
Type Checking

Compiler Design I (2011) 2

Outline

•

General properties of type systems

•

Types in programming languages

•

Notation for type rules
–

Logical rules of inference

•

Common type rules

Compiler Design I (2011) 3

Static Checking

•

Refers to the compile-time checking of
programs in order to ensure that the semantic
conditions of the language are being followed

Examples of static checks include:
–

Type checks

–

Flow-of-control checks
–

Uniqueness checks

–

Name-related checks

Compiler Design I (2011) 4

Static Checking (Cont.)

Flow-of-control checks: statements that cause flow of
control to leave a construct must have some place
where control can be transferred;
e.g., break statements in C

Uniqueness checks: a language may dictate that in some
contexts, an entity can be defined exactly once;
e.g., identifier declarations, labels, values in case
expressions

Name-related checks: Sometimes the same name must
appear two or more times;
e.g., in Ada

a loop or block can have a name that must then

appear both at the beginning and at the end

Compiler Design I (2011) 5

Types and Type Checking

•

A type is a set of values together with a set
of operations that can be performed on them

•

The purpose of type checking is to verify that
operations performed on a value are in fact
permissible

•

The type of an identifier is typically available
from declarations, but we may have to keep
track of the type of intermediate expressions

Compiler Design I (2011) 6

Type Expressions and Type Constructors

A language usually provides a set of base types
that it supports together with ways to
construct other types using type constructors

Through type expressions we are able to
represent types that are defined in a program

Compiler Design I (2011) 7

Type Expressions

•

A base type is a type expression
•

A type name (e.g., a record name) is a type expression

•

A type constructor applied to type expressions is a
type expression. E.g.,
–

arrays:

If T is a type expression and I is a range of

integers, then array(I,T)

is a type expression
–

records:

If T1, …, Tn

are type expressions and f1, …, fn

are field names, then record((f1,T1),…,(fn,Tn))

is a type
expression

–

pointers:

If T is a type expression, then pointer(T)

is a
type expression

–

functions:

If T1, …, Tn, and T are type expressions, then
so is (T1,…,Tn) →T

Compiler Design I (2011) 8

Notions of Type Equivalence

Name equivalence: In many languages, e.g. Pascal,
types can be given names. Name equivalence
views each distinct name as a distinct type.
So, two type expressions are name equivalent
if and only if they are identical.

Structural equivalence: Two expressions are
structurally equivalent if and only if they have
the same structure; i.e., if they are formed by
applying the same constructor to structurally
equivalent type expressions.

Compiler Design I (2011) 9

Example of Type Equivalence

In the Pascal fragment

type nextptr = ^node;
prevptr = ^node;

var p : nextptr;
q : prevptr;

p is not name equivalent to q,
but p and q are structurally equivalent.

Compiler Design I (2011) 10

Static Type Systems & their Expressiveness

•

A static type system enables a compiler to
detect many common programming errors

•

The cost is that some correct programs are
disallowed
–

Some argue for dynamic type checking instead

–

Others argue for more expressive static type
checking

•

But more expressive type systems are also
more complex

Compiler Design I (2011) 11

Compile-time Representation of Types

•

Need to represent type expressions in a way that
is both easy to construct and easy to check

Approach 1: Type Graphs
–

Basic types can have predefined “internal values”,
e.g., small integer values

–

Named types can be represented using a pointer
into a hash table

–

Composite type expressions: the node for f(T1,…,Tn)
contains a value representing the type constructor

f,

and

pointers to

the nodes for the expressions

T1,…,Tn

Compiler Design I (2011) 12

Compile-time Representation of Types (Cont.)

Example:
var x, y : array[1..42] of integer;

name

type
...

name

type
...

x

y
integer

type

elem type

dimensions
bounds

array
1

1
42

Compiler Design I (2011) 13

Compile-Time Representation of Types

Approach 2: Type Encodings
Basic types use a predefined encoding of the low-order bits

BASIC TYPE ENCODING
boolean 0000
char 0001
integer 0002

The encoding of a type expression op(T)

is obtained by
concatenating the bits encoding op

to the left of the

encoding of T. E.g.:
TYPE EXPRESSION

ENCODING

char 00 00 00 0001
array(char) 00 00 01 0001

ptr(array(char)) 00 10 01 0001
ptr(ptr(array(char))) 10 10 01 0001

Compiler Design I (2011) 14

Compile-Time Representation of Types: Notes

•

Type encodings are simple and efficient
•

On the other hand, named types and type
constructors that take more than one type
expression as argument are hard to represent
as encodings. Also, recursive types cannot be
represented directly.

•

Recursive types (e.g. lists, trees) are not a
problem for type graphs: the graph simply
contains a cycle

Compiler Design I (2011) 15

Types in an Example Programming Language

•

Let’s assume that types are:
–

integers & floats (base types)

–

arrays of a base type
–

booleans

(used in conditional expressions)

•

The user declares types for all identifiers

•

The compiler infers types for expressions
–

Infers a type for every expression

Compiler Design I (2011) 16

Type Checking and Type Inference

Type Checking is the process of verifying fully
typed programs

Type Inference is the process of filling in
missing type information

•

The two are different, but are often used
interchangeably

Compiler Design I (2011) 17

Rules of Inference

•

We have seen two examples of formal notation
specifying parts of a compiler
–

Regular expressions (for the lexer)

–

Context-free grammars (for the parser)

•

The appropriate formalism for type checking
is logical rules of inference

Compiler Design I (2011) 18

Why Rules of Inference?

•

Inference rules have the form
If Hypothesis is true, then Conclusion is true

•

Type checking computes via reasoning
If E1 and E2 have certain types,

then E3

has a certain type

•

Rules of inference are a compact notation for
“If-Then”

statements

Compiler Design I (2011) 19

From English to an Inference Rule

•

The notation is easy to read (with practice)

•

Start with a simplified system and gradually
add features

•

Building blocks
–

Symbol ∧

is “and”

–

Symbol

⇒ is “if-then”
–

x:T

is “x

has type

T”

Compiler Design I (2011) 20

From English to an Inference Rule (2)

If e1

has type int

and e2

has type int,
then e1

+ e2

has type int

(e1

has type int

∧

e2

has type int)

⇒
 e1

+ e2

has type int

(e1

: int

∧

e2

: int) ⇒

e1

+ e2

: int

Compiler Design I (2011) 21

From English to an Inference Rule (3)

The statement
(e1

: int

∧

e2

: int) ⇒

e1

+ e2

: int
is a special case of

Hypothesis1

∧

. . . ∧

Hypothesisn

⇒ Conclusion

This is an inference rule

Compiler Design I (2011) 22

Notation for Inference Rules

•

By tradition inference rules are written

•

Type rules have hypotheses and conclusions of
the form:

├

e : T
• ├

means “it is provable that . . .”

├

Hypothesis1

…

├

Hypothesisn

├

Conclusion

Compiler Design I (2011) 23

Two Rules

i is an integer
├

i : int

[Int]

├

e1

: int
├

e2

: int
├

e1

+ e2

: int
[Add]

Compiler Design I (2011) 24

Two Rules (Cont.)

•

These rules give templates describing how to
type integers and + expressions

•

By filling in the templates, we can produce
complete typings

for expressions

Compiler Design I (2011) 25

Example: 1 + 2

├

1 : int
1 is an integer 2 is an integer

├

1 + 2 : int
├

2 : int

Compiler Design I (2011) 26

Soundness

•

A type system is sound if
–

Whenever ├

e : T

–

Then e

evaluates to a value of type T

•

We only want sound rules
–

But some sound rules are better than others:

i is an integer
├

i : number

Compiler Design I (2011) 27

Type Checking Proofs

•

Type checking proves facts e: T
–

Proof is on the structure of the AST

–

Proof has the shape of the AST
–

One type rule is used for each kind of AST node

•

In the type rule used for a node e:
–

Hypotheses are the proofs of types of e’s

 subexpressions
–

Conclusion is the type of e

•

Types are computed in a bottom-up pass over
the AST

Compiler Design I (2011) 28

Rules for Constants

├

false : bool
[Bool]

f is a floating point number
├

f : float

[Float]

Compiler Design I (2011) 29

Two More Rules

├

e : bool
├

not e : bool

[Not]

├

e1

: bool
├

e2

: T
├

while e1

do e2

: T
[While]

Compiler Design I (2011) 30

A Problem

•

What is the type of a variable reference?

•

The local, structural rule does not carry
enough information to give x

a type

x is an identifier
├

x : ?

[Var]

Compiler Design I (2011) 31

A Solution

•

Put more information in the rules!

•

A type environment gives types for free
 variables

–

A type environment is a function from Identifiers
to Types

–

A variable is free in an expression if it is not
defined within the expression

Compiler Design I (2011) 32

Type Environments

Let E be a function from Identifiers

to Types

The sentence E ├

e : T

is read: Under the assumption that variables
have the types given by E, it is provable that
the expression e

has the type

T

Compiler Design I (2011) 33

Modified Rules

The type environment is added to the earlier
rules:

i is an integer
E

├

i : int

[Int]

E

├

e1

: int
E

├

e2

: int
E

├

e1

+ e2

: int
[Add]

Compiler Design I (2011) 34

New Rules

And we can write new rules:

E(x) = T
E

├

x : T

[Var]

Compiler Design I (2011) 35

Type Checking of Expressions

Production Semantic Rules
E id { if (declared(id.name)) then

 E.type := lookup(id.name).type
else E.type := error(); }

E int { E.type := integer; }

E E1 + E2 { if (E1.type == integer AND
 E2.type == integer) then
 E.type := integer;
else E.type := error(); }

Compiler Design I (2011) 36

Type Checking of Expressions (Cont.)

May have automatic type coercion, e.g.

E1.type E2.type E.type
integer integer integer
integer float float
float integer float
float float float

Compiler Design I (2011) 37

Type Checking of Statements: Assignment

Semantic Rules:
S →

Lval

:= Rval

{check_types(Lval.type,Rval.type)}

Note that in general Lval

can be a variable or it may be a
more complicated expression, e.g., a dereferenced

 pointer, an array element, a record field, etc.
Type checking involves ensuring that:

–

Lval

is a type that can be assigned to,
e.g. it is not a function or a procedure

–

the types of Lval

and Rval

are “compatible”,
i.e, that the language rules provide for coercion of the
type of Rval

to the type of Lval

Compiler Design I (2011) 38

Type Checking of Statements: Loops, Conditionals

Semantic Rules:
Loop →

while E do S

{check_types(E.type,bool)}

Cond

→

if E then S1 else S2
{check_types(E.type,bool)}

