned, it is clear that the most suitable
choice is B, followed secondly by Z, and thirdly by PVS.

• B is the only notation that clearly meets the EURO-INTERLOCKING
requirements for tool support and it does so within an integrated
environment.

• A well-chosen set of independent Z tools could possibly meet the
requirements, but the tools would not be integrated together without a lot of
additional work.

• PVS is good for theorem proving but lacks the full range of tools required.

R019 FM Report 16.05.00 13:36 Page 19 of 19

EURO-INTERLOCKING Formal Methods Strategy Study Report

4. Describing Requirements Informally
The formal notation on its own will not meet all the needs of the EURO-
INTERLOCKING Project. There are a number of reasons for this:

• non-technical readers will require a natural language commentary as a
‘gentle’ introduction to the more formal description;

• even for readers fully familiar with the notation, it is common practice to
complement a formal specification with a less formal description which
provides real-world context and an overview of the formal material;

• initial capture of requirements will proceed while the formal notation is still
being developed, so there is a need to express requirements rigorously in
another way until the notation becomes available for use;

• use of the formal notation is likely to be limited in the first instance to
expressing safety constraints rather than positive operational requirements;

• some requirements (eg performance) will always remain outside the scope of
the formal notation.

Therefore, the use of the formal notation must be complemented by less
mathematical, though still rigorous and coherent, descriptions of the EURO-
INTERLOCKING requirements. In this section, a structured approach has been
identified to express EURO-INTERLOCKING requirements in natural (English)
language along with other informal techniques (eg diagrams) and discuss the
relationship between these and the formal requirements description.

4.1 Structured English Requirements

As explained above, there is a need to describe the EURO-INTERLOCKING
requirements in a natural language form as well as in the formal notation.
However, it is well recognised that requirements written in natural language are
often expressed in an ambiguous and unclear way; indeed, this was the
principal motivation for the development of formal methods.

The challenge therefore is to devise a means of rigorously describing
requirements in a natural way without a strictly mathematical formal notation.
The experience in software engineering is that there is no single solution to this
problem. Instead, it is believed that the required objective can best be met by
the combination of a number of approaches which taken together will lead to the
production of clear and unambiguous requirements statements.

The elements of this strategy are as follows:

• High-level structure

Clarity can be greatly improved by adopting a standard high-level structure
for requirements definitions. By clearly distinguishing domain knowledge
from system requirements, and by separating rules, conditions and

R019 FM Report 16.05.00 13:36 Page 20 of 20

EURO-INTERLOCKING Formal Methods Strategy Study Report

operations from each other, one provides a consistent framework for the
different sorts of requirements statements. By clearly delimiting the context of
each statement, it greatly reduce the scope for ambiguous interpretation.

• Good term definitions

To provide a firm foundation for expressing requirements, it is essential to
have a clear definition of the terms used. It is very important to use terms
consistently and to avoid overlapping terms, such as having more than one
name for the same thing. Object modelling and diagramming techniques can
assist in the definition of terms, as well as in the exploration of concepts
leading to those definitions.

• Structuring of operations

Just as the high-level structure provides a clear context for the different
classes of requirements, a consistent structure for defining operations
focuses attention on the essential aspects of each operation. For example,
by clearly identifying inputs, outputs, preconditions and postconditions, one
helps to ensure that the definition of each operation is complete and
unambiguous.

• Logic construction guidelines

Trying to define a rigid subset of English to express requirements is unlikely
to be cost-effective or even successful. A more productive approach is to
draw up guidelines, based on experience, to avoid the most common pitfalls.
A set of guidelines for expressing logic constructs clearly in English would
cover, for example, distinguishing clearly between ‘if’ and ‘if and only if’, the
use of inclusive and exclusive ‘or’, use of quantifiers and advice on the
degree of nesting acceptable.

• Sentence construction guidelines

Similarly, guidelines for the construction of clear English sentences are
required. These would include issues such as using present tense instead of
future and minimising the number of subordinate clauses.

Good advice on how to write clearly in English can be found in material from
the Plain English Campaign (www.plainenglishcampaign.com).

4.2 Examples

As a brief example of the approach outlined above, consider the following
statements from a hypothetical requirements specification.

A set of points becomes locked if it is part of a locked route.

A route becomes locked if and only if a lock command is received and
conditions for locking are satisfied.

A route is released if and only if the conditions for release are satisfied.

R019 FM Report 16.05.00 13:36 Page 21 of 21

EURO-INTERLOCKING Formal Methods Strategy Study Report

These statements use basic domain terms such as ‘set of points’, ‘route’, ‘lock
command’ and the concept of ‘locked’ and ‘released’ points and routes. These
terms would be fully defined in a separate section, together with definitions of
any significant relationships between terms (for example, a set of points may be
‘part of’ a route). The terms and relationships would also be shown
schematically in the form of an object model diagram to provide an overview and
a starting point for the reader.

Logic constructs are restricted to a well-defined set of basic connectives such as
‘if and only if’. The actual conditions for locking and release are defined in
further statements to avoid over-complex sentence structure. For example,

The conditions for locking a route are that the route is set and obstacle
free and conflict free and not being manually released.

Clarity is further enhanced by adopting a consistent typographical convention to
show the reader which words are to be interpreted as basic terms or as logical
connectives. For example, here it has been chosen to write terms in bold font
and logical connectives in italics.

This style of writing requirements in natural language assists in developing and
understanding the mathematically formal expression of the requirements, since
the transformation between the natural language statements and their
expression in the formal notation is relatively small. The basic objects appear in
the formal notation as variables while relationships between objects and
changes in the state of objects are expressed as predicates. For example, the
first statement might have an equivalent formal form of

ALL pt (SOME rt (locked(rt) AND part_of(pt, rt) -> points_locked(pt))

It is interesting that even here the formal expression is more precise than the
English statement. Note how the indefinite article ‘a’ set of points has produced
a universal quantifier (ALL pt) whereas ‘a’ route has produced an existential
quantifier (SOME rt).

R019 FM Report 16.05.00 13:36 Page 22 of 22

EURO-INTERLOCKING Formal Methods Strategy Study Report

5. Long-Term Strategy and Action Plan for Project 2
The study has identified a basis for the development of an Interlocking
Requirement Language (IRL). IRL is a formal notation for expressing
interlocking requirements that is to be ultimately be used by the EURO-
INTERLOCKING project. However, it will take some time to develop the
notation fully and to put the necessary tool support in place. Consequently, it is
unlikely to be ready for serious use within the timeframe of Project 2 (end 2000).

Planning therefore needs to be considered from two distinct perspectives:

1. Actions required in Project 2 to enable current work to be done in a way that
is consistent with the eventual use of the IRL notation;

2. Longer term strategy for development of the IRL and its introduction into use
on the EURO-INTERLOCKING project.

5.1 Actions in Project 2

Work on development of the formal notation will proceed in parallel with the work
being done during 2000 to capture EURO-INTERLOCKING requirements. How
can it be ensured that the requirements are expressed in a way that will smooth
the transition to the eventual use of the IRL notation?

The key to satisfying this objective lies in having a sound foundation for the
concepts that will be expressed in the formal notation. This will be achieved by
following the strategy described in Section 4, and in particular from the use of
object modelling and clear definition of terms.

The required actions are therefore:

1. Develop object models for the basic concepts underlying the EURO-
INTERLOCKING requirements, and provide clear definitions of all terms.

2. Express the requirements in natural language using the approach and style
described in Section 4, using terms taken from the object model.

3. Provide close liaison between the Core Team and the IRL developers to
ensure that there is a close match between the basic building blocks
provided by the IRL and the core components of the object model. This is
clearly a two-way process.

4. As the IRL takes shape, start to express the fundamental safety constraints
in the notation.

R019 FM Report 16.05.00 13:36 Page 23 of 23

EURO-INTERLOCKING Formal Methods Strategy Study Report

5.2 Long-Term Strategy

5.2.1 Banverket’s ISL study

During 1999, Industrilogik carried out a pre study of ISL (Interlocking
Specification Language) [Ref. 9] on behalf of the Swedish National Rail
Administration (Banverket). Part of the pre study concerned a rough definition of
an ISL development project. This study envisioned an independent development
project, but conclusions are in the main part valid also when IRL development is
seen in the context of the EURO-INTERLOCKING project. Here will be
summarised the development project as outlined in the pre study report.

The purpose of an IRL development project would be:

• To define the IRL language;

• To define the methodology of using IRL during requirements definition,
interlocking construction and analysis;

• To carry out a pre study of tools development, including an outline functional
specification for tool support;

• To develop a prototype/demonstrator for the tool functions.

The project would roughly be divided into six main activities:

1. Outlining the methodology of IRL use, including tool support;

2. Defining the IRL language;

3. Defining basic concepts and developing a concept library (domain theory);

4. A pre study of tool support and outlining the functional requirements of
tools;

5. Developing a detailed methodology of IRL use;

6. Developing a tool prototype/demonstrator.

The work should be carried out in an international context with a reference group
formed by representatives of interested administrations and possibly suppliers. It
is important that a coherent working team is chosen and that the work is not split
between too many parties. It is presumed that the development project be
staffed with formal methods experts who also have relevant knowledge of and
experience from the railway signalling domain.

Possible funding sources could be: national R&D programs such as that of
Banverket and other administrations with an interest in formal methods,
international projects of the UIC and EU, and vendors interested in the use of
formal methods.

(The language definition corresponds to selecting the formal language and
defining a subset and coding rules according to section 2.1. The tool prototype

R019 FM Report 16.05.00 13:36 Page 24 of 24

EURO-INTERLOCKING Formal Methods Strategy Study Report

development corresponds partly to the selection of appropriate tools and
performing appropriate adaptations and tailoring according to section 2.2, but
also involves developing prototypes (or demonstrators) of tools relating to
interlocking development.)

5.2.2 IRL and EURO-INTERLOCKING

This project outline fits well into the long-term goals of EURO-INTERLOCKING.
The EURO-INTERLOCKING project provides just the kind of international
context that is necessary to ensure general acceptance of the concept.

The close cooperation, or even integration, of IRL and EURO-INTERLOCKING
work would be beneficial for both. The EURO-INTERLOCKING requirements
could serve as a trial application of IRL. Successful application of IRL to the
wide span of different national requirements, with a common conceptual core
comprising the EURO-INTERLOCKING requirements, would demonstrate the
general usefulness of the language. Since the EURO-INTERLOCKING
requirements would provide the principal test cases while IRL was developed,
the EURO-INTERLOCKING project would be ensured of a notation well suited
to its needs.

Banverket’s ISL concept does go further than the EURO-INTERLOCKING
project itself since it also considers the use of ISL in the development and
verification of interlocking systems – something that is primarily the interest of
suppliers. However, a long-term strategy for IRL should also consider this
aspect since the use of formal methods in development is an important factor in
life cycle cost reduction. The successful application of IRL to formal specification
in EURO-INTERLOCKING would raise interest also in the application of IRL to
interlocking development and verification.

EURO-INTERLOCKING should support or even itself undertake to organise an
IRL development project. The work should initially concern itself with the
specification aspects of IRL to provide the necessary support to the EURO-
INTERLOCKING work. Once this phase is completed, the work on interlocking
development aspects could begin. The aim would be to develop methodologies
and prototype tools which would demonstrate to suppliers and administrations
the advantage of using formal methods for development and analysis of
interlocking systems. The cooperation of suppliers could be sought for this
concluding phase of the project.

R019 FM Report 16.05.00 13:36 Page 25 of 25

EURO-INTERLOCKING Formal Methods Strategy Study Report

6. Conclusions and recommendations
The use of a formal notation for expressing interlocking requirements will lead to
a higher quality requirements definition and reduce the costs of requirements
maintenance and validation.

The principal conclusion of the study is that the B notation [Ref. 3] provides the
best basis for the development of a formal notation – an Interlocking
Requirement Language (IRL) – for expressing the EURO-INTERLOCKING
requirements.

The approach has also been identified, which ensures that the requirements can
be expressed rigorously in natural language. This approach, based on object
modelling, is designed to be consistent with the eventual use of the IRL notation,
smoothing the transition between the two styles.

In Section 5 of this report, it has been presented an action plan to meet both the
objectives of Project 2 and the longer-term requirements of the EURO-
INTERLOCKING project. It is therefore recommended that:

1. Work in Project 2 follows the action plan described in Section 5.1, that is:

• Develop object models for the basic concepts underlying the EURO-
INTERLOCKING requirements, and provide clear definitions of all terms.

• Express the requirements in natural language using the approach and
style described in Section 4, using terms taken from the object model.

• Provide close liaison between the Core Team and the IRL developers to
ensure that there is a close match between the basic building blocks
provided by the IRL and the core components of the object model. This is
clearly a two-way process.

• As the IRL takes shape, start to express the fundamental safety
constraints in the notation.

2. EURO-INTERLOCKING supports or even itself undertakes to organise an
IRL development project. Funding could be sought from one or both of the
UIC and the EU, and additionally from national R&D programs such as
that of Banverket, as the IRL notation has potential benefits to the railway
industry beyond the immediate scope of the EURO-INTERLOCKING
project.

R019 FM Report 16.05.00 13:36 Page 26 of 26

EURO-INTERLOCKING Formal Methods Strategy Study Report

Amendment Sheet

No. Version Section
Amended

By Whom Amendment Date

1 0.1 GF First draft report outline 14.03.00

2 0.2 GF Revised report outline following
comment

15.03.00

3 0.3 GF Revised report outline following
meeting in Stockholm of 23rd
March. Some initial material
provided for Section 4.

27.03.00

4 0.4 GF Full draft of Praxis Critical
Systems’ contribution to the
report, pending input from
Industrilogik

06.04.00

5 1.0 2, 3.1, 5.2 GF Definitive version of the report,
incorporating input from
Industrilogik

13.04.00

6 1.1 1.1, 2, 3.1.3,
3.2, 5

NK Minor changes for clarity of
report. Major changes to section
2 to include objectives and
justification for IRL

15.05.00

