Virtual Machines and
Interpretation Techniques

Kostis Sagonas
kostis@it.uu.se

Virtual Machines

Virtual machines (VMs) provide an intermediate stage for
the compilation of programming languages

* VMs are machines because they permit a step-by-step
execution of programs
+ VMs are virtual (abstract) because typically they

- are not implemented in hardware
- omit many details of real (hardware) machines

+ VMs are tailored to the particular operations required
to implement a particular (class of) source language(s)

2

Virtual Machines and Interpretation Techniques

Virtual Machines: Pros

Virtual Machines: Cons

Bridge the gap between the high level of a programming language
and the low level of a real machine.

Require less implementation effort

Easier to experiment and modify (crucial for new PLs)

Portability is enhanced
- VM interpreters are typically implemented in C
- VM code can be transferred over the net and run in most machines
- VM code is (of ten significantly) smaller than object code

Easier to be formally proven correct
Various safety features of VM code can be verified

Profiling and debugging are easier to implement

Virtual Machines and Interpretation Techniques

+ Inferior performance of VM interpreters compared
with a native code compiler for the same language
- Overhead of interpretation

- Significantly more difficult fo take advantage of modern
hardware features (e.g. hardware-based branch prediction)

Virtual Machines and Interpretation Techniques

Some History of VM Development

VMs have been built and studied since the late 1950's

The first Lisp implementations (1958) used virtual machines with
garbage collection, sandboxing, reflection, and an interactive
shell

Forth (early 70's) used a very small and easy to implement VM
with high level of reflection

Smalltalk (late 70's) allowed changing code on the fly (first truly
interactive OO system)

USCD Pascal (late 70's) popularized the idea of using pseudocode
to improve portability

Self (late 80's), a language with a Smalltalk flavor, had an
implementation that pushed the limits of VM

Java (early 90s) made VMs popular and well known

Virtual Machines and Interpretation Techniques

VM Design Choices

Some design choices are similar to the choices when designing
the intermediate code format of a compiler:
- Should the machine be used on several different physical
architectures and operating systems? (JVM)
- Should the machine be used for several different source languages?
(CLI/CLR (.NET))
+ Some other design choices are similar to those of the compiler

backend:
- Isperformance more important than portability?
- Isreliability more important than performance?
- Is(smaller) code size more important than performance?
And some design choices are similar to those in an OS:
- How to implement memory management, concurrency, exceptions,

- Islow memory consumption, scalability, or security more important
than performance?

Virtual Machines and Interpretation Techniques

VM Components

+ The components of a VM vary depending on several

factors:

- Is the language (environment) interactive?

- Does the language support reflection and or dynamic loading?
- Is performance paramount?

- Ts concurrency support required?

- Is sandboxing required?

(In this lecture we will only talk about the interpreter of the VM.)

Virtual Machines and Interpretation Techniques 7

VM Implementation

+ Virtual machines are usually written in “portable”
programming languages such as C or C++.

+ For performance critical components, assembly
language is of ten used.

+ VMs for some languages (Lisp, Forth, Smalltalk) are
largely written in the language itself.

* Many VMs are written specifically for GNU CC, for
reasons that will become apparent in later slides.

Virtual Machines and Interpretation Techniques 8

Forms of Interpreters

+ Programming language implementations often use two

distinct kinds of interpreters:

- Command-line interpreter
+ Reads and parses language constructs in source form
+ Used in interactive systems

- Virtual machine instruction interpreter

* Reads and executes instructions in some intermediate form such
as VM bytecode

Virtual Machines and Interpretation Techniques 9

Implementation of Interpreters

There are various ways to implement interpreters:
1. Direct string interpretation

Source level interpreters are very slow because they
spend much of their time in doing lexical analysis

2. Compilation into a (typically abstract syntax) tree and
interpretation of that tree

Such interpreters avoid lexical analysis costs, but they still have
to do much list scanning (e.g. when implementing a ‘goto’ or ‘call’)

3. Compilation into a virtual machine and interpretation
of the VM code

Virtual Machines and Interpretation Techniques 10

Virtual Machine Instruction Interpreters

+ By compiling the program to the instruction set of a
virtual machine and adding a table that maps names
and labels to addresses in this program, some of the
interpretation overhead can be reduced

+ For convenience, most VM instruction sets use

integral numbers of bytes to represent everything

- opcodes, register numbers, stack slot numbers, indices into
the function or constant table, etc.

CON+ANT

Example: The GET_CONST?Z instruction

Opcode | Reg#

Virtual Machines and Interpretation Techniques 11

Components of Virtual Machine Implementations

* Program store (code area)
- Program is a sequence of instructions
- Loader

- State (of execution)
- Stack
- Heap
- Registers
+ Special register (program counter) pointing to the next
instruction to be executed
* Runtime system component
- Memory allocator
- Garbage collector

Virtual Machines and Interpretation Techniques 12

Basic Structure of a Bytecode Interpreter

byte *pc = &byte_program[0];
while(TRUE) {

opcode = pc[0];

switch (opcode) {

case GET_CONST2:
source_reg_num = pc[1];
const_num_to_match = get_2_bytes(&pc[2]);
.. // get_const2 code
pc += 4;
break;

case JUMP:
jump_addr = get_4_bytes(&pc[1]);
pc = &byte_program[jump_addr];
break;

-
]

Virtual Machines and Interpretation Techniques 13

To align or to not align VM instructions?

On a 32-bit machine

Opcode

Jump Address

Unused Bytes

Opcode

Jump Address

NOTE: Padding of instructions can be done by the loader.
The size of the bytecode files need not be affected.

Virtual Machines and Interpretation Techniques 14

Bytecode Interpreter with Aligned Instructions

byte *pc = &byte_program[0];
while(TRUE) {

opcode = pc[0];

switch (opcode) {

case GET_CONST2:
source_reg_num = pc[1];
const_num_to_match = get_2_bytes(&c[2]);
.. // get_const2 code
pc += 4;
break;

case JUMP: // aligned version
jump_addr = get_4_bytes(&pc[4]);
pc = &byte_program[jump_addr];
break;

=
3

Virtual Machines and Interpretation Techniques 15

Interpreter with Abstracted Instruction Encoding

byte *pc = &byte_program[0];
while(TRUE) {

opcode = pc[0];

switch (opcode) {

#define GET_CONST2_SIZEOF 4
#define JUMP_SIZEOF 8
#define GET_CONST2_ARGL 1
#define GET_CONST2_ARG2 2
#define JUMP_ARGL 4

case GET_CONST2:
source_reg_num = pc[GET_CONST2_ARG1];
const_num_to_match = get_2_bytes(&pc[GET_CONST2_ARG2]);
.. // get_const2 code
pc += GET_CONST2_SIZEOF;
break;

case JUMP: // aligned version
jump_addr = get_4_bytes(&pc[IJUMP_ARGL]);
pc = &byte_program[jump_addr];
break;

Virtual Machines and Interpretation Techniques 16

Interpreter with Abstracted Control

byte *pc = &byte_program[0];

while(TRUE) { #define NEXT_INSTRUCTION \

next_instruction: goto next_instruction
opcode = pc[0];
switch (opcode) {

case GET_CONST2:
source_reg_num = pc[GET_CONST2_ARG1];
const_num_to_match = get_2_bytes (& C[GET_CONST2_ARG2]);
.. // get_const2 code
pc += GET_CONST2_SIZEOF;
NEXT_INSTRUCTION;

case JumMP: // aligned version
jump_addr = get_4_bytes(&pc[IUMP_ARGL]);
pc = &byte_program[jump_addr];
NEXT_INSTRUCTION;

Virtual Machines and Interpretation Techniques 17

Indirectly Threaded Interpreters

Inan indirectly threaded interpreter we do not switch on the
opcode encoding. Instead we use the bytecodes as indices into a
table containing the addresses of the VM instruction
implementations

The term threaded code refers to a code representation where
every instruction is implicitly a function call to the next
instruction

A threaded inferpreter can be very efficiently implemented in
assembly

In GNU CC, we can use the labels as values C language extension
and take the address of a label with &&labelname

We can actually write the interpreter in such a way that it uses
indirectly threaded code if compiled with GNU CC and a switch
for comBaTibili

Virtual Machines and Intérpretation Techniques 18

Structure of Indirectly Threaded Interpreter

byte *pc = &byte_program[0]; static void *label_tab[] {
while(TRUE) { I
next_instruction:
opcode = pc[0]; &&jump_label;
switch (opcode) {

g&qot,ronst 2_label;

s
ase GET_CONST2: #define NEXT_INSTRUCTION \

get_const2_label: goto **(void **)(1abel_tab[*pc])

source_reg_num = pc[GET_CONST2_ARG1]
const_num_to_match = get_2_bytes (& c[GET_CONST2_ARG2]);
.. // get_const2 code

pC += GET_CONST2_SIZEOF;

NEXT_INSTRUCTION;

case Jump: // aligned version

jump_label:
jump_addr = get_4_bytes(&c[IUMP_ARGL]);
pc = &byte_program[jump_addr];
NEXT_INSTRUCTION;

Virtual Machines and Interpretation Techniques 19

Directly Threaded Interpreter

+ Inadirectly threaded interpreter, we do not use the
bytecode instruction encoding at all during runtime

- Instead, the loader replaces each bytecode
instruction encoding (opcode) with the address of the
implementation of the instruction

+ This means that we need one word for the opcode,
which slightly increases the VM code size

Virtual Machines and Interpretation Techniques 20

Structure of Directly Threaded Interpreter

Threaded Interpreter with Prefetching

byte *pc = &byte_program[0]; = id *1abel _tab
while(TRUE) { static void *label_tab[] {

next_instruction: &&get_const2_Tlabel;

opcode = pc[0]; &&jump_Tlabel;
switch (opcode) {

}
#define NEXT_INSTRUCTION \

case GET_CONST2: goto **(void **)(pc)

get_const2_label:

source_reg_num = pc[GET_CONST2_ARG1]
const_num_to_match = get_2_bytes (& c[GET_CONST2_ARG2]);
.. // get_const2 code

pc += GET_CONST2_SIZEOF;

NEXT_INSTRUCTION;

case JumMP: // aligned version

jump_label: #define GET_CONST2_SIZEOF 8
pc = get_4_bytes(&c[IUMP_ARG1]); | #define JUMP_SIZEOF 8
NEXT_INSTRUCTION; #define GET_CONST2_ARGL 5
i #define GET_CONST2_ARG2 6
3} #define JUMP_ARGL 4

byte *pc = &byte_program[0];
while(TRUE) {
next_instruction:

opcode = pc[0];

switch (opcode) {

case GET_CONST2:

get_const2_label:
source_reg_num = pc[GET_CONST2_ARG1];
const_num_to_match = get_2_bytes (& c[GET_CONST2_ARG2]);
pc += GET_CONST2_SIZEOF; // prefetching
.. // get_const2 code
NEXT_INSTRUCTION;

case JuMP: // aligned version
jump_label:
pc = get_4_bytes(&pc[JUMP_ARG1]);
NEXT_INSTRUCTION;

Virtual Machines and Interpretation Techniques 21

Virtual Machines and Interpretation Techniques 22

Subroutine Threaded Interpreter

+ The only portable way to implement a threaded
interpreter in C is to use subroutine threaded code

+ Each VM instruction is implemented as a function and
at the end of each instruction the next function is
called

Virtual Machines and Interpretation Techniques 23

Stack-based vs. Register-based VMs

* A VM can either be stack-based or register-based

- Ina stack-based machine most operands are (passed) on the
stack. The stack can grow as needed.

- Inaregister-based machine most operands are passed in
(virtual) registers. The number of registers is limited.
* Most VMs are stack-based
- Stack machines are simpler to implement
- Stack machines are easier to compile to
- Less encoding/decoding to find the right register
- Virtual registers are no faster than stack slots

Virtual Machines and Interpretation Techniques 24

Virtual Machine Interpreter Tuning

Common VM interpreter optimizations include:

- Writing the interpreter loop and key instructions in
assembly

- Keeping important VM registers (pc, stack top,
heap top) in hardware registers

+ GNU C allows global register variables

- Top of stack caching

- Splitting the most used instruction into a separate
interpreter loop

Virtual Machines and Interpretation Techniques 25

Instruction Merging and Specialization

Instruction Merging: A sequence of VM instructions is
replaced by a single (mega-)instruction
- Reduces interpretation overhead
- Code locality is enhanced
- Results in more compact bytecode
- C compiler has bigger basic blocks to perform optimizations on

Instruction Specialization: A special case of a VM
instruction is created, typically one where some
arguments have a known value which is hard-coded

- Eliminates the cost of argument decoding
- Results in more compact bytecode representation
- Reduces the register pressure from some basic blocks

Virtual Machines and Interpretation Techniques 26

