
1

Virtual Machines and
Interpretation Techniques

Kostis Sagonas

kostis@it.uu.se

Virtual Machines and Interpretation Techniques 2

Virtual Machines

Virtual machines (VMs) provide an intermediate stage for

the compilation of programming languages

• VMs are machines because they permit a step-by-step

execution of programs

• VMs are virtual (abstract) because typically they
– are not implemented in hardware

– omit many details of real (hardware) machines

• VMs are tailored to the particular operations required

to implement a particular (class of) source language(s)

Virtual Machines and Interpretation Techniques 3

Virtual Machines: Pros

• Bridge the gap between the high level of a programming language

and the low level of a real machine.

• Require less implementation effort

• Easier to experiment and modify (crucial for new PLs)

• Portability is enhanced

– VM interpreters are typically implemented in C

– VM code can be transferred over the net and run in most machines

– VM code is (often significantly) smaller than object code

• Easier to be formally proven correct

• Various safety features of VM code can be verified

• Profiling and debugging are easier to implement

Virtual Machines and Interpretation Techniques 4

Virtual Machines: Cons

• Inferior performance of VM interpreters compared

with a native code compiler for the same language
– Overhead of interpretation

– Significantly more difficult to take advantage of modern
hardware features (e.g. hardware-based branch prediction)

Virtual Machines and Interpretation Techniques 5

Some History of VM Development

• VMs have been built and studied since the late 1950’s

• The first Lisp implementations (1958) used virtual machines with

garbage collection, sandboxing, reflection, and an interactive

shell

• Forth (early 70’s) used a very small and easy to implement VM

with high level of reflection

• Smalltalk (late 70’s) allowed changing code on the fly (first truly

interactive OO system)

• USCD Pascal (late 70’s) popularized the idea of using pseudocode

to improve portability

• Self (late 80’s), a language with a Smalltalk flavor, had an

implementation that pushed the limits of VM

• Java (early 90s) made VMs popular and well known

Virtual Machines and Interpretation Techniques 6

VM Design Choices

• Some design choices are similar to the choices when designing

the intermediate code format of a compiler:
– Should the machine be used on several different physical

architectures and operating systems? (JVM)
– Should the machine be used for several different source languages?

(CLI/CLR (.NET))

• Some other design choices are similar to those of the compiler

backend:
– Is performance more important than portability?
– Is reliability more important than performance?
– Is (smaller) code size more important than performance?

• And some design choices are similar to those in an OS:
– How to implement memory management, concurrency, exceptions,

I/O, …
– Is low memory consumption, scalability, or security more important

than performance?

2

Virtual Machines and Interpretation Techniques 7

VM Components

• The components of a VM vary depending on several

factors:
– Is the language (environment) interactive?
– Does the language support reflection and or dynamic loading?
– Is performance paramount?
– Is concurrency support required?
– Is sandboxing required?

(In this lecture we will only talk about the interpreter of the VM.)

Virtual Machines and Interpretation Techniques 8

VM Implementation

• Virtual machines are usually written in “portable”

programming languages such as C or C++.

• For performance critical components, assembly

language is often used.

• VMs for some languages (Lisp, Forth, Smalltalk) are

largely written in the language itself.

• Many VMs are written specifically for GNU CC, for

reasons that will become apparent in later slides.

Virtual Machines and Interpretation Techniques 9

Forms of Interpreters

• Programming language implementations often use two

distinct kinds of interpreters:
– Command-line interpreter

• Reads and parses language constructs in source form

• Used in interactive systems

– Virtual machine instruction interpreter
• Reads and executes instructions in some intermediate form such
as VM bytecode

Virtual Machines and Interpretation Techniques 10

Implementation of Interpreters

There are various ways to implement interpreters:

1. Direct string interpretation

2. Compilation into a (typically abstract syntax) tree and

interpretation of that tree

3. Compilation into a virtual machine and interpretation

of the VM code

Source level interpreters are very slow because they
spend much of their time in doing lexical analysis

Such interpreters avoid lexical analysis costs, but they still have

to do much list scanning (e.g. when implementing a ‘goto’ or ‘call’)

Virtual Machines and Interpretation Techniques 11

Virtual Machine Instruction Interpreters

• By compiling the program to the instruction set of a

virtual machine and adding a table that maps names

and labels to addresses in this program, some of the

interpretation overhead can be reduced

• For convenience, most VM instruction sets use

integral numbers of bytes to represent everything
– opcodes, register numbers, stack slot numbers, indices into

the function or constant table, etc.

Opcode

Example: The GET_CONST2 instruction

Reg # CONSTANT

Virtual Machines and Interpretation Techniques 12

Components of Virtual Machine Implementations

• Program store (code area)
– Program is a sequence of instructions

– Loader

• State (of execution)
– Stack

– Heap

– Registers
• Special register (program counter) pointing to the next
instruction to be executed

• Runtime system component
– Memory allocator

– Garbage collector

3

Virtual Machines and Interpretation Techniques 13

Basic Structure of a Bytecode Interpreter

byte *pc = &byte_program[0];
whilewhilewhilewhile(TRUE) {

opcode = pc[0];
switchswitchswitchswitch (opcode) {
…
casecasecasecase GET_CONST2:

source_reg_num = pc[1];
const_num_to_match = get_2_bytes(&pc[2]);
… // get_const2 code
pc += 4;
breakbreakbreakbreak;

…
casecasecasecase JUMP:

jump_addr = get_4_bytes(&pc[1]);
pc = &byte_program[jump_addr];
breakbreakbreakbreak;

…
}

}

Virtual Machines and Interpretation Techniques 14

To align or to not align VM instructions?

Opcode

Jump Address

Opcode

Jump AddressUnused Bytes

NOTE: Padding of instructions can be done by the loader.

The size of the bytecode files need not be affected.

On a 32-bit machine

Virtual Machines and Interpretation Techniques 15

Bytecode Interpreter with Aligned Instructions

byte *pc = &byte_program[0];
whilewhilewhilewhile(TRUE) {

opcode = pc[0];
switchswitchswitchswitch (opcode) {
…
casecasecasecase GET_CONST2:

source_reg_num = pc[1];
const_num_to_match = get_2_bytes(&pc[2]);
… // get_const2 code
pc += 4;
breakbreakbreakbreak;

…
casecasecasecase JUMP: // aligned version

jump_addr = get_4_bytes(&pc[4]);
pc = &byte_program[jump_addr];
breakbreakbreakbreak;

…
}

}

Virtual Machines and Interpretation Techniques 16

Interpreter with Abstracted Instruction Encoding

byte *pc = &byte_program[0];
whilewhilewhilewhile(TRUE) {

opcode = pc[0];
switchswitchswitchswitch (opcode) {
…
casecasecasecase GET_CONST2:

source_reg_num = pc[GET_CONST2_ARG1];
const_num_to_match = get_2_bytes(&pc[GET_CONST2_ARG2]);
… // get_const2 code
pc += GET_CONST2_SIZEOF;
breakbreakbreakbreak;

…
casecasecasecase JUMP: // aligned version

jump_addr = get_4_bytes(&pc[JUMP_ARG1]);
pc = &byte_program[jump_addr];
breakbreakbreakbreak;

…
}

}

#define#define#define#define GET_CONST2_SIZEOF 4
#define#define#define#define JUMP_SIZEOF 8
#define#define#define#define GET_CONST2_ARG1 1
#define#define#define#define GET_CONST2_ARG2 2
#define#define#define#define JUMP_ARG1 4

Virtual Machines and Interpretation Techniques 17

Interpreter with Abstracted Control

byte *pc = &byte_program[0];
whilewhilewhilewhile(TRUE) {
next_instruction:

opcode = pc[0];
switchswitchswitchswitch (opcode) {
…
casecasecasecase GET_CONST2:

source_reg_num = pc[GET_CONST2_ARG1];
const_num_to_match = get_2_bytes(&pc[GET_CONST2_ARG2]);

… // get_const2 code
pc += GET_CONST2_SIZEOF;
NEXT_INSTRUCTION;

…
casecasecasecase JUMP: // aligned version

jump_addr = get_4_bytes(&pc[JUMP_ARG1]);
pc = &byte_program[jump_addr];
NEXT_INSTRUCTION;

…
}

}

#define#define#define#define NEXT_INSTRUCTION \
gotogotogotogoto next_instruction

Virtual Machines and Interpretation Techniques 18

Indirectly Threaded Interpreters

• In an indirectly threaded interpreter we do not switch on the

opcode encoding. Instead we use the bytecodes as indices into a

table containing the addresses of the VM instruction

implementations

• The term threaded code refers to a code representation where

every instruction is implicitly a function call to the next

instruction

• A threaded interpreter can be very efficiently implemented in

assembly

• In GNU CC, we can use the labels as values C language extension

and take the address of a label with &&labelname

• We can actually write the interpreter in such a way that it uses

indirectly threaded code if compiled with GNU CC and a switch

for compatibility

4

Virtual Machines and Interpretation Techniques 19

Structure of Indirectly Threaded Interpreter

byte *pc = &byte_program[0];
whilewhilewhilewhile(TRUE) {
next_instruction:

opcode = pc[0];
switchswitchswitchswitch (opcode) {
…
casecasecasecase GET_CONST2:
get_const2_label:

source_reg_num = pc[GET_CONST2_ARG1];
const_num_to_match = get_2_bytes(&pc[GET_CONST2_ARG2]);
… // get_const2 code
pc += GET_CONST2_SIZEOF;
NEXT_INSTRUCTION;

…
casecasecasecase JUMP: // aligned version
jump_label:

jump_addr = get_4_bytes(&pc[JUMP_ARG1]);
pc = &byte_program[jump_addr];
NEXT_INSTRUCTION;

…
}

}

staticstaticstaticstatic voidvoidvoidvoid ****label_tab[] {{{{
…
&&get_const2_label;
…
&&jump_label;
…

}}}}
#define#define#define#define NEXT_INSTRUCTION \

gotogotogotogoto **(void **)**(void **)**(void **)**(void **)(label_tab[****pc])

Virtual Machines and Interpretation Techniques 20

Directly Threaded Interpreter

• In a directly threaded interpreter, we do not use the

bytecode instruction encoding at all during runtime

• Instead, the loader replaces each bytecode

instruction encoding (opcode) with the address of the

implementation of the instruction

• This means that we need one word for the opcode,

which slightly increases the VM code size

Virtual Machines and Interpretation Techniques 21

Structure of Directly Threaded Interpreter

byte *pc = &byte_program[0];
whilewhilewhilewhile(TRUE) {
next_instruction:

opcode = pc[0];
switchswitchswitchswitch (opcode) {
…
casecasecasecase GET_CONST2:
get_const2_label:

source_reg_num = pc[GET_CONST2_ARG1];
const_num_to_match = get_2_bytes(&pc[GET_CONST2_ARG2]);
… // get_const2 code
pc += GET_CONST2_SIZEOF;
NEXT_INSTRUCTION;

…
casecasecasecase JUMP: // aligned version
jump_label:

pc = get_4_bytes(&pc[JUMP_ARG1]);
NEXT_INSTRUCTION;

…
}

}

static void *static void *static void *static void *label_tab[] {{{{
…
&&get_const2_label;
…
&&jump_label;
…

}}}}
#define#define#define#define NEXT_INSTRUCTION \

gotogotogotogoto **(void **)**(void **)**(void **)**(void **)(pc)

#define#define#define#define GET_CONST2_SIZEOF 8
#define#define#define#define JUMP_SIZEOF 8
#define#define#define#define GET_CONST2_ARG1 5
#define#define#define#define GET_CONST2_ARG2 6
#define#define#define#define JUMP_ARG1 4

Virtual Machines and Interpretation Techniques 22

Threaded Interpreter with Prefetching

byte *pc = &byte_program[0];
whilewhilewhilewhile(TRUE) {
next_instruction:

opcode = pc[0];
switchswitchswitchswitch (opcode) {
…
casecasecasecase GET_CONST2:
get_const2_label:

source_reg_num = pc[GET_CONST2_ARG1];
const_num_to_match = get_2_bytes(&pc[GET_CONST2_ARG2]);
pc += GET_CONST2_SIZEOF; // prefetching
… // get_const2 code
NEXT_INSTRUCTION;

…
casecasecasecase JUMP: // aligned version
jump_label:

pc = get_4_bytes(&pc[JUMP_ARG1]);
NEXT_INSTRUCTION;

…
}

}

Virtual Machines and Interpretation Techniques 23

Subroutine Threaded Interpreter

• The only portable way to implement a threaded

interpreter in C is to use subroutine threaded code

• Each VM instruction is implemented as a function and

at the end of each instruction the next function is

called

Virtual Machines and Interpretation Techniques 24

Stack-based vs. Register-based VMs

• A VM can either be stack-based or register-based
– In a stack-based machine most operands are (passed) on the

stack. The stack can grow as needed.

– In a register-based machine most operands are passed in
(virtual) registers. The number of registers is limited.

• Most VMs are stack-based
– Stack machines are simpler to implement

– Stack machines are easier to compile to

– Less encoding/decoding to find the right register

– Virtual registers are no faster than stack slots

5

Virtual Machines and Interpretation Techniques 25

Virtual Machine Interpreter Tuning

Common VM interpreter optimizations include:
– Writing the interpreter loop and key instructions in
assembly

– Keeping important VM registers (pc, stack top,
heap top) in hardware registers
• GNU C allows global register variables

– Top of stack caching

– Splitting the most used instruction into a separate
interpreter loop

Virtual Machines and Interpretation Techniques 26

Instruction Merging and Specialization

Instruction Merging: A sequence of VM instructions is
replaced by a single (mega-)instruction
– Reduces interpretation overhead

– Code locality is enhanced

– Results in more compact bytecode

– C compiler has bigger basic blocks to perform optimizations on

Instruction Specialization: A special case of a VM
instruction is created, typically one where some
arguments have a known value which is hard-coded
– Eliminates the cost of argument decoding

– Results in more compact bytecode representation

– Reduces the register pressure from some basic blocks

