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On the existence of energy estimates for difference approximations
for hyperbolic systems
by

H.0. Kreiss and G. Scheref

1. Introduction.

(X(l),..

Let x = .,x(m)) denoie a polnt in the real Euclidean
space Rm: and denote by € the half space x(l) >0, —=< x(l} < o,

i=2;3,...,m1'. _ _

@
S
(///Ti_ - oy

P r 7

P

a9 7
(1) '/

~and by 32 its boundary: X —0,'4{<xhj<w,:ﬁ23,”.m;We_

- consider a symmetric system of paitial differential equations

m .. . ’ .
Ju/dt = P(x;t,3/3x)u = ) Aj(x,t)-au/aX(J) for t 30,
R e e T

x g Q. Here- Aj = A}a are (real) symmetric nkn-matrices which dépend -

. Lipschitz continously on X and—-t and u = (ﬂ(}? u(g) - u(n))‘ 1)

-and for X

L PR ]

is a real vector function. For t = 0 initisl values

(1.2) T ame) =), xeQ, =0

(1)

.= O.Vboundary conditions

Doy

if " u is a vector then u'  denotes its transposed. The corresponding

-: notation holds for matrices.




(1.3) . Lu{x,t) =0, t>0, x =.0, -®< x(l) <+ o i=2,3,...,m

are given. Let g denote the number of negative eigenvalues of Al' Then
©(1.3) represents gq linearly independent relations, i.e. L can be

represented by a (gXn) matrix of rank gq:
by e eeoe s By : _ :
(1.4) : .

oo .. b
ql qn

Here, the bij =b..(x,t) are Lipschitz continucus functions of

1d
x(g),...,x(m), t.

N CINCON 2
Let <u,v> = z 4y lu! Sdn osud s usV real denote the
=1 .

usual vector product and norm of Vectors

t

For the real functions the L2 space_.Lé(x) defined by the scalar

ﬁroduct and norm:

.(u,v) = f (ulx,t),v(x,t))dx , I[ul]i = (y,u) will be used.
SB - . i 4

It will be assumed that T and u belong to L(x) .

The wellposedness of the problem defined by (1.1)~(1.3) is easily
obtalned if an energy 1nequa11ty holds.

The differential equatlon (1.1) can also be ertten in the form‘

Compa wm
3u/3t-=n§ Zl\;gig'(Aj.u) + A, 5;;{] + B(x,th

A

1 ij

TT=0

_ _ . L
where ‘B =3 ;

The follow1ng theoren holds:

Theorem 1.1. The solutlon of (1. l) (l 3) satlsfy an .energy estimate

s 2 1 ll? < 2ellel? e Hu(t_‘)ng“Hu(O)H .




_1_3_

if the bowndary conditions are such that

(1.6) (y,AlyJ £ 0 for every vector v for which Lv=0.
The estimate follows directly by 1ntegratlon by parts. (Compare [h] )

In this paper we want to derive energy estimates for difference’ appro—
ximations to the problem (1.1) - (1.3). In a first step the time derivative
is kept and a discretisation introduced in the space direction.

In the next section by defining a difference scheme for the operator a/dx

in the guarter plane 0<€ x <> & discrete version of the halfboundness ine-

(1)

in a given norm is designed.

quality
Then the time derivative 1is approximated by a modified leap frog and the

total scheme is proved'to be stable in the norm above introduced,by the

energy method.Tt is established that.through*the'outlined'method,stable*g—r
schemes of any order of accuracy can be obtained. '

Moreover ,glven a scheme with a certain accuracy in the interior of the
1ntegrat10n domain, one can deflne a. modified scheme at the boundary of
one order less therefore from [1] one can 1mply'that an overall accuracy

-

of the same order as in the 1nter1or is attainable.

(l)The operator deflned,by P(x t o3| ¢} is halfbounded if an inequality

2 Re(u,Pu) ¢ K hu“ holds for all 1nf1n1tely differentiable u satlsfylng the

boundary conditions (l 3}




; _ ' - 2.1 -

2. Halfbo‘lxnde@, diff‘_eré‘nce approximationé for the opersastor o /d x

) LY
Consider the half-line 0 < x < o and divide it into interyals

of length h % 0. lLet %, = vh, v = 0,1,2,...; dencte the gridpoints and

m.

v, = v(xv) real scalar gridfunctions with § [vv|2 h < . We define
- Va0 o
a discrete gtalar product and norm by _ o L -
‘ ' (u,v) = <t HVI>'+§‘I.1 vh =
‘ ' > 'h ? h & v
(2.1) -1 -
= z h.. uw. u. b + uw u_ h, o
D i,j=o0 Y+ J var ¥ VY
and . l|u||h = (u,u)h . |
' I . R ;
Here u = (u ,ul,...,u )' denotes the vector formedwvh the first r " s
0 ’ r-1 : . e

1 - it .. walues of. u. and -H-=-H'.>.0 'is.a positivé- definite symmetric . rxn -

matrix. We want to construct difference approximations § to' d/dx such
(2.2) (u,Qv)h = - (@iu_-,v)h“- u, v, for all wu,v. _
This is a discretisation of the integration by parts formula. An equivalent

formulation is given in the fOllOWipg lemma.

A

me e R ""’ R ’Isemﬁa“E‘;'l": “The relation (2.2) "isﬂeq_ui*va.le’nt. with: ~ - T B2
- (2.3)  (u,Qu), = ~ = u° for all u.
: 2% 20 -

TP EARA WIS T s!n"Prdcfu g ( u;,'ﬁ!)h ﬁ= o (V,Ju)hs L Shﬂw&;;th&t 1 (2 .,2‘): ;-_impli_e's_\u( 2 - 3 )-\Iﬂf‘ (2 1?.3:-)1 1hoﬁ1ds T WFa YU

then
(utv, Q(uﬂ?))h':'" (Qutv), wrv)y __',(u0+vO_)2 '

and (2.2) follows -Easiljr using (2.3) for u and v. .

We can consider. u as an infinite columm vector u = '(uO’ul"','")'
and therefore we ... represent @ as an infinite matrix. We assume that Q
has the form

Qll': 9-12-

(2.4)  1q =
_ _ —-ct D

(_U The)v-cor:re'.s.for\é to bouv\dn.r\T points for which dhe mlerior scheme does mot aﬂo]'-l . »




Here -
%0 %1% 1\ Gp **t Yop O
9, _ s Q" ' -
G210 L1 R L
g - o _
0 .... o aq vt o(l
o 0 0 - o - ol .
) ¢ = 8 (2.5)
e - o
<)
0 o

e u e

1 s
- 0 A L., 0 .,..
D = 1 1 S i ,
-4 -l 0 o
2 1 g e

h—l.(—C' D) represénts the operatof away from the boundary.

The following approximations of inereasing order of accuracy 2s to the

.:de'riirative,,;aré-used I V E I AT 1.';1: ML i __ -. ) L. ,l BT VELAVE. B
‘ S , < ) - ] .
. [25J L ' -2 - v 1 ‘
@) 2 0 DUF0YE T A mey gL TR
: 2% _ A Vel . (S*v)'f‘ {s-v) ! ‘

These formulac use the ordinates of 2s+l symmetric centered points with
antisymmetric coefficients and so obtain the highesﬁ accuracy possible with
this humber of equidistant points.

The coefficient of the Y~th right hand term is

Voo : o oo - '
A = "; (“_ 2. . The corresponding left hand term is of .= -
v {s+v)) (s-v}! ' B ' '

v _—17 v

A i i

1




"2.‘3'—7

Let h=1 and denote by
9 ;09
, ' e, . 3 .
- -1 1 .
(2.1 W, =( ")- , e=(-1)’ I B s §=0,1.2...

the discretisation of (x-r)Y. : —

" With the conventions 00= 1, e_,= o.

. . S . . a3
The following lemma:characterizes the accuracy of Q in the interior

Lemma 2.2. The operator h—l (-C' , D) approximates d/dx of order

2s> 0 if and only if
S

' 2 { V?_ {’ar e o 7
ol -
'Vzllv - ?_o #« m=dlZJ”r 5 -l .

h_l( Qli 5 ng)zrepresents the modification of Q at the boundary points.

The accuracy conditions which Q has to fulfill - are:

Lemma 2.3 ., The operator nt (Qll s ng) approximates d/dx Viﬁh order 2

-

‘at the points x,,V=0,1,2,...r-1 if and only if

(2.8} T,je. =Q _e. +Q £

11 R 12 ,j a ,]=O,l,2... G.

We shall now derive necessary and sufficient conditions such that the
operator Q satisfies the'coﬁdition'(E;S)}

- 7WhThéorem“24l__;:,The operatbr:Q,satiéfies fhe;rélation.(2.3) if_and”only.__

if it can Bé-written as

-1

i T

. C‘l"‘
h Q= \
-c! D )
where B is a rxr matrix of the form
- TN
(2.9) ®=B +3, il

(1) ‘An operator 8 isran accurate épproximation to d/dx of order s at the

point x <=»> S xm --g_xm,= 0 , m=0,1..s.
T =




- equivalent with

We want to. caleulate now the coefflclents of Q@ at the boundary 901nts

 The elements of B, are obtalned from (2.8) which can be wrltten as ' o

" By assumption"Be‘ is antisynmmetirie. Therefore the following compatlblllty

(2a1) ’5,3> 40 <eg,g> = <ep,ByE> + <es,Bies> =0 for 0<i,j <
o = B L F - ¥ il

- 2.4 -

Proof. We can write (2.3) in the form

I I I I1 1T h I1 11

—-';%ug= @', B, W + <u, BQ,uw > - <u, Clu> 4 <, Dul>
I IT_ - | | j
where u = (uo, .,ur_l)', u = (ur, ur#l"")" |
. : . . T II. _
D 1is an antisymmetric matrix and therefore <u ", Du "> = 0. Furthermore,
if uII Z 0 then the above relation becomes

!
|-

2 ’ Lo I )
= < >
u 0 15 HQ]. lu

Therefore HQ11_= B must have the form (2:9). Then the above relation is

0 = <uI, HQ,lQ s e <uII, c'uI>' =—<uI, (HQ,12-C)uH>'

»

for all vectors uI; uII. This is only possible if Q12'= Hflcr and the

theorem is proved

2

(2.10) B, e = gj, g; = JHej-l - Blej - Cf., j= 0#1,2,.-.

conditions for the system have to be satisfied

o1

£ ox S AT2y o e

If these conditions hold the system (2.10) can be resolved as it is expressed

in




_2c 5—

Lemma 2.4 . Assume that r3 &+l and that the relations (2.11) hold.

Then we can always find an antisymmetric matrix B,

, such that (2.10) is

valid,

We will obtain the elements of the norm matrix H from the relations {2.11)

By (2.10) this can also be written as

2.12 é-e. }I e. t 1 e. I{ e. ) - E‘&. - O— - z
. . - 2(8. - .. - - - »

A calculation performed in [1] gives

5 Vel
(2.13) Mij- - (—t)”j ey ]a,.:u)', }-a‘.c = z_ o{v(rz_ )A“l“()«-v)‘”.\‘(r-v)‘;“'_)'

, Gaf.*j
If one introduces the notation &35 {ei , H ej> then (2.12) can be written

(2.14) ) 01 j-l'\' l")j - T HLJ : for O = 1,3¢ %

Here &'4 PA LE@ by the convention for e_ and.e ;@. by the symmetry of H.
¥

Note that this system in thec ,is very simple to resolve We will resolve it

~and chiain from-the solution. the F"lePnt"-; of H. The matrix H has to be .

--positive definite in order to be used as norm matrix . Lemma 2.9 below. ... . .

states the equivalence between this condition and the positive definiteness
of the matrix défineﬁ by the Q..

Wé Will now derive COﬂdlthﬂSJfor M, ; ‘such that the- system (2. lh) has a -

>

‘solution (These condltlpns are resumed in Lemma’ 2,5) and therefore for the

 compatibility of (2.10}.

For i = j = 0 we obtain from.(2.1}) and (2.13) .
' . S
- = 0.p = = 142 ) e oy V.=
(2.15) o0 =0. ot A ;+2,v dy V ie %E' v 5
| | "

‘Therefore,.by.Lemmam2J2.the,approximation-aﬁ,the interior points has to be
at least second ofder acéurate.

Q= Gt implies Mij= § figoo v LT LU

This condition is satisfied by {2.13). Therefore we need to consider (2.1h)

only for 1€] .




-2.6-

-

For i = 0 we get from (2.1h)
1L . '
e 0,5-1 = 3 M. . Jj=l,2... .

If 1i»0 then Q 3 can be explicitly calculated.

:j_l

X 1 i ¢
2.1)4-) o P =T M. . - = . . .
( e 1,0-1 J 1,3 ] Q_.xl,.)

If i-1%>0 and j¢& then (2.14') can be used to replace

snd obtain lQ";_‘\'i = ..L M. - ....1'....-- . L (l V)

- 3 DY o s : Vi
¢ 1.5 ¥ R ien T T et Sy G

Threfore by recursion (2.14) can theabe written in the form

?':;Jg.g-ini N R Lo, ™0

R’

(2.16) _ | 9
iy = T WL - - L‘ Hilt,j.",-! v (gt ) h*‘“d)}’\un&,_pi E
i} R "J Cg Gy _J(J41\...(J+d\
2 _
+ - " (- |) {v-ol o o
( ) ; (Jn) () Ea-a—u)lu_ 0L E32C
J

where o © = min(i-1,¢ ).
If i-1<{%-j , ie i+j<¢Z , then « =i-1 and we obtain

: ‘ - _ ) o
(2 3_7) ()t. LTI T S eo "\4\5-1 = :]- hO|L+J . , ‘
" Thus (2 15) and (2. 16) 1mply tha"c e 1 is compltely determined by the Mi ;
provn_ded i+ £
If i+ 3j>»% then £ =% -j and
2,18 L = . _ S o
( ) ?L—ul-»l)j-g-'v.: ' eb*'}-t-—rtjﬂ T FVSE 3 V= Ly -1-2

There are no further relations which '(J‘J L needrtdsati‘sfy.
. ‘ S

If-We use the equé.tion (2.16) with i = d, j =n and i =n-1, j =n+l, for n ( A
- We obtailn representatlons for (’“ noy and (?‘,” w but by (2.13) (Dh ey P\'\-i,h
IP i+ J = 2nvg then by (2. 18) these two relations determine ﬁt’,l ,VvE 2mol-
and no conditions for the M1 . result. - | |

If i+ J=2n¢te we obtain from (2.16) , (2.17)




el -

1 n R n{n-1) '
=M - s e + ...
n ?@n n(n+1) N%—%p+1 ,+ n{n+l}{n+2) Mn—2n+2 B
) | | . |
+ (;1)n n(nbl) M o 1

n{n+l) ... 2n 02n = Pnpu =P —ln' n+1 M'n-ln+1

(n-1)

n-1 (n 1) ... 1
(n+1)(n+2)- n-gn+2

(n+l)(n+2).., 2n MQ?H '

I R (—1)

This relstion can aleo be written as

n (n-1) ... 1 L .
e = - =1,2,.¥ith ont
v (1) (n+2) ... 2n (32n O. for n=1,2,
We obtain - . L . L ) _ Lt

Lemme. 2.5 . The system (2.14) hés a solution if and bnly if the diffe-

rence approximation in the interior is at least second order accurate gndi(4heﬂgj

satisfy the relations {2.19).

We haveralso a spegcial result for the diagonsl norm schemes discusged in [2]. - i

CTE I s T Lemms 2. b-_\- SIfrthe Mij = depend;zsonly- on 1 +;:xj’ B @0 i mon Coaeumma £ oL v 3 Af
e M..=R. . and R.=0_ ..
~ : 1J I+ U

.. ... ___then the system (2.14) has the solution

’ | = = 0, | .——-3-——Ri+.+l 0<i,j<T, 1.+ <2"r
' %y\ o . 7 pri)_l p"‘]),] "' * p]}.:_l - i+j+l F = s.]' L J - Lo
1, ) ’ )

Proof. Introduce the above expression for p..  into (2.1h).

A consequence of this lemma is that if

MnP:Mn;]?ﬂ =...=M, =R

then the relation (2.19) must hold i.e.

- 1 a _n-1 _ e (pt1) o1 ¢
2:20) T tEmimey C ot (W et 0 n = L2, Ak




' Wh‘?re 'thlh(v\ 2_ }«2“ - (r-v)L'F )A ()* v)

- 2_8-

The M 3 are expressed in terms of J:L c in formula (2 13). These in- turn

3

in [l, PP 205-206] were written in function of sums of type Z oL, v"‘.
(Compaz;e accuracy characterisgtion lemms 2.2), Ve o
Therefore we will obtain the sought conditions of cempatibility for the
system (2.1k) in terms of accuracy conditions which the chosen scheme in the
interior has to fulfill. |

In fact, by introducing (2.13) into (2.19) one obtains:

S Mmoo A" (m-ny o A ,
]nz o Jn-i,2m Jr(\,\“)(n-rz)-“\h"i’?'h o | '3 (_hw*—{g—-‘-'?—;_h Jo/2m
v Zn A AT (Ml—l).;- 4 _
- (=) ¢ [ o= e v (Y TS ZH] = 0

The last term is equal to zero by (2.20), o
From {l formula (2. 20) for ¢ even} one obtains :

(2.21) ]L,m - Z o, (v)

blh

'?.ln-\..

1

(i, 2v)
u.z\n WA : n-y o
SR T Gy e ¥ane
(2.22) . T (i,2my 2 {Lm)
e 2y, VT L Yane Z"‘ v
{¢2m) . Ve

The §,,,, is independent of i (this is proved by expanding the N, 1\,\( vy,

Therefore using again (2.20) 1t also drops out and the relatlons 2.19) are

reduced to )

(%\n,a Z °< 7-.""“ + '6\(‘."‘2. Z °{v V?-h"-‘ P"h -2 Z. °( V
: R R

where oo = j(""“)_ Ya (h-\,lh\_,r L. # O ' '“D_ec'ause the }(4”'“
' 2n et ' '

different from Zero and have alternate signs. (see [l] ).

Then induction gives us
: S _
(AN

®, v =D -.{or ' n= 4,2, ...
Ve b Bl

‘Therefore we obtain from lemma 2.5 and 2.2

a 2.7 . The system (2.14) has a solution if and only if

vz : N Y L I TR I 4

bl

le 1if and only if the approxlmatlon in the 1nter10r is accurate of order Z,+ 4
if 7 is odd. '
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i

Lemma 2.8 . If

- dently of the values of (, o VEo, . e

such that (2.23) holds. In general one has to take r 27+2.

""‘209_

‘If the system has a solution then the Pi,, are ‘determined for 0% i,j¢ 0
if one spec1f1es those Q‘, z, ¥:0,4,. & which are not deflned ‘by the system

They can be used to define a symmetrlc mabtrix

?DP EOM - | Pb;':, - ,
-P-G = ()‘0,4 . e"!" v ()‘h [ = 'P; : T
Po ?4.:. .- ?u,'l,

The parameteré QV}L should be chosen so as té obtain a positive definite

’Pt . The following lemma can be used

eo‘o- eolo, - EO By

] \
o L
N o - M,J

is positive definite then one can choose (Ezsuch that also ?B.‘»'o indepen—

o, S e

H

Broofr o 1 Fheproof-is: obtained by developin_g{i:he,dejserminantgof;,?ge;_by bhe -+ o

elements of the last row and balancing with the value of Pr - Notice
that the system (2.14) does not depend on. Pro -

Now a positive definite rxr matrix H has to be determined such that

In fact the following ;l.eﬁ;_m holds+
Lemma 2.9 . If r > {E- +1 . ‘and ‘Ghe. mat'ri;c P; is Apo;ﬂ.itive definite -then
thre are W =H' > 0 such that (2.23) holds. |
In pé.fti_cular ifr=.¢7+1 then H is unlquely defined by '
"E'HE = P'c, ., E= (eo,....e ).

: r-1
In the following it will be essential that the matrix has the form

1

Y% O .. o o\ . [ e o

(‘2. Yy ) .. H; ) o by . l"r,r-l . = : S

We have o] \ﬁ‘:r'\ -'V'l"r—u,lr—n k R - ) ) ] - 't

Lemma 2.10. If P, is positive definite the-nro'r;e'can choose H in the form (2.2h4)




 Proof Let e.=e. + e. - where -
- . d Jd J o
N ‘. -
0 j\\\ s
- 3 r—31 = I O
e, =(-1)7 | (. ) |, e.=(-1)0fs .
‘7. :. 0
1 J
(2.23) is equivalent with -
~ T - L [ ayity it
(2.25) Qa;l <e;, Hy e; > p].;j AO( 1) Yr

£
i

Ay

- If P’r is positive definite then the matrix PT formed by the

P55 is also positive definite provided we choose A, sufficiently small.
. ) '
wai iwwino-oWescan now prove ithe main result-of.this section. .. .. .- ... _we san now arove oo

Theoren 2;2 For every g+'=2% , ¢ = 1,2,...there is an H of-the form-
(2.24) and a scalar product of the form (2.1) and an_approximatibn.
Q of d4/dx wh_ich is accurate of order 1 - for x = xv, v =0,1,2,

. ,r—l-and accurate of order&sifor x = X, Vv > r such that (2.2) holds.

R e Dok DYREET | WE N&EE BAT, “to”show" that-we-can*make-the-mabrix Poo® Orovin smovo b

if we choose r sufficiently large. The p.. are the solutions of the

: o 3d
system (2.14) . We can split p.. = p.. + p.. into two parts.
v ) - PLE pyj = Pij * 055 o parts..
o DlJ ‘i‘s_.‘“‘thé"s‘blﬁt‘ion'bf B ‘ T e e e
; _

(2.26) P hee 4 ip. . ==~ Mg <45 <1, 1] >0
. 13+ : J;_l 1 . . } “
|
= o =0 ~_ .= - A
P P T P TR
(2.27) 30y 59 ipss 4 _‘Ji,1+3 .0 < '1,".} <, i+] > 0, ;

i




C - 2.1 -

By Lemma 2.6 the system (2.26) has a solution
. . ' -

N G ! jira At .

.- . 0 <i -<[ -.
- > 3d =2
i . C e

The matrix formed by‘ the Eij can be written as -
)

2D GD

---------------------

-----------

where

and °* y

o
i
S
VT e
W= POl
‘ e




- 2.11-

is the well known Hilbert matrix which is fositive definite. Also,

the eigenvalues of DGD are of the order r and therefore the matrix

T ¢

DGD will dominate the matrix formed by the solution of . i
_ _ .
of the system (2.27). Thus ) for r .sufficienﬁlyflargé .,the matrix P‘; 20

This proves the theorem.

We consider now two examples.

Example 1. The case T = 1 has already been considered _inr[2, 1.

i
]

We choose

s s o33 3w oa s Lo .

PR

with the scalar product ~
. o
' V=l
i.e. r=1 and H=1/2.
Y It is a diagonal' norm scheme; o

Example 2. For T ._= 3 the _approx'i-xﬁation must be fourth order a.ccuré.te,

‘ .. in-the-interior: We choose -8 —=—2,-; =23 5— 0y-= — 1/ 12 A-simple -caleu- -

, % 2 i

lation shows that -the p:.'_j with 0 < i < j are given by , l ’

VL o= T oL LR S - - = M — o= l M ,=l | -‘,, N = R ; M _ . - ]
ST Al S - poloa b}[, ﬂo)j: 5’ qga 90’2-:.._ 3~ Mﬁ)3’ FJO,3 M]):);Jh %2 N S .m.__43:
- iy Sly oo =k |

P "2 M2 76 Yo3 P12 =% Yop> P13 72 Moz T 2 Po

T P T | Pzt g3

No further rélations ‘have to be satisfied. -Théfef_qfe we can choose.

Php» Py orbitrary and can meke the matrix P > 0 provided

!




: B A

o o A ¥p 2
| | 1

2

1
M0,1 Mojz Mq3 ° w3
k ~ ) . 4 _ 21
- oty s 1T T
per e M
9 22 23
T M

Therefore

1 -r 1 .
‘ _ 1 -rm L1
M01 - r ) > o

which is positive definite for r > 2. - ) R el

We choose H in the form (2.24) and set v.=-%#2, Then for every
*ﬂﬁé%”***ﬂihthoité"ofnﬁkari 5557 ggm“ﬂﬂﬁfisﬂhniqueiy~determined@“?Théﬂaﬂ%yﬂ%es%rietiénvmﬂﬂ-rw
: g ' i) ¥ ' o .
e R A p - - .- - - - L
k ) o-r_i “o° 2?, _7p3’3 is that PT, 18 pogltlve deflnlt_e)._ |
_ After 'hq\!{\né"}“ dete:rfmin_ed H one can obtain 132 from thg equations -
e @ s @-*%2%103:%?4%’55% -..j‘grﬁiﬁi}_xﬁﬁjfmaﬁﬁk:'ana-f.there ‘arbedniytbdector-rélationsii -‘{

-1
il

~ connecting €,; e, e, eg with - By &> By Byr Let ey be the unit vector ,
e, = (0,0,0,0,1)". One can define

g = By

sve. . - from the compatability conditions. . L . St e e .

‘Ir,-_VFQQ T £ 9( = r—&e»z_,(efﬁ 3 gh> T () » T ﬁes'-_, - ‘gu§>51 —;;_g(&,n -r?g—ji} J 3 jggg,go ’3:32, Bz, T::-‘_Ev_-._t..‘ s Pty J e

Then

‘B, = ,G*_E ".G_' = (_go,...,gh-)-, E = (eo,_“,eh)_ o
hXg'hus the scalar prbduct and the ap;iroximation depends on the three parameters, .-




3.- Stability of difference approximations. - ' v

In this sectioﬂ we consider difference approximations for the problem
(1.1)-(31.3). To begin with . assume that the boundary conditions have the

special form = —
(3.1) i) = @), P =0, xgo , 8> 0. -

We introduce gridpoints x = x

s o L \)7=(vlh""’v3h)£9 » and
o VpeeeaVg :

while keeping the time .derivative-, approximate (1.1).inthe interior of S by

o T | (1)
9 (3.2) o dv(x,t)/at = g.gl AE,(x-,t)_ Qvix,t), x€ Q ,x " :

Here x represents gridpoints and @ are consistent difference approximations.
for a/axﬁ. The operator Q4 is of the form - -discussed in the ‘pz-'éceding

section and Qz,.. .,Qm, are centered a.pproximat_ioris of the form (2.6)

Assume that .._the-v'--éati"sfies- the boundary conditiens (3.1)

(3.8) vi(xt) =0, x€90, >0

nT.\Lﬁ;.’"',g.’}VT,JLL AV _;'_aixd_!fﬁhat: the othern ggmpgnentsm R'V’:T[I(}X,‘b) g =(v£?'+l) («-_f—){:,-ﬂi.:)';-,:. :-._..',v(. nzzfilx,tﬁ;l? wne r'-f!,m.’-?e?’j.,.rr
satisfy (3.2), i.e. 7
. IllI m - . 1 .
(3.5} av " (x,t)/at = 2{ (Ap(x,%) Qvix,t))™, x€a3Q , t > 0.

_t_he initial conditions
(3-6) ] v(xso) _= f(x!’- xé g 5 '_'t = 0) ha,ve't.o,'b'e Compe;,ti‘bie 'With (3.}4)

Now a diserete séalax_' Product for _'tih_ese gridfunctions v(ic‘, )t‘) hasto be defined

 scalar product (u,v), = of type (2.1) in} the first varisble x,.




(a | mh

Let ¢(x_) denote a funetion of x_ =_ as e aX
. An’ operator 8 by is ‘introduced o
(3.7) Sp(x_) = §  ....... 1 ¢ty h,...,v h) n
) =—c0 VY == .
: 2 m .
T, T Let w = uj(x_); vE v&(VX_)

i

be scalar functions of x = (jh,x_). Then we can compute (u,v)h for every

fixed x  and we define the mdimensional scalar product and norm by

N (3.8)  ((w,w))y, =slu,w), [Hul]12 = ((u,u)),..
For U= (u('l),,-“_’u(n)),,. v = (v(l),.. ,v(n))t vector functions,the
19 " scalar product ] ((B,V))h is defined . iy the natural .ﬁay by
: n G) (i) : -1 A
o B9 ey = b et e ) = 8T hecudx ), v (x) s hs
1=1 - d,.j=0 Y E
i L n)

It is clear that ((Au,v))h is a bilinear form and defines a norm.

Therefore the usual inequa.li‘ties

3200 b, s ||1mmh mvmh Hlu’fVIHh IR T TR

9
© are va}__id.-Also

‘ R A -(3 lﬁb)l— il(llig!AVl)xh ( (A’ ,JT)) . T A WJJSJ,&,m&tIi}EJ_J;__;LJL.t R MBI 75350 TRLIBLUAT ) ¥

Next-, an estimate for Jihlwull be derived. For this we need the following :

Lemma 3.1. Let u = uj(x__),‘ v = _vj(x_) be vector functions of
= (jh,x_). Assu;ne‘that e |h < o, |”v| | lh < o .
~Let  A(x,t) be a uﬁiformly Lipschitz continuous nxn matrix then

Feva » v g ua \{.u(3 1-0) >y 3( tuusqz Avl')’ﬁ'! 'c(?ufsf -AQQV)) + CQ\,-QU' V], 'e""?lxsasn-ﬂwn_lwvx-‘-'?“ FUIEBE ateEy Ay

where

lC NM|<BnHWHL1HﬂH

and B \%s a constant whlch does not depénd on u, ¥ nev h.




Furthe rmbre,

S

- ((sz‘u,'\r))h .f-or 2.=2,‘3,...,1ﬁ‘ "

(3.11)  ((wqv),
§ 1 J. and . 7 ! . 1- B

— ((Quav))y - 8 < uylx ), vylx >

Bl

(3.12) '-((ugqlv))h

e =:pfovided Q- and H are such that (2.2) holds. - NS ‘}A L R
E . S . Z c H
Proof. (3. lo) is derlved from . the fact tha.t for a scheme Q, = PX‘; 2
—_— Jee

cm e Qﬂ. A(x)y(x) = A(x)QR vix) + E Bj(x) v(x+,]he2) . where e, is ﬁhe._unit
Ef -

' . . J ' .
L vector in the x direction and Epwix- 'tI(x_ij‘r\?e). Here Bj(x) are uniformly

bounded matrices (the bound is depending on the Lipschitz constant)

¢For § >.2

r-1 ' o
oI I 3E LW . (uiqukv)) I: hlJ S 3. -(lx )’L QZJV {x ) > hivke Z B u'}(x )1,1:7|.Q'ﬁr‘!,h (}F )>" h
,J*O U j=r

For difference operators of the form (2.54)

5 < ui(x;),'qg'fj(x_) >=-8<Q ui(i_)a‘vj(x_)>

and (3.11) foliows.
o ©{3.12) .sobuun&ia1aﬂﬂpug the operator S to the identity (2.2)
9 - s (i) (i) i

which is valid for all components ‘u s V . end sum.

We Ccan now prove.
STATE 1711050 % SR O LA T Hi@hﬁﬁ)ﬂﬂlﬂi3‘@%3;&'111-«“-11\'5Suman&ha.’ﬁ:iaAone_&imensional_z-_sca;lﬁarfz'p;[:.oducj}i::(_&lu)u;Ei.xSrum Ll
given, that the matrix H has the form (2.24) and that Q ,H are such
tha‘t (2.2) is va.']_id;' Then the solutions of the approﬁ.mation (3.2)-(3.6)

vanda o sniigem e Sa-thSfy an ‘energy’ estlm&te EEmnon i?-e}. e _;,;lg;-,,r e =- R :lc-.nit-fa R R TR S S

4
(3.13)  F% IIIvlll < const. [||v]]12

e s g AT the Eﬁfndary conditions satisfy f,,f, L e e B sy e




- APU o WL R A 1N

(3.14) < w, A v>20 for all vectors. U with ' = 0.

Proof. Let P denote the projection ’
u{x) if (1) >0, 2
Pu(x) = ' _ | :
0
(u I(Jc)) if xu) =0 .
Then the problém can be rewritten
(3.15) dv/dt = Rv, v = Pv, xGQ,th"
v(x,0} = Pf(x) = £(x) )
where )
m
R=P X Ag(x, ) Q
&=1- . ‘
The functions v PULFill the boundary conditions now and
d e > |
& vl = (vsav/ae)), + (av/at,v)), =
m - _ '
= RLZ ((V,PA_E Qy V), + ((PAQ Q v,v)), .

By assumptlon 'bhe scalar product“_lsmofﬁthe__fom--—~m—'—u—~—--—-~ .-

((g,v))h = 3\0.‘< Uy vy > b + terms -which are independent .of Ugs Vg
Theretore
(P, = (Ruv)y ma (Rup)), = (B,

Thus by lemma (3.1) and (3.10b)

((V,PA Q, V)) + ((PA QR v V))
((vPA Q Pv)) + ((P %ﬁv))
s o - P A, Q, —Q,L A,_)Pv))h+ B, < - e S A

._5 .const. |”V|“h + BR; J




where B, appears from the fact thaﬁ Q£’i$ not'entisymmetfic‘in X
'. -

0 if & >92 - .

B, = - .
¢ § <Pvy(x_ t) A (0,x_ t)Pv(x t)><0 if L =1

For the tlme d;scretlsatlon an analogous theorem to the one proved in [3]15

used. The proof for the present case follows aloné; the same lines.
Theorem 3.2. Consider.a tﬁo~step method
(3.16) (.I~kRO.)V.'(t+k) = (T+kRj)v(t-k) + 2k R v(t).
- It is stable if for all gridfunctions u which satisfy the boundaryfeonditionsr

2 ' . '
((o,Rge))y < const | []ul[1E , (umpu)), = 0, nl[[Ry[]], € -0 , 172

0° l can be tried,

‘Beveral choices of R
:\'_{’, Rl =0, RO =R then it follows immediately that the approxi-
mation (3.16) is stable for the problem (3.15). However then .
rompletely inplicif‘

& method which is essentlally exp11c1t in all directions but Xy can be

obt.a:.ned in the follow1ng wa.y"," ‘Write the differential equations in the form

‘ m :
1
Bu/'_at =5 g,-‘:l(Ai Bu/axﬂ + B(Ag’u)/axz). +Cu.
where
c=-2 y an, /3x,
’ 2:1 .
-et
RO 3 P(A1Q1+Q1A ) + PC
R =R-R.==7p .
1 0o 2 EEQ(AR,QR,-FQEAE)

Then (v--,-Rl-v)' 0 and the approximation is stable if k/h is sufficiently

small, i.e. k|| IRlHIh'_ﬁl-"' n<1l.

Qn e can split _RO = 300 + ROl with (v, ROlv){,,, such that the whole

approximation is essentiaslly expiiciti s lo»| rar!a\.;,;“j : RO by ROO . and Rl by

»




Rl + ROl‘ Denq;e by P1 the pro&ectlon

.
) for x(l) it xe 32 .

Fpu = (1)

u for x > 0.

and set

w .
;

. 1 1 - —_— .
Rop =2 FQ - 5(IP) PA(I-P)), =4 Q) +Q A .

- Li1p.) Po(1op
Ryg = PC + F{I-P,) PQ(I-F) »

Then by (3.12)
((a,an), == (@), = 8 < u(x ), A (6% vg(x) >
. -8 < Al(ogx_)uo(x_), volx_) >
for all functions w,v. Therefore -  for all u with u = P
2((usRyqw) )y - ((u,P PQu)), + ((u,PQplu))g_
. ((u,PlPQPlu))h = ((u,PlPQPu))h + ((ﬁ,PQPP‘u))h - ((u,P1PQPP1g))h
- ((papr myu)), - ((PyPQPu,u))y + ((PyPARPR,u))y, =
-2 (), |
s ﬁOl i; angisyﬁmetiiq.

We turn now to the general bowundary conditions-(1;3);-We construct

a orthogonal matrix U such that (1.3) is equivalent with

()t =al =0,

+

H

awd the projection ~ P which projects the gridfunctions into grldfunctlons

whlch satlsfy the boundary conditions is glven by

~  [u(x) for’ x(l) >0 )
Pu = o ‘ (1)
o U'PUa for x~ ' =10,
For x(l) >0 we use.again (3.2) but-replace (S.h) and (3.5) by

~

(3.ka) (o) =0 ie. Pv=v, - -




- 3.7 =l

st S

(3.5a) (Udv/dt)II = }: (U a,(x,t) Q, v(x,t_—)_)I;, '
221 . :
N i
for x€ M, t >0, - .

Assume now that dU/dt exists and is uniformly bounded. Then we can differentiate ]

'(3.ha) with respect to t and obtain B - - i

(U dv'/dt)I = - (aU/at -\r)IJ

and (3.ka), (3.5a) can be written as

1]
<

e~

dv/dt = P L Al(x,t) ng(x,t) + Blv, Pv

where I
(au/at v)
Bv=-1

l . e O

-is a-bounded-operatér. Therefore we canessentially also write the pfqblem'k~ S

(3.2), (3.ka), (3. 5&) in the 'f_orm (3.15)

dv/at = Rv, + P.B'v , Pv=1v

1 171

‘with

"~ ~ m ~

R=P ) A, (x,%) Q, vix,t).

'8=l . ) . .
Now
< uﬁ PVO > =< PuO, Vo >.

‘and tthéfore,,,,alS‘O.. - . L S R P ' . 7 - eIl i_T’.\‘-.f'f"ifilT'f’ b5 I 11

((,Pv)), = ((Pu,v)),

if H 1is of the form (2.24). Then &ll the estimates are valid again and -

‘theorem 3.1 and the construction of the difference approximations-iskalso

valid for the general boundary conditions 1.3.
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-1 Introduction

e i Lk k. . i, L e e S

In 161 andl7] stable difference schemes for a class of hyperbolic partial
differential equations were developed,

We will describe now the numerical properties of these schemes and the
experiments done with the third and fourth order approximations. The test

results are compared with the ones obtained by J.Oliger in (8] who dia

&

extensive computations withsome of the test problems.
Notation ¢

{%3 For the difference methods , the domain of integration is covered by a grid

of uniform meshsize. In all space directions the net is of size h-= 1/N,
NelN. The time step is taken equal to k. As usual the rate k/h is called 2 .
The gridpoints are denoted by x,{t) = x(vh,t) and the gridfunction values:

v,(t) = v(x,(t)) v = 0,1,2..,




2 Diagonal norm schemes

2,1 Existence theorenm

Thé simplest form which the energy conSerwving schemes pongidered in
Ei] can adopt is the one corresponding to a diagonal norm matri;.

In order to obtain such a boundary modification for a 2s order scheme
in the interior of the right halfplane 0 = x<ow , 2s boundary points
are approximated by ans-th order scheme. The resulting schemes are
fherefore of accuracy order at most s + 1. (see Gustafsson sl ).
\@ U TE hes beew  Sugqested wilhout proob in TeT had s

possible to construct such schemes for s =1, 2, 3,4,

Theoreh. 2.1
Given an approximation of 9/2x of order 2s in the interior,one can define
a difference approximation of order s for 2s boundary points such
rthat the total scheme given by
(%h%- A o\ /3B ¢ \ 'is halfbounded in norm H gA _provided
. ,
0 I -C D : I

{l . . - L. ,
g@ that a certain Vandermonde system of equations in the A's of

A = diag (f)o ’ )1 s sses A P ). has positive solution.

@ This last condition is valid for s<5.

In fact,it can be proved numerically that for 5¢s¢{14 the solution of the Vander-

‘monde system has negative elements and therefore the above described

aschemes cannot be defined for lxrger values of s.




Proof

As was pointed out in [ 6 , pp 206 ], the elements of the norm matrix

. j\ $ A, , 1=0 s eee 25=1, are determined from formula 2.24

28 —1

_ G
Gy lv(2s—v)g V=17 -(=1)"g, o =12y 2s
v=0 ‘
with g4 = -1/ g=4

o | = 3,5..
BG = ZH4,---
() 5 v-1

2 L =y Z‘ﬁ‘(ﬁ—u)z = 28

V=g }4"’

If one takes ¢ %o the right hand side,the system has a Vandermonde

coefficient matrix with integer elements of the form .

A . 1 Ao 4(‘2,5-&-(-'/2.)3
s . - - 32 1 A Yy (26 4 B, ) g;rgenote the matrix
=| Yy (2.53 + o )
15~ 251 l
s Coe 2 Avens s (2525 - ?19)

@@ These systems are resolved using an adaptation of the Vandermonde
system solver described in [A] . |

The algorithm is based on the fact that there is a particularly simple
factorization of the inverse of the coefficient matrix, In fact in [4]

it wasg proved that V-'1 = UL where Ugud aye UpPper and lower triangular

matrices respectively, L‘mﬂn% unit diagonal. Both L and U can be

decompbsed in a product of bidiagonzl matrices and in the case of U

bidiagonal and diagonal matrices.’

The elements of CRO, . 225_1) are obtained from the right hand side

by recursive premultiplication with these matrices.




The computation of the elements of /A were not continued furthe; than é
s=14. It was noted that for each s, the minimum J Qas smaller than the -i
minimum of the ) s associated with s-1, !
Although it is possible %o proveu;hat an aporoximation withrdiagonal'ndrm
always exists if one takes enough boundary points, it seems pointléss |
- to approximate more abcissae with a lower accuracy scheme,

f@
e i
i




2.2 Analysis of theﬁ}d order scheme

We will use in the interior the following difference approximations of

increasing order of accuracy 2s

(28] S —2(-1)" (s1)%
_.;"C)SE"‘ D% (n) = %. A Dy (vm) o, A, =(s+\\).;)! Es-l-)v)! 5=1,2400

These formulae give the highest possible accuracy for that number of

?i points. They use the ordinates of 2s+1 symmetric centered points with
antisymmetric coefficients,
The coefficient of the Y -th right hand term (not counting the central
@ term whose coefficient is denoted by 4 . and is O ) is

-2 (-1)0 sl

d, = + The corresponding left hand term is
vV (s+v )t (s-v )1 I

[ ap—_—

Compare | 3] for a table of coefficieds from 2s=2 to 26.

The above defined approximations can be obtained by differentiating
the Gaussian polynomials of order 2s which interpolate the function

values at 2s+1 symmetrically situated equidistant points.

(ﬂ@ The truncation error for them is
L2 s )

.;?.S n 2¢ >‘?.S+4 : 2 54 .
{'ELF?_‘)' (vz o ) Dx“”()() X U({l ) )

@Q The 2s boundary points are approximated by a scheme of order s,as was
degcribed in [6] and again in the previous section.

Using the results in [4] the final sheme in the halfplane can attain

order of accuracy s+1.




Extensive numericai eiperiments with +the above described schemes

were only done for the third 6rder method,ie fourth ordér apprbxi-
mation with second order modification at the boundary points.

The choice seems reasonablé:ﬁ1+m firsk place it was demonstrated in[5]:

that the 4th order schemes when applied to the Cauchy problem for the

scalar equation u,= ¢ n ~ were only sh?ﬁw less efficient tken for

.t
ﬁi example the 6th order schemes , as long as the allowed error is 1%
and the integration is not over very long time intervals,., lMoreover,

for the mixed initial-boundary value problem ,ulere the boundary points

are treated implicitly , there is probably no gain ~in using

- higher order approximations,
In order to_define the ?ﬂ order difference approximation at the boundary
points ,Jthe elements of the norm matrix /\ and of the matrix B of Q
have to be known.The elements of the norm matrix ﬁad already been
i computed in [61 .For the elements of B , the 12 equations resulting from
| the accuracy conditions (5.1.1jF$é§éé%§;d. By Householder
transformations,a linearly independent set of 6 eguations was determined

ﬁ@@ for the 6 unknown elements of B, This system was solved by Crout reduction ;

suﬁ\:»_s—sajn_n.e:njtllf . ) |
the approximate solution wasvrefined by iteration. |

% . . .
'Z; a. BY denote the difference approximation for ;)/B X

j:uf’\

r :
at a point x in the quarter plane,with E the translation operator.

==

Then by a Taylor expansion one obtains for a sufficiently smooth function ¢ﬂx3

¢ Cib(x) = % [ zq; ajqb(x,jh)l = %[ %'— a.j d) (x). +

J=-p

(2.:1.-4) ' W ) a.
J

d

DG ni ey st ¢ By ]
it 3




g, + 1

In particular C x gives the truncation error constants at the

point x, x4 * 1 being the first monomial such that C x o (a, +1)xq“# 0
One gets a2 Dbetter idea oF the eTTOT incurred in calculating the coeffi-
cients if one looks at the error of the operator (Q- 5% ) when applied.

to the monomials 1, x,-xz. It is at most 6(10—5) .

fhe truncation error counstants can be obtained from the relation (2.2.1).
D25 - os1e (% o=

In factJ Qx 5% X = 3! ¢ (x = xo, x1,...).

Here ¢, is the coefficient of the 0 (h2) term in the truncation error.

The values of cy for the boundary points are 3

-0,42161303% D+00
0.16669321 D+00

~-0,19370812 D-01

~-0.37403517 D=01 .

In time, a modified leapfrog scheme will be used so that the total scheme
is essentially explicit except for the 2s boundary points,.

We like to remark that the schemes will be stable in norm H= Iﬁ& I}

as was proved in [6] ., It is therefore of interest to know the equivalence
constants between the L,- norm and the H-norm.

The discrete L,-norm of a vector in one -space -@imension: §=,(v0,v1,...),,ﬁ,

2 e
b, = (2 vy 22 o @
i=0
-z
Whe = 28~1 2 1/2 -
o~ _ L\
and the Henorm iz H (¥) =V ( 2. (vl 29 N 2 byl 2 Y} = (v,Ev)z

i=0 i=2s

One secks constants m,¥ , positive , and such that

¥ %, nL,(¥) ¢ H(¥) < _ML2($)3 equivalently,[mLz(%dj25,[H(v5325 [MLz(viSQ )

Ie,find m? / 0% (?,(H—mQI)G). The eigenvalues of (H—mQI) are A (h)—m2

( A (h) : eigenvalue of H). -




Therefore choosing n? ¢ Amin(H) one obtains the desired inequality.
- Similarly M° has to be chosen such that Mo> A max (H) = largest
geigenvalue of H, '

One "closest® equivalence relation is then
VD (B L) ¢ B(v) <« V| (H) 1,(9)

FTor s=1,..4 § the norm matrix elements are listed in [6] R

max

With increasing s, the values of A\ __. , A decrease/increase
min max .
respectively ie the bounds for H{¥) tcnd further apart,
The elements of the diagonal norm matrix for the fourth order scheme in

i@ the interior are :

A o = 0.3541666667
A , = 1 . 229166667
A2 = 0.8958333333
A 3 = 1.02083%333 ,  (These values have been rounded to 10 decimals)

An equivalence between the L2 -norm and the Henorm is: . }

0,59511903 L,(¥) ¢ H(v) ¢ 1.1086779 L,(¥)

45
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2.%, Iumerical experiments

4g first test equations, the scalar equations uj£ =+ u, were considered,
"he integration interval was ED{G .
The initial value funcions f{x) were elected 1-periodic. The necessary

boundary value conditions i.e. u{1,t) for u, =wu  and u(0,t) for %, = ~u,

were defined as the analytic solution for the corresponding Cauchy Problem
with periodic initial values.
The solution is then £(x + t) respectively and is t~periodic in space

and time. The problems are wellposed with the“estimatef|u(.,t)ﬂz =Hu(.,0)g

= 1£(.) HQ. Here Ilv(.)flz denotes the usual L2,norm in [b,{]

The order of the scheme in the interior is O(h4) + O(kz).

-

We give computa{ional results for 2 values of A
1) A was selected as A= h which implieé k = hz.
2} By choosing A= 1/4 the h4 and kz terms are approximately of the

game magnitude for the problems with initial value function

£{x) = sin 4nx.




We analyze first the results of the case

n, = U Xe [0,1]

uw{x,0) = sin 41x ’ w(1,4)= sin 41t = g{t)

The integration interval was divided ink subintervals of Ilengih h = %b .

Let v, (t) denote the calculated solution for time t at x =v h, and
(1) = (vg(t)ens vy () '
The additional time step required to start leap——frogJ ﬁv(k)’was defined
by the analytic solution ie (k) = sin 4nr(v hik). ¥V =0,1,..N.
The scheme can be written in matrix notation ;

@ (2.5.1) (T-xa,) ¥(t+k) = (T+ka,) V(t-k) + zk[Q1 F(t) + 6(t))

VN(t+k) =g( t+k)

Here v{t) = (vo(t), vj(t)...vﬂ_1(t)) '
and G(t) =:—1 (O’ "'O! ~Q41 vN(t)‘°'“q21 VN(J‘G))' E
11 :
1
% = % 0
A NxH
[ 0 Qqpees g
) 921 %26
o
Q, = :‘:‘ 0 0 oy &y
“q46.o- _q42
~lgg see T

¥xN »




and the antisymmetric Q~Q2 .

- For the second halfplane one'apprOXimates only the 2d, 3

For the stabi&ity analysis we have to prove that the scheme is stable
for the two related halfplane problems obtained by removing the right
or left boundary and extending the integration domain to + o<
respectively. For simplicity the left halfplane problem is transformed
into a right halplane one through a change of variables : xl?x

The operator Q = %~ 'q]1 cee q]62 was constructed as an approximation

941 =+ Y6

to o/ in 0D<x<wo ie for the first halfplane problem.

~ In analogy with Teapfrog for an ODE, when discretizing in time,one has

to separate Q into its symmetric and antisymmetric parts in norm

Nz diag(xq,}ﬂa}tlAB)

The.symmetric part is 1/h . ]\fq (—]/2 \\> = 1/h -(\ 1 \>
| 0 0

rd’ and 4th

boundary points (x},xz,XB) with the scheme defined by -

L oo ¥ 1 1for the operator D/ x.
Here the cdefficient matrix of v](t) - v5(t) is already antisymmetric

innorm  diag (A4, Ay, Az ).
: £
The term in vo(t) can be considered as anjhomogeneous term which does not

affect stability.




The above described schene (2"%4). ig stable in norm d=fined by

2 T
Ay /) WxN

Tn order to prove stability, the well known theorem in 5 ' pp’3éj is
zpplied, modified for the present case , in ihe Yheorem raxeuiea below.

Theorem . 4.2

Consider a difference approximation of the form (I»kQ2)V(t+k) =

ﬁ©3 £I+kQ2)?(t~k) + 2kQ1§(t) for which the difference operators Q1, 8,
fulfill the conditions:

1) Re(v,Q1V)H-ﬂ 0, Re(7,0,7); € O, xlhgl , 41 =1 for

n real constant O < <1

2) for esch fixed h the norm I]QQH q ig bounded,

Zonsidered ave those

The ¥ (.,t)Vthat fuifill the boundary conditions of the con-

tinuous problem and for which | v(.,%) | H exists.
mhen for every v(0), ¥ik), such that | ;(O)“H’ ll?(k)HH exists, there

is a solution +v(x,t) with

o 08l 2 4 150,012 € (2= 1) AT R 7 + 150,00,

HWote that as leapfrog involves 3 iime levels, the scheme has to be re-

duced to a ?-step method in the usual way, introducing an auxiliary

_ - - 1
voctor v(X»t) = (v(x,t), v{x,t+k)), with norm

1 . >
o T teik) iy e
j=o -

P30,

i




i

In the condition 1), the sought estimate kHQ1HH £ 1 -9y gives a

4

bound for the maximum permitted value of the rate k/h.

The spectral norm for HQ1 was calculated for the problem u, = U s S
[ H

xe [0,1] s h = 1/20.

1 K
hen ¢ Q. , = V1,822, and Sl = x1,319815

) This impliss Apae < 14408424 x 1071,

1
n

. Por simplicity)the discrete ngnorm was used.Thm is delined as

5l , = (a0 Q) vy .

=

The error function is denoted by ev(t) = v, (t) - u(xv,f) .

The initial function and the solution has for any time t, the L2mnorm

= 0.70711."

For A= 0.25, and A= h the values of e(t) , and V(%) , are

ligted for several wvalues of t,

® A= 0,25 k= 0.5 D=01 , ¥ = 0,125 D01
t Fscedl, | Mags)yls
2 0.25 D01 (1 ooro125 — | 0.82146 D2 (1) 2iret time step

calculated with
the schenme
t = 2k

5 ' it 0.63769 0.94110 D1 (2) 400 dime sleps




A=h b 0.5 D01 , k = 0,25 D=2
: Tl | e
0,5 D=2 (1) 0.70712 | 0,20230 D=2
1 0.66929 0.88047 D1
4 (2) 0.63383 0.10885

®or comparison, one test example with T(x
d 3

sin 2mx

_/1: 0325 [} h = 005 D"“‘1 k = 00125 D"‘”‘1 2
. 5ol 15(e) 0,

0.25 D1 0.70712 0.12943 D-2

5 0.70980 0.592%5 D-2

(2) 1600 time step

was -run with
Again the L2mnorm of the

solution is 0.70711.

Although the truncation error is smaller with A =h, the number of

time steps needed to reach a certain t is 5 times larger . In figure 1

the solution at t=% is plotied against the analytic solution,

The representation of the lower frequency is considerably better.

In Aprendix A fig. 2 and 3 give a clear comparison of the two

representations,




We analyse now

LIRS xefo, 1] with initial values and boundary conditions

u(x,0) = sin 4Txf u{0,t) = sin 4w(nt) g{t). The solution is then

il

u(x,t) = sin 4w(x-t).

For this problem, Oliger in [8] gives extensive comparisons of

different schemes. Tor some computations, the integration interval
ﬁas‘divided in 20Aand again the two values of ) used were 4=0,25 and h.
But for 7 of the 21 gridpoints the order of approximation is only O (hg).
herefore , in order to show better the accuracy of the method, another

test ran with h = %D was donea,

The scheme is (I~kQ,) ¥(t+k) = (I+kQ,) v(t=k) + 2k [Q1 v(t) + G(t)}
v (b+k)= ()
where v{(1t) =‘(v1(t),...vN(t)) ' and
a(t)
QgﬁLQ1 can be derived from the corresponding matrices for the positive

: Hae
problem by changlnéYfign of the elements and then by rotatlng the calumns

L

=1y vo(1)s =ty Vo(8)2ayq vo(4),0...0)

so that the order | is Nyl=1ye0ely folowed by a similor change

of e rous.
The norm matrix for u, F U changed in the same way ié a‘normrfor the
present cése._ |
The time'step v(k) is defined by thé analytic solﬁtion .
We will denote this scheme with C1. The numerical results for the 20-point
net and X = 0,25 are compared w1th.the methoaé?*ﬂ and C5 of (8],
The C4-§cheme is 4 order in the interior with a O(h+k ) approximation
for v =N: v (t+k) = v, (-k)-2M [y (k) # vy(t—k)J [2=v, “1{t)}
and 1eapfrog in ‘space as well as in time for ¥=1, dnd ¥ = N-1, ie an

O(h +k ) approx1mat10n . he C5—method 1s second order in the interior w1th

the above O(h+k ) extrapolatlon forv= N. It corresponds to the diagonal norm

scheme fors=1 developed. in [6] .




: . t . . . . . . :
The C-2 scheme 1s ) h order 1n- the ;nterlor!w1th a O(h3) extrapolation for

Y. = 1,N-1,N.

{o“ow'mﬁ are He

TheY Tesalts of the'computationé;

Yor a grid of 2% points i.e. h = 1/20

A= 0,25 h = 0,5 D=1 k = 0,125 D-1 |
P N7, 5511, casllz(u)ll, | csella(el, ez vz,
0.025 0. 70657 0.4890T D=2 ] B
1 0.67054 . 0.72194 D=1 1.28 D=1 3,87 D=1 - 34 D4
2 0.6337 ' 0.97992 D-1 1.88 D=1 4.44 D-1 ."3'D'4
4 0.6375 0.92474 D=1 1,75 D=1 4.8 D=1 125 04

The error for our 5dorder scheme is approximately 7 times'as large az for
Oligers 4'order scheme. :

For A= n h=0.,5D-1 - k= 025D-2
t ¥ (el leCell,
0.005 | 0.70708 0.10639 D-2
1 0.669 |  0.85785 D=1
2 0.62932 0.11187
4 | 0'6333 0'10571 {'} (‘\ A{:OO )r“vuu (t‘-i\"".f”': ?

For 41 grid points i.e.

A= 0.2% h = 0.2% D=1 ~k = 0,00625
ot e, | s,
0.0125 0.70709 0.53558 D-3
1 ] 0.70362 0.73863 D=2
4 0,69992 .0.96818 D-2




The error is approximately 1/10 after duplicating the number of gridpoints.
Fig. 4 and 5 compare the approximations when ﬁsing a grid of 21 or 41 points
respectively. Notice that in this last case the caloulated solution ig still

a fairly good approximation after 4 time periods.




System of equatlon51n one space dimension

As a second example a system of two scalar equations in one space di-

mension was considered. The equations were coupled through the reflec—

tive boundary conditions,

C1f w(xyt) = [ alx,t), v(x,t)__l thén
- -1 0 .
@ Wy = ( . 1) L. xe [0,1]

The initial values were w(x,0) [£(x),0 ]' and

I@ ’ nd
the boundary conditions u(0,t) 'v(O,tf“V/§E1,t) = u(1,t)

It

Two values for f(x) were tried: : | L

a) f(x) = sinzax |
b) £(x) = (1 -20/3a 4 < 0.15 a = fx.~1/2|
0 @ >0.15 | | |

e the roof function . .

Well-posedness of the problem is easily proved via an energy estimate:

® . o

. oo it
%E (wyw) = 2(w,é% W) " . = 2 [-:[ uuxdx +] vadx .= )
. . E 7 (4] 0 } 5‘:

- [u2(1) - (O) + [v (1) - v (O)] = 0 for the given boundary con-
dltlons. , ?
‘ . . ‘ A . . f(XV-k)
For the extra time step the analytic solution w(k) = o was taken. g




The grid solutions of u(t) and v{t) are denoted by .U(t) and v(t)
respectively. The absolute value of the error function is défined

at point xv.by

o, ()12 = Julx,,) = 0 (0] % + | v(x,.8) - v, (8)[F

The L,-norm of the caleulated: solution w,(t) = [Uv(t), Vﬁ(t)]-' and

2 T 2
the error function defined by 1.1l = h > i
V=0

In the numerical tests the integration interval was divided in 50 sub-
intervals,

Por the Initial value function a) A was defined as 0.2, h= 0.02, I = 0,004

; 80, lace)l, [EE3] (8

0.08 0.36454 D=3 | 0.70712 0.70712
0.71975 |

1.0 0.84558 D=2 0.70712 . | 0.70711

3,6 0.9701 D=2 0.71995 | 0.71978

For £(x) : The roof function -and

A= 0.25, h=1/50, k= 0,005

o | e, | lEwl, | Il | R, otise
0.01 0.84437 D=2 . 0.%176 0.31552
1 0.2618 D=1 0.3163 | 0.31765 [{0.3 4 D= 4
2 0.2219 D1 | 0.31593 _', 0.31763 |0.3 31 D 4
3 0.24667 D=1 __0Q31564' 0.31763 | 0.3 61 D= 4

We compare with Oligers 4'® order approximation with 0(h°) extma-~

‘polation at the boundary described in [ 8]

lotice that'théuerror of the scheme is smaller than the one for Oliger's.

A graphical display of the solution at t = 3 is given in P.g.7 of Appendix A .
The error is of the order 10_2.




Shallow water eguations

These equations describe the divergent motion of water or other non-

viscuous, incompressible, hydrostatic_fluid with a free top surface if
the hedight of the fluid column is small compared with for example the
maximum radius of curvature of the top surface.

The fluid is contained in a rectangular area, the flow being periodic

in the west-east direction with a period equal to the length of the

rectangle.For the southern and northern boundaries two sets of homo-

ﬁ@; geneous boundary conditions were given. On the top surface,the excess

préssure above atmospheric pressure is taken as zero.
The coordinate system 15 * eartesian,cenlered o Earth, with
and in the .

the x-axis in the wesi-east direction’™ the y-axisVsouth-north direchion.

Then, using the Euler equations of motion, one can obtain a systen

involving the top surface elevation h and the velocities u, v at the same

top surface, in x and y directions.

It is
{@3. w -y, =1 N ~v ; u
v1i=[ == Jv} + w -t |v) + [-f v

g/ \g N\l N g SN e
‘Bere 0 = gh is the*geopotential and f is the Coriolis parameter .

The integration area is O £x<4L ,04y<D , =20
This system of equations, after fixing the coefficient matrices at

values: W = Uyy V=Y, s =49, , can be transformed to a system with

symmetric matrix for the x derivative and diagonal for the y, by the

change of variables: o _ - ' ' .




(U) \r&)p . ‘ 1/{(]-)0
, R

Y= Rd W v /12 -1 ) -
g o, 1/43 R = T - /iy
Vo/v2  -1/¥2 S/ -1/V2
The sysfem then looks like
~u Apni  Np vz _

_ rO 0 (¢} VO 0 f/ﬁ_ t/g

o g — | Vom0 - : . — ' : _
{f@ q’t _ . mojr UO ! IPX . + '—VO — (DO . l‘Fy ‘f/\ri L_P

o/t o ~¥ot @, £/,
@

b
We will denote the matrices Z A, B, C respectively and Vﬁo =

The boundary conditions will be. chosen so as to obtain a halfbounded

differential operator i.e. one for which an estimate of the type

gﬂqhtﬂ‘é K bW ot " """ holds, where the norm is defined by -
dt

(@)ﬁl): ﬂ'}’(ﬂl! []{ 1w, lx, y,z)l + 1y x, yz)i + hP(xy )l de-dy

- T the x-direction, ¥- will be periodic. i.e. ¥, (x,y,t) = qf(x+L,y,t)

®

Then

SEIER(257) - 2(Vigd )+ 2B ¥ (

<
\('J
|
S

+
""-,."

ﬁ .
<!
‘...e[
—

®

.. The term involving A4 is zero because of the periodic boundary condi-
‘ i
tion in the x direction, and the term in C disappears also because

the matrix ig antisymmetric.

Therefore
: y o _ _ _ B D
Y (W,‘.-V\J,‘ 2(‘4—“3 ‘; ) = (L{fl%‘f’.).\o. .- lﬂ‘x..f'\m&v&m‘}\_’% "‘1 k‘t‘,"l.g




We will consider problems for which ¢ is always positive and also

¢> > u2 + v2. Then for o 2 boundary_condition at y=0 has

to be given, and for qf3 one at y=D. An additional one has to be
imposed for 1P1 at y=0 or y=D depending on the sign of the para=

meter vO. Now

L R
g,t(‘? b)) = Io Vo['-l‘i)-t(X,D,t)]?dx +]y 1(x,0,t)|' 2] .

» . | |
52 (-Vo—c)[lq’z(x,]),t)l 2 - ]L}’E(X,O,‘b)] 2} dx +

@® | JO -(—v0+c)[[k{' 3(x,D,t)\ 2 o) 3(::,0,1-.)1 2J dx

Numerical Hesults.—

The numerical experiménts were made on a modification of the example
considered by Elvius and Sundstrém in | 2. In order to obtain a

constant coefficient problem, LA ¢ g Were taken equal to

the corresponding parameter values in [2-].

@

The initial values suggesied
| "degeribe arsingle wave on a constant velocity field with the geo-
‘“Q@ munnotHskenti gl choserr o Hhat »bhe-nonlinear:balance eguation is inifially. ﬁ_vm

. satisfied":

' ‘ . 27 X 27 y
u(x,y,0) = uo =, sin T cos =T

v{x,¥,0) Vo * g o TR sin ==

' ' \ 1 : 1. Lf . 2 xsin 27 :
¢(I,y,0) = ¢0 + fvo (X """"2' L) - furg(y.* - 'E L) + —5— II1 sln. I X

e (-15 u, )2 (cos &?_tI_‘g__+ cos .‘_’ﬂf'.{)

-y - . - . ) e aea ey .

The area of integrationwas 0 £ x <« L, O

i
ed
™
ol
I
o
L]




The Coriolis parameter is f = 1074 571

The parameter values used were

N . 2 .
u, =5 mfs 5, Vg = O_m/s y wy =10 mfs o+ By = 10%n /92’
6 .

" M.

L=4zx10

The integration region was divided into a 20 x 10 point- grid with
; J

space interval h =210"m.

In [:2:1 the time step was of one hour. This gives:a value for A of

0.18 x 107,

Simce Vgis 0 there is no neéd of a boundary condition for y_1 . And for
this choice of the coefficient matrices, the following set of homoge-

neous boundary conditions give an energy estimate of the solution 3

0

i

2) y 5(%:0,%)

L}’ B(XQD’t)

t

0 - ¥x,¥t It gives the estimate | ¢ (£)14 1@ (o))

For continuity reasons, the set of values from the initial conditions

were assigned:

"p Q(I,O,t)

Y 2(3(-’{_)’0)

W 3(::,]),1:) = up.j,(x,n,o) ¥x, ¥t.
' : . awn . . . .
After some'tiﬁ@(ﬁgﬁogeneous altitude h s ~ attained.

b) Boundary conditions of type Ly = 0 for example :

0

L

g o(x,0,%) + ¥ 5(x50%)
l}}j(x’nﬁt) + ¥ z(x’Dlt)

0 x4t It gives 1Y (8)l = 1P (o))

It corresponds to a generalized reflectibn.

St el it el s it R S Ert AL gt
s T P e i e e




®

@

®

Difference scheme

The integration area is covered by.a grid of width ‘h in both =x and
y directions. - | |

The gridpoints are denoted by the pair (xi, yj) 0 £ i % n, 0 £ 3 £m,
The vector § (%) denotes the difference approximation %o the soiution
and is |

P (1) = (9 (x0e¥008) » ¥ q(xgrmyat) o vee Pelxaovyt) » ¥y(xga¥pat)enesene

\{)2(3‘:0!?@"&) 9 coeen WB(xb’YO’t) LR ) .

iy wsed for Ne lwme derivative.

!

e

'The second order centered leapfrog ﬁethoEV-The problem

" can be reduced for every t ;after fixing x, to the solution of the

following system of equations:

I _ Y 1('|:+k) I - S\ ¥ 1('_'t-k)
I—ckQ; Lyz(t+k) = I+okQ§ : ‘Pz(t-k) +
I-ckQy g 5{ ) T+ckQy ¥3(t=k)
IR gD ~c/V2D e/ V2D Y 1(t)
2%k | /> wd w8
' of/i2D Csugd |y 5(%)
0o | \ ¥ 4(9)
% cQ; "+, v o(t) +
GQ..I L["B(t)
/2 o £/02 \ "4’{(1:)
2k -f/@‘ _ ' q”z(t)
/2 | q,3(t)




® Y= \T/(O)+k%§é|t;__o' = @(o)-pk(Aé@]%[tzo +1§%% t=0+cqjlt=o)

®

L

dwd_. . . . . :
Here Q;)/fa; are the symmetric parts of the 4th.order difference
" approximation Q when applied respectively to a "negative" scalgr:; ‘

equation 3 c 2 with ¢<0 ;ana-b-cji with ¢ > O,
Y Y

 amd g .
Smﬂmdy Q1Y/?q\(%£e antisymmetric parts.
"D is the Ath order antisymmetric difference approximation : i

| %Do(h) - % ])O(2‘h) .

The additional time step P (k) was defined by

The scheme is conditionally stable in norm defined by the Kroneckexr product

of matrices -

P ~Iy® Iy @B, - The s ubindices indicate the corresponding -

dimensions

The stability is proved via an anslog of theorem 2.2




)

®

@g'

In order to get an estimate of the values of A which give stability |
for our scheme, the maximum value of 1,for the scheme of 4th order
approximation D in both x and y directionjand leap frog in time was

calculated for the associat;EwCauchy Problem with periodic boundary -

conditions in both space directions.
The condition for stability is:

k 1Ql & 1-% withy constant 0¢%<?

- w:When applying this to our problem Q. is A Dxi’(t):-l_- B_EQY"?, (%)

. d Fal
One can calculate the norm of | Q#‘ by calculating 'uQ1“ i.e. the

norm of the Fourier Transform:

kQ = 154 (-gn sih3 = ¢ sin 23 )+'i§3(-‘§s1nq-%—sin 2v )

h
_ g o ¢
: ; = w._,‘k : .
here 3,ﬁ .are . ye w?h .. o _ T .

A
_Then the eigenvalues of kQ1 are 2 such that

— ldo_& _‘_1\3‘0@, - ’ - qﬁp/ﬁ ) . ) ‘Jgo/_\'rz
il (- Ng, /VT ‘ "‘lﬂ--d.'\‘(-'-"]'o—'\ra;)rb. |
¢° /\r?: S0 oar o 2 - | — U, +(_,qr° * u‘ago ) ﬁ FF N S

|

I A ' |

A—&\': (2_-!____&*51--:'0 Where kQ1 A i N Saviin e - . P T T Yiaa b
|

i

|

: ' ~
The eigenvalues of kQ1 are

g = (g v ovop x VB, (epn))

ik '
2z = (u,.u—f\rg‘g)

3




Wgﬁm:

T

‘The approximation is stable if % luod & @l < 4

At s o o VAT <4

Eer&" \uwd;"-'\}oe’] £ ":';" (luol"“"fo‘)

@ and Ju. & kU, g X (w2eph | € %(Iuolf““'aw "'\r‘#’o‘guso
. ) V‘H«e' .
® Using\Elvius-Sundstrdém values of the parameters this implies that
for ,3\---’- L3 x to™2 s
i for: = . > there is stability.

s
B




@

For the boundary conditions a) the following figures give the equi-
potential curves of the geopotential ¢ at time t=0, t=24 héurs énd
t=48 hoﬁrs. -At each t the scale with whgh ¢ is represented was re-
calculated according to the maximum and minimum value of'¢ .

The L2-n0rm of the solution (P is:

t=0 0.286828 E 11

=24 h. 0.284961 E 11

=48 h.  0.284957 E 11

Minimum and Maximum of geopotential at gridpoints
0.7949 E & , 0.1195 E 5 o

Equipotential curves scale : 0.8013 E 3
contour lines

33333333333333333333S3"
33333333333 2222.222¢2223
2334448433222 11111222
233448 443322110001122
2 3 4 4 444 4%4321100000112
234 44444314321 100000112
2334544443321 1060000112
2233 4%433221100000112
2233333332211000001 12
2222222222211 11111112
111111 T1T1T 11111111111

amal

Fie 4




Minimum and Maximum of geopotential at gridpoints

0.9988 E 4 , 0.1006 E 5

Equipotential curves scale : 0.1582 E 2
Contour lines
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For the boundary conditions b) Fig. 4 and 5 give equipotential curves
at t=24 hours and 48 hours.

The L2—norm of the solution is:r
t= 24 hours 0.286038 E 11

— 48 hours 0.284997 E 11

Miniﬁum and Maximum of geopotential at gridpoints
0.9059 E 4 , 0.1096 E 5 ' '

Equipotential curves scale : 0.3815 E 3
Contour lines

2223334448333 22211122
22233404 844833322211122
1223344 4453332211111 1
122 3 4% 44 443332211000 11
112334404 454453221000001
012334545 454%53211000000
0122345 4443321100000 0
0112334445332210000000
011223333322211000000
11122233322211100000 1 |
1112 3222211100000 1 |

2 2 2
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Minimum and Maximum of geopotential
0.8939 E 4 , 0.1113 E &

Equipotential curves scale : 0.4397

Contour lines
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2.4 Experiments with a refined grid

Tt was proved 1in i6j that the highest overall accuracy attainable for a
fourth order difference scheme in the interior , when using a diagonal norm
matrix is third order.

In order to obtain a more uniform error, a grid refinement at the boundaries

was tried out.

@D The model problem examined 1s the scalar eguation
U= U xg{O,i}

u{x,0) =sin 4 W x u(0,t) = sin k¥ (-t)= g(t)

On the interval [0,1] two grids are defined :

1) ar uwniform grid of interval size hl . The gridpoints are denoted by x,.

2) an uniform grid refinement for the intervals : [O,Ehi}andTI*Ehl,lj.

The distance between meshpoints is hl/n = h2 . The gridpoints are denoted -

x', and x', respectively. (see following fig.)

non
! b
¥am %o
E!u ;i ﬁ‘_ﬁl - Al 3 T

o Xq Ko,

. The corresponding gridfunctions are dencted by : vix, ,t), V'(XL ,t) and v" (x:,t}

One seeks to obtain grigfunction. values v{xv,t) which approximate the analytic

solution ﬁ(u hl,t} with order h3

1 -at the boundary points . Then according

to [h] overall accuracy of order hi can be reached.

In time)second order leapfrog with stepsize k is used for all grids.
Three sets of calculations are performed : for v,vf ,v” . :

The two initial time steps required for the 3 functions are obtained from

“the initial conditions and the analytic solubtion at time t=k.




The gridfunction wvalues v](xb ,t) are calculated as an independent set
like the sclution of the problem W= oo extensively discussed 1n section
2.3,

From themn, v(xl,t) and v(xg,t) are defined by v(xl,t) :VJ(Xé ),

=t !
v(x2,t) v (Xgn,t).

Wext, the gridfunction v is approximated by the hth order scheme : N i

h/3 Do(h) - 1/3 DO(2h) at the points x , , V =3,...N-2.
Last, the funection values v"(xt,t) can be obtained considering them as
an approximation to the partisl problem:

@ = _ _ : e . - -
u u, o xe [Il 2h151]‘w1th boundary conditions : u(l Zhl,t) v(XN_2,t).

With these values the definition of v(x ,t) is completed by assigning
t) |
> . :

i
Zn
In the interior the gridsize was tsken as hl=l/20.

V(XN_l,t) = Vu(Xg,t) and V(XN,t) = v"(x

The wvalue V(XN,t) is obtained as a boundary point and therefore approximated

with order O (hg
> 2.2 3
h2 —hl/n ﬂ*hl

). Threfore we want to choose n such that

For example take n = 1/ ﬁlw I

.In the numerical experiments we took n=5.

For simplicity the same time step k was taken for the refinement and the
original grid. |
Note that if >‘1 =X/n, A

= k_/h2 then )2 :”n A therefore care must

2 1’
be taken that both A fulfill the stability requirement. )\ o Was defined as
| A, = 0.25 , them A, = 0.05.
I{‘e : T - 1 1
3 With the cnosen values of n, each sublnterval[Q,xgl and[xN_g,lec0351sts

of 11 gridpoints, 8 of them being boundary points ie function values appro-

ximating the solution with order O(h2 ). Because the proportion of these

] é
® ints 3 1 t L robakly
points is so large ,‘v(xl, ), V(X2,t),v(wal’ ) and v(xN,t) are prgb By
-only approximated with order hg. But this is enough to assure O(hl7 for
themnm.

‘he following are the results of the computations.




(1) W
,Wﬁfiﬁ)“,z

fel(t)h 5

0.005 0.7071 ' § 0.186F-3 0.7071 . 0.35198-3

; {

0.3109E-1

o 0.7045 | 0.2 E-1 0.7019

0.3035E-1

k . 0.70k5 . 0.ZE-1 1 0.7020

|
) fg@ . A detailed stability analysis will follow. - ‘“|

(1) these values correspond to method C2 described in[Bl.




b Full mgtrix norm schemes

3.1 ~qpmputation of the coefficients .of the 4thorder scheﬁer

From the full matrix norm schemes whose existence was proved in(ETJ , %
theorem 2.2‘) for every order of accuracy in the interior, we choose the %
‘ o %

fourth order scheme which corresponds to the already considered fourth Q
&

. o 4 1 oy
~order difference approximation to S74 3 Do(h) -3 BO(Qh))with a -third

kE@Q ' order modification for the boundary points Xyr Xq g Xy oo

For the ééiculatioﬁ"ﬁf’fﬁézébéffiéients,there are two possible ways:

1) Pollow the steps of the constructive proof* of theorem 2.2 , The

idea is basically the following:

The norm matrix H has the form H=/Aig o . _
ho ey
Pig oo Tag

_Iﬁétgéa’bfnﬁéléﬁfaﬁfﬁémfﬁﬁ’éléﬁén%s'of E from the accuracy conditions:

2ej = 3 H ej_1 h-B1 3

~ one calculates from them the elements of & matrix (pij), 0 £ i,

(3.4.4) B e - Cf =0y, Ty eae 3 ;

£ He.>» = (..
j s ’<e‘ eJ> ()LJ

In_factg for the present example these values have already been eva-

]mawdin [7] .-

I the ﬁétrixf(J'§E5) I§’boéiti?e definite;'and'one_electé a sﬁﬁll |
enough vaiue of the paraméter Ao, then it is easy to ﬁroof that one
obtaing a positive definite matrix H. | |

.Thiii arertwo degrees of freedom in the equationS“fof the pij:

.p227 P33 can be chosen so thatA(pij) S0 -

Using %the fact that for a poéitive definite matrix;'each_principal

'éﬁbméfrix,déterﬁﬁﬁaﬁfﬁhééliﬁmbe“ﬁbsitive4;the;éélected”values for




@

®

 Poo ang P33 were the ones that would define a‘singular submatrix per-

turbed at- the third decimalAdigit i.e. if di:’ i‘z 2,3 defines a
singular matrix;.thenqﬁii = di-(1 + 10'3) . The perturbation is arbi-
trary but it was found bj.tryiﬁéfothe: values for it that it did not
affect significantly the values of H. |

The chosen values of“pzz_and P33 give the smallest éigenValues of
(ﬁij).‘Even so they range from 0,35 D-02 to 0,11 D+5. |
They were calculated using the QR factorimation with Héuseholdey
transformation.

The elements of (p,,.) are so opganized that maximum accuracy can be
ij .

"obtained with this method.

2

The parameter lorwas chosen equal to 10 ﬁ-It is not possible to

select a larger value (bldser 4o 1) which would define a better norm

. matrix.

The elements of Bz.are'compuﬁed following the formulae in [7], .

In the next page the valmes qf the calculated elements of B and H

.are listed.

e
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The eigenvalues of the norm matrix are :
0.1 D=1 | |

10.59493 D-1

0.38777

0.11984 D 1

0.44813 D’2

The equivalence relation between the Le-norm and the H-norm is then .

1.0 D=1 Lz(v) ¢ H(¥) & 6.694251 Lz(?)

The error committed while calculating the coefficients is illustrated

by the result of applying IQ.-ﬁgi)*toithe monomials 1, x,fx2, % .
It is largest at the point i0 and is of order 0(10 12) .
The truncation error constants result from Qi4 —-g%;x4 41 ¢ {(x= 0? %y ceels
c = (00,01, ..-04). ‘The values of ¢y are”:
“0-83904333
4.6561 708 ) . w2 T 3T J\l..' H
@ 4.5625596 | -

-4.1831888 .

These: values compare very unfavorably with for example the truncation

error constants for the-}rd order écheme studied in the last section.

v~ v Tnthe next -section, results of QomPutatiQnSfOfrthe'BOIPtiQnrggjﬁgﬁL e

scalar equations w, = +u_ with the above defined method are shown.

2) Another p0331b111ty of deflnlng the third order modlflcatlon for the

boundary 301nts is to deduce the elements of the norm matrlx H and

RV
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of’B2 directly from the accuracy conditions. Again there are 3 degrees
of freedom in the resulting system.._lo was chosen and two of the un-
knowngV§iedetermined. For none of the seits of valﬁes tried, the matrix
H resulted positive definite. Whken we defined the accuracy conditions
with a discretization of xi at different points, for example with

ej = (0,1, ...)i, then for the values of the parameters tried there

were less negative eigenvalues but still we were not able to fimd a set

of values defining " a positive definite norm matrix H.

3.2 MNumerical Regulis. [

Secalar eguations,

We consider first the equation/ u, o= o-u Xe [0,1] ’ with.initial
value function sin 47X, '1n a. wanher already discussed in, the third
order scheme case,qur the right hand boundary points: xN_4, car Xy
the: operator Q approximation to §% has to be separated in its sym-
msmric.and antisymmetrié parts in norm H. The solution at these points
iz then given impiicitly, wheregs at the left hand boun&ary points x

h  d

x2"13’ x4,the:solution is explicitly ca.lculatedf

In any case, the system fof the gridfunction valueg of XN_4,,mr.xNA

is simple involving only the: values u(xv) and u(;ig in eacﬁ eéﬁation3
Y = N-4,...N.

An estimate for the maximum stable value of A for the above problem

~norm of.ilHQ1“ . It is

with h = %6 was obtained from the L,

A .

max 8,04 °

gt R

i T




The resultsof the test rune weve:

A= 0.25 D=1 ’ h = 0.5 D-1 ’ k = 0.00125

St le (sl , I5(eN, ¥
0.0025 0.37106 D~1 0.70791 0.68682

I -3 0.78022 D-1 |  0.68625 ' 0.68185
L@ oo 0.12351 0.67065 067127
| 1 0.1173 0.633 0.6239

Figure 8 in Appendix 4 shows a plot of the solution after 1 time period.

W
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The eguation u, = u

- was: resolved for .ifg [0?1] ‘- Hefe the' grid-~

function at left hand boundary points was calculated with the third
order approximation to ﬁ%;

The function values at the right hand boundary were caleulated using

' the 4th order interior scheme &nd the necessary values outside of the

interval were defined by the analytic solution.

obtained wsi e ' ;
The results| the'initial_value function gin 22 x are

A= 0.25 D=1  E = 0.5 D-1 k = 0,125 D=2
s BN, R

0.0025  _0.1427‘3-2 | 0.70714

0.25 0.57978 D-2 0.70584

0;5  0.51152 De2 0.70678

1 " | 0.70014 D=2 0.71007

2 | 0.83883 D-2 . 0.71364

- Fig.9 shows a graphic display of-the solution after 1 period in Eime.
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Appendix A

The analytic solution {represented by the continuous line) versus
the calculated {asteriks) of some of the test examples described

are plotted.

A1l solutions are bounded by 1., The ordinate axis is subdivided into

10 subintervals to simplify the estimate of the error.
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