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1. Introduction
Propositional theorem provers – also known as satisfiability (SAT) solvers – are receiving 
increased attention in the area of formal verification since recent developments in 
algorithms has made it possible to use propositional theorem proving to a variety of large-
scale problems, such as symbolic model checking, circuit equivalence and formal 
verification by refinement proof.

Greentech Computing Ltd1. was seeking industrial-scale problems not taken from the 
circuit verification domain to try out on their GSVT theorem prover. As  Industrilogik 
works with problems of this kind, we were given the opportunity to evaluate GSVT.  To get 
a general idea of the current state of the art in propositional theorem proving, we carried 
out the evaluation as a comparison of GSVT and three other theorem provers: HeerHugo 
[5], NP-Tools [4] and SATO [6].

2. The problems
2.1. Background

With the exception of two prime number problems supplied by Greentech Computing, all 
the problems were taken from Industrilogik’s work on formal specification and verification 
of railway interlockings [2,3]. 

In this work, a generic specification in temporal predicate logic of safety requirements of 
interlockings was developed. The specification is generic in the sense that it does not 
express requirement for any given interlocking system, but general requirements 
applicable to all systems. Supplying information about the structure of a particular rail 
yard yields the specific requirements for an interlocking intended for that particular rail 
yard (”instantiating” the specification). When this information has been supplied, it is also 
possible to translate the predicate logic expressions into propositional logic amenable to 
analysis by a propositional theorem prover. 

Using the instantiated specification and a model in propositional logic of an actual 
interlocking system for the site in question, it is possible to form a propositional theorem 
proving problem to show whether or not the interlocking system fulfils the requirements of 
the specification.

The particular rail yard used in the problems used in this comparison is that of the station 
in Brunna, outside Uppsala in Sweden.

Two distinct sets of problems were derived from the specification:

1) A set of specification validation problems, which shows that the instantiated 
specification itself fulfils certain correctness conditions.

2) A set of system verification problems, showing that the actual interlocking 
installation at Brunna station fulfils the requirements of the instantiated 
specification.

2.2. A note on the formulation of theorem proving problems

A theorem proving problem typically has the form A→P, where A is a conjunction of axioms 
and P is the theorem to prove. Since all four theorem provers basically attempt to find 
satisfying assignments to a formula, the actual formula given to the provers is ¬ (A→P). If 
a satisfying assignment to this formula can be found, P is not a logical consequence of A 
1 Greentech Computing Ltd., Garden Flat, 47 Frognal, London NW3 6YA, http://www.greentech-
computing.co.uk.
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and the resulting assignment shows why it is not. If this formula is inconsistent, then P is 
actually a logical consequence of A.

Is should thus be kept in mind that if P is actually a theorem, then the problem as seen by 
the theorem prover will be inconsistent and if P is not a theorem, then the problem will be 
satisfiable.

(The user interface of NP-Tools can present the user with the possibility to either find a 
satisfying assignment of a formula or to show directly that the formula is valid. To make 
the presentation consistent, we have chosen to ignore the latter possibility.)

2.3. Test set 1: Correctness conditions.

The problems test1ok, test2ok and test3ok, each state that the instantiated specification 
fulfils some correctness condition (the three properties in section 5.3 of [2]). For each of 
these three problems, there are also strengthened versions, test1fel, test2fel, test3fel, where 
the correctness conditions have (somewhat arbitrarily) been strengthened so that they no 
longer hold. The purpose is to test the ability of the theorem provers to generate a 
satisfying value assignment.

2.4. Test set 2: Verification

The problems with names beginning with brunna all relate to the formal verification of the 
particular interlocking system at Brunna station.

brunnabug is the actual formal verification problem. It exhibits an error in the Brunna 
interlocking, so this problem is satisfiable.

brunnatotal is the same formal verification problem, where the situation leading to the 
error has been defined away, so that the verification is successful, i.e. the problem formula 
is inconsistent.

The other brunnaXXX problems are subproblems of brunnatotal. For the analysis of the 
test results, it is of some importance to understand the structure of brunnatotal and in 
what sense the brunnaXXX are subproblems.

brunnatotal has the form A→P. A is a conjunction of axioms, including definitions of about 
40 verification conditions. P is a conjunction of the propositional variables defined as each 
of the verification conditions. In greater detail, the problem formula is:

…∧(c1 ↔ …)∧…∧(cn↔ …)∧… → c1∧…∧cn

where the c1, …, cn are particular propositional variables2.

The brunnaXXX subproblems are identical except that they include only a subset of the c1, 
…, cn to the right of the implication, i.e. the definitions of all verification conditions are still 
included in  the subproblem.

There is also a problem named simply brunna. This is a pseudo-verification problem where 
the right-hand side of the implication is the logical constant FALSE, rather than a 
conjunction of propositional letters. This problem is satisfiable and has been included as a 
test of how fast a satisfying assignment can be found.

2 The definiens of a ci may itself be a conjunction.
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2.5. Test set 3: Prime numbers

The final test set comprises to problems supplied by Greentech Computing, prim1 and 
prim2. prim1 states that the number 3476741 is prime, while prim2 states that the number 
58697731 is prime. Both problem formulae are inconsistent.

3. The theorem provers tested
3.1. GSVT

GSVT is a commercial theorem prover based on a novel proprietary algorithm developed by 
Greentech Computing. Very little has been disclosed about the properties of the algorithm 
or how the algorithm works. We have been told that it operates in two stages: A 
simplification stage which runs in about linear time in the size of the problem formula and 
a proper theorem proving stage. For simple problems, the simplification stage dominates. 

The version of GSVT tested was 0.8.

3.2. NP-Tools

NP-Tools [5] is a powerful commercial modelling and verification tool developed by Prover 
Technology. It is based on a theorem prover employing the patented ”Stålmarck method”. 
This method uses a combination of an incomplete proof procedure of linear time complexity 
with a branch/merge rule. The latter rule splits the proof in two branches, one where some 
propositional variable is assumed to be true and one where it is assumed to be false. The 
two branches are later joined by discharging the assumptions and keeping the intersection 
of the conclusion sets of the two branches.

The minimum number of nested instances of the branch/merge rule required in any proof of 
a problem formula is called the degree of hardness of that formula. The Stålmarck 
procedure is exponential in the hardness of the formula, but polynomial in the size of the 
formula assuming a maximum degree of hardness. What makes the procedure interesting 
is that problems encountered in practice generally have low degrees of hardness (0 – 2).

When carrying out a proof using NP-Tools, the user sets a saturation level which is the 
largest number of nested branch/merge instances to be attempted. This means that NP-
Tools will only find proofs of formulae with at most the corresponding degree of hardness 
(however, see 6.3).

If NP-Tools fails to prove a formula inconsistent given a particular saturation level, it 
assumes that a satisfying assignment can be found and sets out to find such an assignment 
by using a backtracking procedure to try different assignments to the variables until a 
satisfying assignment has been found. In practice, every possible assignment need not be 
tried as there will be dependencies between variables which can rule out whole classes of 
assignments.

The version of NP-Tools tested was 2.4.

3.3. HeerHugo

HeerHugo [4] is an academic theorem prover developed by Jan Friso Groote of the CWI, the 
Netherlands. It was inspired by the Stålmarck method but differs substantially from it3. 
3 Although inventors sometimes want to believe that a patent would prevent this, it is precisely to 
make this kind of development possible that society grants an inventor exclusive rights in return for a 
full public description of the invention.
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HeerHugo shares the branch/merge rule with the Stålmarck method but uses different data 
structures and a different, more powerful, linear procedure.

When the problem formula is satisfiable, HeerHugo sometimes does not find values for all 
variables. By adding the values found to the problem formula and running HeerHugo 
again, a complete assignment is obtained.

In a test carried out in 1997, the then current version of HeerHugo was slightly faster than 
the then current version of NP-Tools. However, no development of HeerHugo has been done 
for some years, so is has fallen behind in the competition. The version of HeerHugo tested 
was 0.3.

3.4. SATO

SATO [6] is an academic theorem prover developed by Hantao Zhang of the University of 
Iowa. It is based on the Davis-Putnam rule [1]. The version of SATO tested was 2.3.

SATO requires its input to be in clausal form, while the problems to be tried were all 
expressed in full propositional logic. The problems were converted to 3-CNF before being 
given to SATO.

4. Test environments and timing procedures.
The tests of GSVT, HeerHugo and SATO were carried out on IBM PC-type computer with a 
450 MHz Pentium III processor and 384 Mbyte primary memory. GSVT was run under 
Windows, while HeerHugo and SATO were run under Linux. HeerHugo and SATO were 
compiled using gcc version 2.91 with the -O3 option.

While NP-Tools does run under Windows, we did not have access to a Windows version of 
that program. Instead, it was run on a SUN Ultra 5 workstation. In the tables below, the 
NP-Tools run times have been scaled to be directly comparable to those of the other three 
theorem provers. By examining various benchmarks, we concluded that the Ultra 5 ran at a 
speed of between 50% and 100% of the speed of the Pentium system. The figure 70% was 
used for scaling. This does give a major uncertainty of the timing results, but as can be seen 
from the timing figures, this uncertainty in no way affects the conclusions drawn from the 
comparison.

The run time figures given by the theorem provers themselves were used, rounded to the 
nearest second. This time includes not only theorem proving time, but also the time taken 
to parse the input data etc. The time taken to convert the problem formula into clausal 
form for SATO (see 3.4) or running HeerHugo a second time (see 3.3) is also included.

For GSVT, HeerHugo and SATO, each test was run four times and the average taken. The 
inherent uncertainty of the NP-Tools timing did not warrant more than one run of NP-
Tools for each problem.

For all four provers, all settings relating to proof search were left at their default values, 
except on NP-Tools which was set to try the value TRUE first on backtracking. A HeerHugo 
option relating to logging the progress of the proof was disabled.

NP-Tools was initially run with the saturation level set to 1. If it did not find a proof, the 
problem was retried with the saturation level set to 2. In this case the times refer only to 
the second run. HeerHugo manages saturation levels automatically.
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5. Test results
The following tables shows the test results. All run times are given in seconds rounded to 
whole numbers. For NP-Tools and HeerHugo the saturation level needed to solve the 
problem is also given. ”1+BT” means that the problem was solved using saturation level 1 
followed by backtracking (see 3.2 and 6.3).

Unsatisfiable problems

ProblemProblemProblemProblemProblem GSVT   NP-Tools  NP-Tools  HeerHugo HeerHugo SATO Conn. Vars.
Time Level Time Level

test1oktest1oktest1oktest1ok 1 0 1 1 1 1 14077 1286
test2oktest2oktest2oktest2ok 2 0 1 1 1 1 14127 1286
test3oktest3oktest3oktest3ok 2 2 1 1 1 6 18021 1286
brunnatotalbrunnatotalbrunnatotalbrunnatotalbrunnatotal 12 218 2 1288 2 (>23h) 22549 2422

brunna6brunna6brunna6brunna6 5 1 1 5 1 1 22510 2422
brunna21brunna21brunna21brunna21 8 1 1 7 1 1 22511 2422
brunna26brunna26brunna26brunna26 8 1 1 7 1 1 22511 2422
brunna27brunna27brunna27brunna27 7 1 1 6 1 1 22511 2422
brunnasimplebrunnasimplebrunnasimplebrunnasimple 6 1 1 8 1 (>23h) 22533 2422

brunna1-3brunna1-3brunna1-3 (<6) (<1) (<8) 3 22512 2422
brunna4-5brunna4-5brunna4-5 (<6) (<1) (<8) 85 22511 2422

brunna4brunna4 (<6) (<1) (<8) 11 22510 2422
brunna5brunna5 (<6) (<1) (<8) 12 22510 2422

brunna7-12brunna7-12brunna7-12 (<6) (<1) (<8) 11 22515 2422
brunna13-18brunna13-18brunna13-18 (<6) (<1) (<8) 10 22515 2422

brunna19-23brunna19-23brunna19-23brunna19-23 (<6) (<1) (<8) 11 22513 2422
brunna242528brunna242528brunna242528brunna242528 (<6) (<1) (<8) 3 22512 2422
brunnaindbrunnaindbrunnaindbrunnaind (<12) 0 1 1 1 1 22510 2422
brunnas1brunnas1brunnas1brunnas1 (<12) 21 2 19 2 2 22511 2422

brunnas1abrunnas1abrunnas1a (<12) 1 1 8 1 (<2) 22511 2422
brunnas1bbrunnas1bbrunnas1b (<12) 1 1 8 1 (<2) 22511 2422

brunnas2brunnas2brunnas2brunnas2 (<12) 0 1 1 1 1 22510 2422
brunnas3brunnas3brunnas3brunnas3 (<12) 117 2 152 2 2 22510 2422

brunnas3abrunnas3abrunnas3a (<12) 1 1 15 1 (<2) 22510 2422
brunnas3bbrunnas3bbrunnas3b (<12) 1 1 8 1 (<2) 22510 2422
brunnas3cbrunnas3cbrunnas3c (<12) 1 1 14 1 (<2) 22510 2422
brunnas3dbrunnas3dbrunnas3d (<12) 1 1 15 1 (<2) 22510 2422
brunnas3ebrunnas3ebrunnas3e (<12) 1 1 15 1 (<2) 22510 2422

brunnas4brunnas4brunnas4brunnas4 (<12) 173 2 362 2 2 22510 2422
brunnas4abrunnas4abrunnas4a (<12) 1 1 28 2 (<2) 22510 2422
brunnas4bbrunnas4bbrunnas4b (<12) 1 1 10 1 (<2) 22510 2422
brunnas4cbrunnas4cbrunnas4c (<12) 1 1 10 1 (<2) 22510 2422
brunnas4dbrunnas4dbrunnas4d (<12) 1 1 24 2 (<2) 22510 2422

brunnas5brunnas5brunnas5brunnas5 (<12) 1 1 7 1 1 22510 2422
brunnas6brunnas6brunnas6brunnas6 (<12) 1 1 2 1 1 22510 2422
brunnas7brunnas7brunnas7brunnas7 (<12) 0 1 0 0 1 22510 2422

prim1prim1prim1 17 1 1+BT 3869 2 31 4139 551
prim2prim2prim2 85 4 1+BT ≈ 3 d. 3 211 5772 755
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Subproblems are shown indented. E.g. brunnasimple is a subproblem of brunnatotal and 
brunna1-2 is a subproblem of brunnasimple. The subproblems given are disjoint and 
exhaustive, e.g. brunna4 and brunna5 are disjoint and together form brunna4-5.

”(>23h)” in the case of SATO means that SATO aborted the proof search after 23 hours 
without having solved the problem.

”≈3 d” means that approximately three days of run time was required.

”(<N)” means that this problem was not attempted, but that it was a subproblem of problem 
solved in N seconds. Thus the theorem prover in question could reasonably be expected to 
solve the given problem in at most N seconds.

The columns ”Conn.” and ”Vars.” give some metrics for the size of the problems. ”Conn.” 
gives the number of logical connectives in the problem formula, while ”Vars.” is the number 
of distinct propositional variables in the formula.

Satisfiable problems

ProblemProblemProblemProblemProblem GSVT   NP-Tools  NP-Tools  HeerHugo HeerHugo SATO Conn. Vars.
Time Level Time Level

brunnabrunnabrunnabrunna 7 3 1+BT 10 1 1 22508 2422
brunnabugbrunnabugbrunnabugbrunnabugbrunnabug 8 3 1+BT 62 2 2 22549 2422
test1feltest1feltest1feltest1fel 2 1 1+BT 1 1 1 14079 1286
test2feltest2feltest2feltest2fel 2 1 1+BT 2 1 1 14125 1286
test3feltest3feltest3feltest3fel 2 1 1+BT 2 1 1 16741 1286

6. Analysis
6.1. General

It can be seen that in general the four theorem provers are in good agreement on what 
problems are more or less difficult. Of course, the relative difference between two problems 
differs greatly for different theorem provers.

There are, however, some interesting anomalies which will be discussed in the sequel.

6.2. The conjunction effect

Looking at the relative times for the various problems of the brunna family, it can be seen 
that the time it takes NP-Tools to solve brunnatotal is considerably higher than the sum of 
the times it takes to solve its subproblems. In this case the subproblems could be solved in 
a total of 18 seconds compared to 218 seconds for the composite problem (a factor 12 
slowdown). This is an example of a known property of the Stålmarck method: the hardness 
of the problem formula p∧q can be higher than the hardness of each of the problem 
formulae p and q, respectively.

HeerHugo, using the same ideas as NP-Tools, exhibits the same behaviour,although the 
difference is less dramatic: 199 seconds for the subproblems compared to 1288 seconds for 
the composite problem (a factor 6.5 slowdown).
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What is perhaps more surprising is that SATO, which uses completely different principles 
also exhibits this behaviour, and to an even greater degree. We speculate that the reason 
for this is the preferential handling of unit clauses employed by SATO and other theorem 
provers working with data in clausal form. When transforming a problem formula ¬ (A→c) 
to clauses, the clause ¬ c will be generated. Being a unit clause, it will be given preferential 
treatment. If the problem formula is instead ¬ (A→c1∧…∧cn) the corresponding clause will 
be ¬c1∨...∨¬cn, which is not a unit clause. This could result in poor directionality of the proof 
search.

Of course, a very simple way of eliminating this behaviour would be to break up a problem 
into its conjunctive subproblems and solving the subproblems separately. In many cases 
this would give a considerable decrease in total run time.

The question is, of course, how far to carry the breaking up of the problem, as unnecessarily 
breaking up a problem will incur an extra overhead. 

According to Greentech Computing, about half the runtime of GSVT for brunnatotal was 
spent in the simplification stage (see 3.1). If we assume that  the GSVT runtime for 
brunna6 is all spent in simplification and subtract this from all GSVT runtimes we obtain 
approximate runtime figures for the proper theorem proving stage. From this it appears 
that GSVT does not exhibit the conjunction effect, or at least to a much smaller degree than 
the other theorem provers.

6.3. Solution by backtracking

As remarked above, the four theorem provers are in general agreement on the relative 
difficulty of the various problems.

A notable exception to this is the two prime number problems, which are surprisingly easy 
for NP-Tools. It turns out that these problems actually have a higher degree of hardness 
than 1,  and if solved in the normal way would take a comparably long time for NP-Tools to 
solve. Instead, NP-Tools solves the problems by backtracking (see 3.2).

If no satisfying assignment is found during backtracking, the formula must be inconsistent. 
This is in general an intractable way of proving a formula inconsistent due to the 
exponentially large number of different assignment.

The reason NP-Tools succeeds in these two cases to solve an inconsistent problem rapidly 
with backtracking is likely the comparatively small number of propositional variables in 
the problems combined with a suitable internal structure which creates many dependencies 
between variables, enabling NP-Tools to eliminate large sets of possible assignments.

6.4. Finding satisfying assignments

Generally, all four theorem provers find satisfying assignments quickly. A notable 
exception is the brunnabug problem, which is solved rapidly by NP-Tools, GSVT and SATO, 
but takes an order of magnitude longer with HeerHugo. We have no explanation for this 
behaviour.

7. Conclusions
For the problems tried, the major factor affecting performance seems to be the ”conjunction 
effect”. SATO appears to be by far the fastest of the theorem provers as long as the 
conjunction effect is not manifest. When it is, however, SATO become the slowest of the 
theorem provers tried. The point where the conjunction effect becomes manifest also differs 

Copyright © 2000, Industrilogik L4i AB, All rights reserved. Page 8



between the various theorem provers. SATO is affected already when a few subproblems 
are composed, while HeerHugo and NP-Tools can accept a larger number of composite 
problems.

For the brunnatotal problem, GSVT is the fastest of the theorem provers tested. It appears 
to not have the conjunction effect, which would make it outstanding in this comparison. On 
the other hand, the evidence is rather vague and tests with more difficult problems would 
be required to make any definite statements.

According to Greentech Computing, GSVT displays its strength best when applied to 
inherently difficult (as opposed to simply large) problems. It might well be that difficulty of 
the problems from the railway interlocking domain which were tried stem from their size 
and not from any inherent difficulty.

The conclusion in that case must be that although performance differ, all four theorem 
provers are capable of handling real problems from the domain in question. The 
inconvenient decomposition of the problem into subproblems which is necessary in the case 
of SATO and useful in the cases of NP-Tools and HeerHugo could be done automatically.
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