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Virtual Machines

Virtual machines (VMs) provide an intermediate stage for 

the compilation of programming languages

• VMs are machines because they permit a step-by-step 

execution of programs

• VMs are virtual (abstract) because typically they
– are not implemented in hardware

– omit many details of real (hardware) machines

• VMs are tailored to the particular operations required 

to implement a particular (class of) source language(s)
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Virtual Machines: Pros

• Bridge the gap between the high level of a programming language 

and the low level of a real machine.

• Require less implementation effort

• Easier to experiment and modify (crucial for new PLs)

• Portability is enhanced

– VM interpreters are typically implemented in C

– VM code can be transferred over the net and run in most machines

– VM code is (often significantly) smaller than object code

• Easier to be formally proven correct

• Various safety features of VM code can be verified

• Profiling and debugging are easier to implement
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Virtual Machines: Cons

• Inferior performance of VM interpreters compared 

with a native code compiler for the same language
– Overhead of interpretation

– Significantly more difficult to take advantage of modern 
hardware features (e.g. hardware-based branch prediction)
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Some History of VM Development

• VMs have been built and studied since the late 1950’s

• The first Lisp implementations (1958) used virtual machines with

garbage collection, sandboxing, reflection, and an interactive 

shell

• Forth (early 70’s) used a very small and easy to implement VM 

with high level of reflection

• Smalltalk (late 70’s) allowed changing code on the fly (first truly 

interactive OO system)

• USCD Pascal (late 70’s) popularized the idea of using pseudocode 

to improve portability

• Self (late 80’s), a language with a Smalltalk flavor, had an 

implementation that pushed the limits of VM

• Java (early 90s) made VMs popular and well known 
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VM Design Choices

• Some design choices are similar to the choices when designing 

the intermediate code format of a compiler:
– Should the machine be used on several different physical 

architectures and operating systems? (JVM)
– Should the machine be used for several different source languages? 

(CLI/CLR (.NET))

• Some other design choices are similar to those of the compiler 

backend:
– Is performance more important than portability?
– Is reliability more important than performance?
– Is (smaller) code size more important than performance?

• And some design choices are similar to those in an OS:
– How to implement memory management, concurrency, exceptions, 

I/O, …
– Is low memory consumption, scalability, or security more important 

than performance?
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VM Components

• The components of a VM vary depending on several 

factors:
– Is the language (environment) interactive?
– Does the language support reflection and or dynamic loading?
– Is performance paramount?
– Is concurrency support required?
– Is sandboxing required?

(In this lecture we will only talk about the interpreter of the VM.)
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VM Implementation

• Virtual machines are usually written in “portable” 

programming languages such as C or C++.

• For performance critical components, assembly 

language is often used.

• VMs for some languages (Lisp, Forth, Smalltalk) are 

largely written in the language itself.

• Many VMs are written specifically for GNU CC, for 

reasons that will become apparent in later slides.
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Forms of Interpreters

• Programming language implementations often use two 

distinct kinds of interpreters:
– Command-line interpreter

• Reads and parses language constructs in source form

• Used in interactive systems

– Virtual machine instruction interpreter
• Reads and executes instructions in some intermediate form such 
as VM bytecode
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Implementation of Interpreters

There are various ways to implement interpreters:

1. Direct string interpretation

2. Compilation into a (typically abstract syntax) tree and 

interpretation of that tree

3. Compilation into a virtual machine and interpretation 

of the VM code

Source level interpreters are very slow because they 
spend much of their time in doing lexical analysis

Such interpreters avoid lexical analysis costs, but they still have 

to do much list scanning (e.g. when implementing a ‘goto’ or ‘call’)
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Virtual Machine Instruction Interpreters

• By compiling the program to the instruction set of a 

virtual machine and adding a table that maps names 

and labels to addresses in this program, some of the 

interpretation overhead can be reduced

• For convenience, most VM instruction sets use 

integral numbers of bytes to represent everything
– opcodes, register numbers, stack slot numbers, indices into 

the function or constant table, etc.

Opcode

Example: The GET_CONST2 instruction

Reg # CONSTANT
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Components of Virtual Machine Implementations

• Program store (code area)
– Program is a sequence of instructions

– Loader

• State (of execution)
– Stack

– Heap

– Registers
• Special register (program counter) pointing to the next 
instruction to be executed

• Runtime system component
– Memory allocator

– Garbage collector
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Basic Structure of a Bytecode Interpreter

byte *pc = &byte_program[0];
whilewhilewhilewhile(TRUE) {

opcode = pc[0];
switchswitchswitchswitch (opcode) {
…
casecasecasecase GET_CONST2:

source_reg_num = pc[1];
const_num_to_match = get_2_bytes(&pc[2]);
… // get_const2 code
pc += 4;
breakbreakbreakbreak;

…
casecasecasecase JUMP:

jump_addr = get_4_bytes(&pc[1]);
pc = &byte_program[jump_addr];
breakbreakbreakbreak;

…
}

}
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To align or to not align VM instructions?

Opcode

Jump Address

Opcode

Jump AddressUnused Bytes

NOTE: Padding of instructions can be done by the loader.

The size of the bytecode files need not be affected.

On a 32-bit machine
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Bytecode Interpreter with Aligned Instructions

byte *pc = &byte_program[0];
whilewhilewhilewhile(TRUE) {

opcode = pc[0];
switchswitchswitchswitch (opcode) {
…
casecasecasecase GET_CONST2:

source_reg_num = pc[1];
const_num_to_match = get_2_bytes(&pc[2]);
… // get_const2 code
pc += 4;
breakbreakbreakbreak;

…
casecasecasecase JUMP: // aligned version

jump_addr = get_4_bytes(&pc[4]);
pc = &byte_program[jump_addr];
breakbreakbreakbreak;

…
}

}
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Interpreter with Abstracted Instruction Encoding

byte *pc = &byte_program[0];
whilewhilewhilewhile(TRUE) {

opcode = pc[0];
switchswitchswitchswitch (opcode) {
…
casecasecasecase GET_CONST2:

source_reg_num = pc[GET_CONST2_ARG1];
const_num_to_match = get_2_bytes(&pc[GET_CONST2_ARG2]);
… // get_const2 code
pc += GET_CONST2_SIZEOF;
breakbreakbreakbreak;

…
casecasecasecase JUMP: // aligned version

jump_addr = get_4_bytes(&pc[JUMP_ARG1]);
pc = &byte_program[jump_addr];
breakbreakbreakbreak;

…
}

}

#define#define#define#define GET_CONST2_SIZEOF 4
#define#define#define#define JUMP_SIZEOF 8
#define#define#define#define GET_CONST2_ARG1 1
#define#define#define#define GET_CONST2_ARG2 2
#define#define#define#define JUMP_ARG1 4
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Interpreter with Abstracted Control

byte *pc = &byte_program[0];
whilewhilewhilewhile(TRUE) {
next_instruction:

opcode = pc[0];
switchswitchswitchswitch (opcode) {
…
casecasecasecase GET_CONST2:

source_reg_num = pc[GET_CONST2_ARG1];
const_num_to_match = get_2_bytes(&pc[GET_CONST2_ARG2]);

… // get_const2 code
pc += GET_CONST2_SIZEOF;
NEXT_INSTRUCTION;

…
casecasecasecase JUMP: // aligned version

jump_addr = get_4_bytes(&pc[JUMP_ARG1]);
pc = &byte_program[jump_addr];
NEXT_INSTRUCTION;

…
}

}

#define#define#define#define NEXT_INSTRUCTION \
gotogotogotogoto next_instruction

Virtual Machines and Interpretation Techniques 18

Indirectly Threaded Interpreters

• In an indirectly threaded interpreter we do not switch on the 

opcode encoding. Instead we use the bytecodes as indices into a 

table containing the addresses of the VM instruction 

implementations

• The term threaded code refers to a code representation where 

every instruction is implicitly a function call to the next 

instruction

• A threaded interpreter can be very efficiently implemented in 

assembly

• In GNU CC, we can use the labels as values  C language extension

and take the address of a label with &&labelname

• We can actually write the interpreter in such a way that it uses

indirectly threaded code if compiled with GNU CC and a switch 

for compatibility
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Structure of Indirectly Threaded Interpreter

byte *pc = &byte_program[0];
whilewhilewhilewhile(TRUE) {
next_instruction:

opcode = pc[0];
switchswitchswitchswitch (opcode) {
…
casecasecasecase GET_CONST2:
get_const2_label:

source_reg_num = pc[GET_CONST2_ARG1];
const_num_to_match = get_2_bytes(&pc[GET_CONST2_ARG2]);
… // get_const2 code
pc += GET_CONST2_SIZEOF;
NEXT_INSTRUCTION;

…
casecasecasecase JUMP: // aligned version
jump_label:

jump_addr = get_4_bytes(&pc[JUMP_ARG1]);
pc = &byte_program[jump_addr];
NEXT_INSTRUCTION;

…
}

}

staticstaticstaticstatic voidvoidvoidvoid ****label_tab[] {{{{
…
&&get_const2_label;
…
&&jump_label;
…

}}}}
#define#define#define#define NEXT_INSTRUCTION \

gotogotogotogoto **(void **)**(void **)**(void **)**(void **)(label_tab[****pc])
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Directly Threaded Interpreter

• In a directly threaded interpreter, we do not use the 

bytecode instruction encoding at all during runtime

• Instead, the loader replaces each bytecode 

instruction encoding (opcode) with the address of the 

implementation of the instruction

• This means that we need one word for the opcode, 

which slightly increases the VM code size
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Structure of Directly Threaded Interpreter

byte *pc = &byte_program[0];
whilewhilewhilewhile(TRUE) {
next_instruction:

opcode = pc[0];
switchswitchswitchswitch (opcode) {
…
casecasecasecase GET_CONST2:
get_const2_label:

source_reg_num = pc[GET_CONST2_ARG1];
const_num_to_match = get_2_bytes(&pc[GET_CONST2_ARG2]);
… // get_const2 code
pc += GET_CONST2_SIZEOF;
NEXT_INSTRUCTION;

…
casecasecasecase JUMP: // aligned version
jump_label:

pc = get_4_bytes(&pc[JUMP_ARG1]);
NEXT_INSTRUCTION;

…
}

}

static void *static void *static void *static void *label_tab[] {{{{
…
&&get_const2_label;
…
&&jump_label;
…

}}}}
#define#define#define#define NEXT_INSTRUCTION \

gotogotogotogoto **(void **)**(void **)**(void **)**(void **)(pc)

#define#define#define#define GET_CONST2_SIZEOF 8
#define#define#define#define JUMP_SIZEOF 8
#define#define#define#define GET_CONST2_ARG1 5
#define#define#define#define GET_CONST2_ARG2 6
#define#define#define#define JUMP_ARG1 4
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Threaded Interpreter with Prefetching

byte *pc = &byte_program[0];
whilewhilewhilewhile(TRUE) {
next_instruction:

opcode = pc[0];
switchswitchswitchswitch (opcode) {
…
casecasecasecase GET_CONST2:
get_const2_label:

source_reg_num = pc[GET_CONST2_ARG1];
const_num_to_match = get_2_bytes(&pc[GET_CONST2_ARG2]);
pc += GET_CONST2_SIZEOF; // prefetching
… // get_const2 code
NEXT_INSTRUCTION;

…
casecasecasecase JUMP: // aligned version
jump_label:

pc = get_4_bytes(&pc[JUMP_ARG1]);
NEXT_INSTRUCTION;

…
}

}
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Subroutine Threaded Interpreter

• The only portable way to implement a threaded 

interpreter in C is to use subroutine threaded code

• Each VM instruction is implemented as a function and 

at the end of each instruction the next function is 

called 
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Stack-based vs. Register-based VMs

• A VM can either be stack-based or register-based
– In a stack-based machine most operands are (passed) on the 

stack. The stack can grow as needed.

– In a register-based machine most operands are passed in 
(virtual) registers. The number of registers is limited.

• Most VMs are stack-based
– Stack machines are simpler to implement

– Stack machines are easier to compile to

– Less encoding/decoding to find the right register

– Virtual registers are no faster than stack slots
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Virtual Machine Interpreter Tuning

Common VM interpreter optimizations include:
– Writing the interpreter loop and key instructions in 
assembly

– Keeping important VM registers (pc, stack top, 
heap top) in hardware registers
• GNU C allows global register variables

– Top of stack caching

– Splitting the most used instruction into a separate 
interpreter loop
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Instruction Merging and Specialization

Instruction Merging: A sequence of VM instructions is 
replaced by a single (mega-)instruction
– Reduces interpretation overhead

– Code locality is enhanced

– Results in more compact bytecode

– C compiler has bigger basic blocks to perform optimizations on

Instruction Specialization: A special case of a VM 
instruction is created, typically one where some 
arguments have a known value which is hard-coded
– Eliminates the cost of argument decoding

– Results in more compact bytecode representation

– Reduces the register pressure from some basic blocks


