
An On-the-Fly Reference Counting Garbage Collector for Java

Yossi Levanoni
∗

Microsoft Corporation
One Microsoft Way

Redmond, WA 98052
USA

ylevanon@microsoft.com

Erez Petrank
†

Dept. of Computer Science
Technion ­ Israel Institute of Technology

Haifa 32000
Israel

erez@cs.technion.ac.il

ABSTRACT
Reference counting is not naturally suitable for running on
multiprocessors. The update of pointers and reference counts
requires atomic and synchronized operations. We present a
novel reference counting algorithm suitable for a multipro-
cessor that does not require any synchronized operation in
its write barrier (not even a compare-and-swap type of syn-
chronization). The algorithm is efficient and may compete
with any tracing algorithm.

We have implemented our algorithm on SUN’s Java Virtual
Machine 1.2.2 and ran it on a 4-way IBM Netfinity 8500R
server with 550MHz Intel Pentium III Xeon and 2GB of
physical memory. It turns out that our algorithm has an
extremely low latency and throughput that is comparable
to the mark and sweep algorithm used in the original JVM.
Keywords: Runtime systems, Memory management, Garbage
collection, Reference counting.

1. INTRODUCTION
Automatic memory management is well acknowledged as an
important tool for a fast development of large reliable soft-
ware. It turns out that the garbage collection process has an
important impact on the overall runtime performance. The
amount of time it takes to handle allocation and reclamation
of memory spaces may reach as high as 30% of the overall
running time for realistic benchmarks. Thus, a clever design
of efficient memory management and garbage collector is an
important goal in today’s technology.

∗Most of this work was done while the author was at the
Dept. of Computer Science, Technion - Israel Institute of
Technology, Haifa 32000, Israel.
†This research was supported by the Coleman Cohen Aca-
demic Lecturship Fund and by the Technion V.P.R. Fund -
Steiner Research Fund.

1.1 Automatic memory management on a mul­
tiprocessor

In this work, we concentrate on garbage collection for multi-
processor machines. Multiprocessor platforms have become
quite standard for server machines and are also beginning
to gain popularity as high performance desktop machines.
Many well studied garbage collection algorithms are not
suitable for a multiprocessor. In particular, many collectors
(mmong them the collector supplied with Javasoft’s Java
Virtual Machine) run on a single thread after all program
threads have all been stopped (the so-called stop-the-world
concept). This causes bad processor utilization, and hinders
scalability.

In order to make better use of a multiprocessor, concurrent
collectors have been presented and studied (see for exam-
ple, [6, 37, 17, 3, 13, 14, 8, 19, 31, 18, 34]). A concurrent
collector is a collector that does most of its collection work
concurrently with the program without stopping the pro-
gram threads. Most of the concurrent collectors need to
stop all program threads at some point during the collec-
tion, in order to initiate and/or finish the collection, but the
time the mutators must be in a halt is short.

Stopping all the threads for the collection is an expensive
operation by itself. Usually, the program threads cannot be
stopped at any point. Rather, they should be stopped at
safe points at which the collector can safely determine the
reachability graph and properly reclaim unreachable objects.
Thus, each thread must wait until the last of all threads
cooperate and come to a halt. This hinders the scalability of
the system, as the more threads there are the more delay the
system suffers. Furthermore, if the collector is not running
in parallel (which is usually the case), then during the time
the program threads are stopped, only one of the processors
is utilized.

Therefore, it is advantageous to use on-the-fly collectors [17,
19, 18]. On-the-fly collectors never stop the program threads
simultaneously. Instead, each thread cooperates with the
collector at its own pace through a mechanism called (soft)
handshakes.

We remark that another alternative for an adequate garbage
collection on a multiprocessor is to perform the collection in
parallel (see for example [25, 12, 30, 26, 21, 28]). We do not

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
OOPSLA 01 Tampa Florida USA
Copyright ACM 2001 1-58113-335-9/01/10…$5.00

367

explore this avenue further in this work.

1.2 Reference counting on a multiprocessor
Reference counting is a most intuitive method for automatic
storage management. As such, systems using reference count-
ing were implemented starting from the sixties (c.f. [11].)
The main idea is that we keep for each object a count of
the number of references that reference the object. When
this number becomes zero for an object o, we know that o
can be reclaimed. At that point, o is added to the free list
and the counters of all its predecessors (i.e., the objects that
are referenced by the object o) are decremented, initiating
perhaps more reclamations.

Reference counting seems very promising to future garbage
collected systems. Especially with the spread of the 64 bit
architectures and the increase in usage of very large heaps.
Tracing collectors must traverse all live objects, and thus,
the bigger the usage of the heap (i.e., the amount of live
objects in the heap), the more work the collector must per-
form. Reference counting is different. The amount of work
is proportional to the amount of work done by the user pro-
gram between collections plus the amount of space that is
actually reclaimed. But it does not depend on the space
consumed by live objects in the heap.

The study and use of reference counting on a multiproces-
sor has not been as extensive and thorough as the study
of concurrent and parallel tracing collectors. The reason is
that reference counting has a seemingly inherent problem
with respect to concurrency: the update of the reference
counts must be atomic since they are being updated by all
program threads. Furthermore, when updating a pointer,
a thread must know the previous value of the pointer-slot
being updated, in spite of many such writes occuring in par-
allel. Otherwise, a confusion occurs in the bookkeeping of
the reference counts. Thus, the naive solution requires a lock
on any update operation. More advanced solutions have re-
cently reduced this overhead to a compare-and-swap opera-
tion, which is still a time consuming write-barrier.

1.3 This work
In this work, we present a new on-the-fly reference counting
garbage collector with extremely fine synchronization. In
particular, we avoid any synchronization in the write bar-
rier. We proceed with an overview on the novel ideas in
our algorithm, with which we could obtain this advantage.
A detailed precise description of these ideas is given in the
rest of the paper.

Our algorithm, following Deutsch and Bobrow’s Deferred
Reference Counting [15], does not keep account of changes
to local pointers (in stack and registers) since keeping this
account is too expensive. Instead, it only keeps account of
pointers in the heap (denoted heap reference count). Once in
a while (when garbage collection is required), the collector
inspects all objects with heap reference count zero. Those
not referenced by the roots may be reclaimed. Our first ob-
servation is that many more updates of the reference counts
are redundant and may be avoided. Consider a pointer slot
that, between two garbage collections is assigned the values

o0, o1, o2, . . . , on for objects o0, . . . , on in the heap. There
are 2n updates of reference counts made for these assign-
ments: RC(o0)- -, RC(o1)++, RC(o1)- -, RC(o2)++, . . . ,
RC(on)++. However, only two are required: RC(o0)- - and
RC(on)++. Building on this observation, we note that in
order to update all reference counts of all objects before a
garbage collection, it is enough to know which pointer slots
have been modified between the collections, and for each
such slot, we must be able to tell what its value in the pre-
vious garbage collection was, and what its current value is.

In our algorithm, we keep a record of all pointer slots that
have been modified. We also keep the “old” value that ex-
isted in the slot before it was first modified. It may seem
that we have a problem to obtain this value in a concurrent
setting, and indeed, special care must be used to make sure
that this value is properly registered. However, we do that
without any synchronization operation. We denote the al-
gorithm resulting from the discussion so far as the snapshot
algorithm. The exact details of the snapshot algorithm are
presented in Section 3 below.

Next, we look at the collection itself. The naive implemen-
tation of the above approach is to stop all the threads and
read the values currently kept in all modified slots. This
translates to taking a snapshot of the heap (or only a snap-
shot of the interesting fields in the heap). Such an approach
does not allow full concurrency of the collector (it is not on-
the-fly), although it is sound. In order to make the collector
on-the-fly, we borrow ideas from the world of distributed
computing. When taking a snapshot in a distributed en-
vironment, one does not stop all the computers over the
distributed environment. Instead, one takes a snapshot of
each computer at a time, but as the snapshots are being
recorded, special care is taken to avoid confusion due to the
non-instantaneous view. For example, all messages between
computers are recorded as well. In our case, we will use a
similar solution. We will take a non-instantaneous view of
the interesting pointer slots in the heap, but while checking
these slots, we will use a special mechanism to avoid confu-
sion. We denote this view of the heap the sliding view. The
sliding view algorithm is briefly described in Section 4. Due
to lack of space, we provide the details of the sliding view
algorithm as well as implementation details, the allocator
mechanism, and a proof of correctness for the algorithm in
the technical report [29].

1.4 Cycle collection
A major disadvantage of reference counting is that it does
not collect cycles. We have chosen to collect cycles with an
on-the-fly mark-and-sweep collector. The Mark-and-sweep
algorithm is run seldom to collect cycles and restore stuck
reference counts. (Like in [35, 43, 39, 9], we use only two
bits for the reference count and thus, stuck counters are
created on the fly, and are restored by the mark-and-sweep
algorithm.)

We use a novel on-the-fly mark-and-sweep collector that
we have designed especially for our reference counting al-
gorithm. Note that it is quite natural to base a mark-and-
sweep collector on a snapshot of the heap. The marking can

368

be done on the snapshot view of the heap, and since unreach-
able objects remain unreachable, changes in the heap do not
foil the collection of garbage. We adapt this basic idea to
the sliding view notion, thus obtaining a tracing collector
perfectly fitting into our setting.

We do not elaborate on the mark-and-sweep collector in this
paper. The algorithm is described in our technical report
[29]. All measurements of throughput and latency in this
paper are reported for the reference count collector run most
of the times and the on-the-fly mark-and-sweep run seldom.

1.5 Memory consistency
The algorithm presented in the paper requires a sequentially
consistent memory. However, three simple modifications can
make the algorithm suitable for platforms that do not pro-
vide sequentially consistent memory. We remark that we
did not encounter problems in the runs we made on the In-
tel platform. We list the modifications required and discuss
their cost in Section 5 below.

1.6 Implementation
We have implemented our algorithm on SUN’s Reference
Release 1.2.2 of the Java Virtual Machine and ran it on
a 4-way IBM Netfinity 8500R server with a 550MHz Intel
Pentium III Xeon processor and 2GB of physical memory.
We used the two standard Java multithreaded benchmarks:
SPECjbb2000 and the mtrt benchmark from SPECjvm98.
These benchmarks are described in detail in SPEC’s Web
site[38]. It turns out that our algorithm has an extremely
low latency. It improves over the original JVM by two or-
ders of magnitude. As for efficiency, the JVM with our ref-
erence counting collector bits the original JVM by up to
10% improvement in the overall running time with the mtrt
benchmark. As for SPECjbb, if we allow a large maximum
heap (which is the target of our collector), then our collector
slightly improves over the running time of the original JVM.
With smaller heaps the original JVM does better than ours
for SPECjbb.

1.7 Results
In Section 6 we report the measurements we ran with our
collector. We note that the throughput is basically the same
as the original tracing collector. For the multithreaded mtrt
benchmark our collector improved the throughput up to a
10% difference in the overall running time. For SPECjbb00
our collector had a throughput similar to the original col-
lector. In terms of latency, we got one of the best reported
results in the literature. The measure we report is the one
reported by SPECjbb00: the maximum time it takes to com-
plete a transaction. It is the same measure that was reported
by Domani et al. [20]. But whereas Domani et al. ran
an IBM JVM with a JIT compiler, our collector gave simi-
lar maximal transaction times (20-120ms depending on the
number of threads) with the assembler loop (and no com-
pilation). Incorporating our collector with a JIT compiler
would no doubt improve the transaction time substantially.
We remark that our result and the result of Domani et al.
are incomparable with those of Bacon et al. [4] since Ba-
con et al. report the exact pause times, measured by the
Jalapeno JVM.

1.8 Related work
The traditional method of reference counting, was first de-
veloped for Lisp by Collins [11]. It was later used in Small
talk-80 [23], the AWK [1] and Perl [40] programs. Im-
provements to the naive algorithm were suggested in sev-
eral subsequent papers. Weizman [41] studied ameliorating
the delay introduced by recursive deletion. Deutsch and
Bobrow [15] eliminated the need for a write barrier on lo-
cal references (in stack and registers). This method was
later adapted for Modula-2+ [13]. Further study on reduc-
ing work for local variables can be found in [7] and [32].
Several works [35, 43, 39, 9] use a single bit for each ref-
erence counter with a mechanism to handle overflows. The
idea being that most objects are singly-referenced, except
for the duration of short transitions.

DeTreville [13] describes a concurrent multiprocessor ref-
erence counting collector for Modula-2+. This algorithm
adapts Deutsch and Bobrow’s ideas of deferred reference
counting and transaction log for a multiprocessor system.
However, the update operation is done inside a critical sec-
tion that uses a single central lock. This implies that only a
single update can occur simultaneously in the system, plac-
ing a hard bound on its scalability.

Plakal and Fischer in [33] propose a collection method based
on reference counting for architectures that support explicit
multi-threading on the processor level. Their method re-
quires co-routine type of cooperation between the program
thread and corresponding ”shadow” collector threads and
therefore is probably not suitable for stock SMPs, as SMP
architectures do not support this kind of interaction in a
natural and efficient manner.

Algorithms that perform garbage collection using a snapshot
of the heap appear in [22, 44]. In terms of synchronization
requirements and characteristics our work is similar to that
of Doligez-Leroy-Gonthier [19, 18] in the sense that we use
only fine synchronization, we never require a full halt of the
system (the mutators are required to cooperate a few times
per collection cycle). In our tracing algorithm we have used
an object sweeping method similar to that presented in [19,
18].

Our garbage collection algorithm builds on a pragmatic con-
cept of an atomic snapshot. The same concept is also a basic
block in other garbage collectors as well as in replication and
checkpoint/restart algorithms. The pragmatism of this ap-
proach is dictated by the design of contemporary multipro-
cessor systems. We would like to also point that there exists
a wide and profound theoretic reseach dealing with concur-
rent wait-free shared memory algorithms that builds on the
snapshot notion. The task in both research fields is com-
mon: obtain a consistent picture of a system taken while
it is conceptually frozen. However, whereas much of the
theoretical work assumes that threads are inherently faulty
(hence these algorithms strive to be wait-free), the practi-
cal approach assumes that threads are not only inherently
reliable, but are also controllable by privilidged roles (e.g.,
the operating system scheduler). Another difference is in the
formulation of the problem–the theoretic community is more

369

interested in the strain of the problem in which there are n
threads, each with a single register to be shared among each
other (a scatter-gather problem). The practical research, on
the other hand, is concentrated on retrieving the value of all
shared memory locations at a given time instance, regard-
less of the number of running threads. For more reading on
related theoretic research, the reader is refered to the work
in [2] which provides an exciting attempt to bridge these
two worlds as well as a comprehensive survery of previous
atomic snapshot research.

1.9 The work of Bacon et al.
Independently of this work, Bacon et al. [4, 5] have built
an on-the-fly reference counting algorithm appropriate for
a multiprocessor. Their work presents a big step towards
making reference counting practical for servers. Since our
work and theirs are closely related (both introduce an on-
the-fly reference counting collector with extremely low pause
times), we would like to elaborate on the relations between
these two collectors.

Reducing synchronization. A naive approach to multi-
processor reference counting requires at least three compare-
and-swaps in the write barrier. One for the update of the
pointer and two for the updates of the two reference count.
DeTreville [13] has used a lock on each update to make sure
that no two pointer updates are executed concurrently. Ba-
con et al. [4] made a significant step into exploiting multi-
processor concurrency by reducing the number of synchro-
nizing operations to a single compare-and-swap. While sig-
nificantly reducing the cost of synchronization, their write
barrier still contains a compare-and-swap for each pointer
update. In our work, using our novel sliding view idea, we
have managed to completely eliminate synchronization in
the write barrier. This major improvement is one of the
more important contributions of this work.

Improving throughput: It is not possible to compare the
throughput of the two collectors since they have been run
on different platforms and compared against different base
JVM’s. Our collector demonstrate a throughput which is
comparable to the original SUN JVM. Bacon et al. [4] report
a reduction of around 10% in the throughput of their JVM
compared to the original Jalapeno JVM.

Improving latency. With respect to pause times, the mea-
sured results provided by Bacon et al. are incomparable
with ours. Bacon et al. used the Jalapeno JVM to mea-
sure the exact pause times. Unfortunately, we did not have
the means to get such a measure, which is provided by the
Jalapeno JVM. Instead, like in [20], we use the report out-
put by the SPECjbb00 benchmark. It reports the maximum
time it takes to complete a transaction. Our results show
excellent latency with respect to previous reports of this
nature. We believe that measuring the maximum time for
a transaction is more meaningful than the shortest garbage
collection pause, because it takes into account the slowdown
imposed by the collector also. E.g., a collector with very
frequent but short pause times might be less good than a
collector with slightly longer but much less frequent pause

times. This is an important issue in concurrent and incre-
mental collection.

Sequential memory consistency vs. floating garbage.
Our algorithm requires sequential memory consistency. How-
ever, as explained in section 5 below, this limitation can be
overcome at a negligible cost. The algorithm in [4] can run
on any platform. But the cost of this robustness is floating
garbage. In their algorithm, an unreachable object cannot
be collected unless it has been unreachable for two consec-
utive collections. Thus, although memory coherence is not
an issue, the drag time of objects [36] increases significantly,
resulting in a substantial amount of floating garbage com-
pared to our collector.

Collecting cycles. Finally, the two papers take different
avenues for collecting cycles. Bacon and Rajan [5] provide
a novel approach for on-the-fly cycle detection. Their algo-
rithm can be run with any algorithm and in particular with
ours, and it demonstrates that the entire collection can be
run with a pure reference counting algorithm. In contrast
to their approach, we have chosen to develop an on-the-
fly mark-and-sweep collector that exploits the sliding view
mechanism and uses the same data structure as the refer-
ence counting algorithm. This mark-and-sweep collector is
run seldom in order to collect cycles and restore stuck ref-
erence counts (see below). Our on-the-fly mark-and-sweep
collector is a stand-alone collector that can be run also with-
out the reference counting algorithm, and is interesting on
its own. It is difficult to compare the efficiency of the two
approaches, and since the algorithm is run seldom, such a
comparison is not so interesting. However, we note that the
use of a tracing collector allows saving space. We use two
bits for the reference counts. Reference counts that exceed
the value of 2, get stuck and are restored by the tracing col-
lector. In Bacon et al., it is necessary to keep the counters
correct, since there is no mechanism to restore corrupted
counts. Thus, more space is used for the counter, and a
cache is used to place objects whose reference counts exceed
the maximum allowed value.

1.10 Organization
In Section 2 we present definitions and terminology to be
used in the rest of the paper. In Section 3 we present our
Snapshot Algorithm. In Section 4 we present the sliding
view algorithm. In Section 5 we discuss adaptation of the
algorithm to platforms that do not provide sequentially con-
sistent memory and in Section 6 we present performance
results. We conclude in 7.

2. SYSTEM MODEL, DEFINITIONS
For an introduction on garbage collection and memory man-
agement the reader is referred to [27]. We assume the reader
is familiar with the concepts such as heap, object, roots,
reachability, etc. Note that in a multithreaded environment
each thread has its own roots on top of the global roots.

Fields in objects in the heap that hold references are called
heap reference slots but most of the time we will just call
them slots. We will count references to objects by summing

370

over all slots in the heap. We will not consider the threads
local stack and registers for the count. We assume all slots
are initialized with a null pointer. We denote the reference
count associated with an object o by o.rc.

Coordination of threads. We assume that the garbage
collector thread may suspend and subsequently resume user
threads. When a thread is suspended, the collector may in-
spect and change its local state with the effects taking place
after the thread is resumed. In our algorithm, we assume
threads are not stopped during execution of protected code.
In particular, in our algorithm, the only pieces of code which
are protected are procedures Update and New, which are
in charge of updating heap-slots and allocating new objects,
respectively.

3. THE SNAPSHOT ALGORITHM
For clarity of presentation, we start with an intermediate al-
gorithm called the snapshot algorithm. Here, we present the
ideas required for an efficient write barrier with no synchro-
nization. In this intermediate algorithm, the threads are
stopped for part of the collection. The length of this pause
is not too long (the bottle neck is clearing a bitmap with
dirty flags for all objects in the heap), but it is long enough
to hinder scalability on a multiprocessor. In Section 4, we
extend this intermediate algorithm making it on-the-fly.

The idea, as presented in Section 1.3, is based on computing
differences between heap snapshots. The algorithm operates
in cycles. A cycle begins with a collection and ends with
another. Let us describe the collector actions during cycle
k (throughout the paper we let the subscript k denote the
number of a garbage collection cycle).

Our first goal is to record all pointer slots in the heap that
have changed since the previous collection cycle k − 1. We
let the mutators do the recording with a write-barrier. In
order to avoid recording slots again and again, we keep a
dirty flag for each such slot. When a mutator updates a
pointer, it checks the dirty bit. If it is clear, the mutator
sets the dirty bit and records the slot’s information into a
local buffer. The recorded information is the address of the
slot and its value before the current modification. Recording
is done in a local buffer with no synchronization.

When a collection begins, the collector starts by stopping all
threads and marking as local all objects referenced directly
by the threads’ stack at the time of the pause. Next, it reads
all the threads’ local buffers (in which modified slots are
recorded), it clears all the dirty bits and it lets the mutators
resume. After the mutators resume, the collector updates
all the heap reference counts to reflect their values at the
time of the pause. (Recall that the heap reference count is
the number of references to the object from other objects in
the heap.) The algorithm for this update is presented and
justified in the remainder of this section. However, assuming
that the heap reference counts are properly updated, the col-
lector may reclaim all objects whose reference counts drop to
zero by this update and are not marked local. As usual, the
reference counts of objects referenced by reclaimed objects
are decremented and the reclamation proceeds recursively.

Procedure New(size: Integer) : Object
begin
1. Obtain an object o from the allocator,

according to the specified size.
// add o to the thread local ZCT.

2. Newi := Newi ∪ {o}
3. return o
end

Figure 1: Mutator Code: for Allocation

Procedure Update(s: Slot, new: Object)
begin
1. local old := read(s)

// was s written to since the last cycle ?
2. if ¬Dirty(s) then

// ... no; keep a record of the old value.
3. Bufferi[CurrPosi] := 〈s, old〉
4. CurrPosi := CurrPosi + 1
5. Dirty(s) := true
6. write(s, new)
end

Figure 2: Mutator Code: Update Operation

A standard zero-count table (ZCT) [15] keeps track of all
objects whose reference count drops to zero at any time.
These objects are candidates for reclamation. We remark
that whenever an object is created it has a zero heap ref-
erence count. Thus, all created objects are put in (a local)
ZCT upon creation. The code for the create routine appears
in Figure 1.

It remains to discuss updating the reference counts accord-
ing to all modified slots between collection k − 1 and k. As
explained in Section 1.3, for each such slot s, we need to
know the object O1 that s pointed to at the pause of collec-
tion k − 1 and the object O2 that s points to at the pause
of collection k. Once these values are known, the collector
decrements the reference count of O1 and increments the
reference count of O2. When this operation is done for all
modified slots, the reference counts are updated and match
the state of the heap at the kth collection pause.

We go on now and describe how to obtain the addresses
of objects O1 and O2. We start with obtaining O1. If no
race occured when the slot s was first modified during this
cycle, then the write barrier recorded the address of O1 in
the local buffer. It is the value that s held before that (first)
modification. But suppose a race did occur between two (or
more) threads trying to modify s. The code of the write
barrier appears in Figure 2. If one of the updating threads
sets the dirty flag of s before any other thread reads the
dirty flag, then only one thread records this address and the
recording will properly reflect the value of s at the k − 1
pause. Otherwise, more than one thread finds the dirty bit
clear. Looking at the code, each thread starts by recording
the old value of the slot, and only then it checks the dirty
bit. On the other hand, the actual update of s occurs after
the dirty bit is set. Thus, if a thread detects a clear dirty
bit, then it is guaranteed, since sequential consistency is
assumed, that the value it records is the value of s before

371

Procedure Collection-Cycle
begin
1. Read-Current-State
2. Update-Reference-Counters
3. Read-Buffers
4. Fix-Undetermined-Slots
5. Reclaim-Garbage
end

Figure 3: Collector Code

any of the threads has modified it. So while several threads
may record the slot s in their buffers, all of them must record
the same (correct) information. To summarize, in case a race
occurs, it is possible that several threads record the slot s
in their local buffers. However, all of them record the same
correct value of s at the k − 1st pause. When collecting
the local buffers from all threads, care is taken to avoid
multiple records of a slot. (For implementation details, see
the technical report [29]). We conclude that the address of
object O1 can be properly obtained.

We now explain how the collector obtains the address of
O2, the object that s references at the pause of collection
k. Note that at the time the collector tries to obtain this
value the threads are already running after the k pause.
The collector starts by reading the current value of s. It
then reads s’s dirty flag. If the flag is clear then s has not
been modified since the pause of collection k and we are
done. If the dirty bit of s is set, then it has been modified.
But if it has been modified, then the value of s at pause
k is currently recorded in one of the threads’ local buffers.
This value can be obtained by searching the local buffers of
all threads. Note that the threads need not be stopped for
peeking at their buffers. We know that this slot has a record
somewhere and it will not be changed until the next (k+ 1)
collection.

The collector operation is given in Figure 3. In Read-
Current-State the collector stops the threads, takes their
buffers, mark objects directly referenced from the roots as
local, takes all local ZCT’s (including records of newly cre-
ated objects), and clears all the dirty marks. The threads
are then resumed. While the threads run, the collector up-
dates the reference counts as much as it can (excluding slots
that were modified since the pause). It then reads the cur-
rent buffers of the threads (without stopping them) to get
information on all slots modified since the last pause, and
finish updating the reference counts. Finally, it (recursively)
reclaims all objects with zero reference count that are not
marked local.

We remark that for the correctness of the algorithm, it is re-
quired that the suspension of all mutators does not interrupt
any of the mutators in the middle of a pointer modification.
We do not elaborate on implementation issues. More discus-
sion of this intermediate algorithm together with full code
is given in the technical report [29]. The main goal of this
section is to explain the write barrier that avoids synchro-
nization. We now turn to the on-the-fly algorithm.

4. THE SLIDING VIEW ALGORITHM
In the snapshot algorithm we have managed to execute a
major part of the collection while the mutators run concur-
rently with the collector. The main disadvantage of this
algorithm is the halting of the mutators in the beginning
of the collection. During this halt all threads are stopped
while the collector clears the dirty flags and receives the
mutators’ buffers and local ZCTs. This halt hinders both
efficiency, since only one processor executes the work and the
rest are idle, and scalability, since more threads will cause
more delays. While efficiency can be enhanced by paralleliz-
ing the flags’ clearing phase, scalability calls for eliminating
complete halts from the algorithm. This is indeed the case
with our second algorithm, which avoids grinding halts com-
pletely.

A handshake [19, 18] is a synchronization mechanism in
which each thread stops at a time to perform some transac-
tion with the collector. Our algorithm uses four handshakes.
Thus, mutators are only suspended one at a time, and only
for a short interval, its duration depends on the size of the
mutator’s local state.

In the snapshot algorithm we had a fixed point of time,
namely, when all mutators were stopped, for which we com-
puted the reference counts of all objects. Thus, it was easy
to claim that if an object has a zero heap reference count at
that time, and it is not local at that time, then it can be re-
claimed. By dispensing with the complete halting of threads
we no longer have this fixed point of time. Rather, we have
a fuzzier picture of the system, formalized by the notion of
a sliding view which is essentially a non-atomic picture of
the heap. We show how sliding views can be used instead of
atomic snapshots in order to devise a collection algorithm.
This approach is similar to the way snapshots are taken in
a distributed setting. Each mutator at a time will provide
its view of the heap, and special care will be taken by the
system to make sure that while the information is gathered,
modifications of the heap do not foil the collection.

4.1 Scans and sliding views
Pictorially, a scan σ and the corresponding sliding view Vσ
can be thought of as the process of traversing the heap along
with the advance of time. Each pointer slot s in the heap is
probed at time σ(s); Vσ(s) is set to the value of the probed
pointer. For an object o and a sliding view Vσ we define the
Asynchronous Reference Count of o with respect to Vσ to
be the number of slots in Vσ referring to o: ARC(Vσ; o) def=
|V −1
σ (o)|

Sliding views can be obtained incrementally, which will get
us the benefit of not having to stop all mutators simulta-
neously in order to compute the view. But in order to use
this information to safely collect garbage we need to be care-
ful. Trying to use the snapshot algorithm when we are only
guaranteed that logging and determining reflects some slid-
ing view is bound to fail. For example, the only reference to
object o may “move” from slot s1 to slot s2, but a sliding
view might miss the value of o in both s1 (reading it after
modification) and s2 (reading it before modification).

372

We avoid these problems via a snooping mechanism. While
the view is being read from the heap, we let the write-barrier
mark any object that is assigned a new reference in the heap.
We mark these objects as local, thus, preventing them from
being collected in this collection cycle. (Recall that objects
directly referenced by the roots are marked local to pre-
vent collecting them because of a zero heap reference count.)
We remark that there is nothing preventing the collection
of these snooped objects in the next cycle. Assuming this
snooping mechanism throughout the scan of the heap, we
observe the following.

Observation: If object o has ARC(Vσ; o) = 0, i.e., it is not
referenced by any pointer slot in the heap as reflected by the
sliding view, and if object o is not referenced directly by the
roots of the threads after the scan was completed, and if ob-
ject o has not been marked local by the snooping mechanism
while the heap (and the roots) were being scanned, then at
the time the heap scan is completed, object o is unreachable
and may be reclaimed.

Proof idea: If the object is referenced by a heap slot in
the end of the scan, then this slot has either been pointing
to this object when the scan of the heap read it, or it has
been written to that slot later. Both cases do not fall in the
criteria of unreachable objects in the observation. Finally,
if no reference is written into the heap while the roots are
scanned, and there is no reference from the roots to this
object, then it is unreachable. Here we rely on the fact
that a mutator is stopped while reading its stack, so no
pointer may move while the thread stack is being read; and
furthermore, in Java, a reference cannot be moved from the
stack of one thread to another without being written to the
heap. The full argument is given in the technical report.

Keeping this observation in mind, we are ready to present
the sliding view algorithm. We break the description into
two. We first describe (in Section 4.2 below) how a sliding
view of the heap may be used to reclaim unreachable ob-
jects. We call it a generic algorithm since it may use any
mechanism for obtaining the sliding view. Then, we describe
how the reference counts of all objects can be updated ac-
cording to a sliding view that is not actually taken. This
is an extension of the ideas in the snapshot algorithm, still
preserving the light write barrier.

4.2 Using sliding views to reclaim objects
Based on the above observation we present a generic garbage
collection algorithm:

Each thread Ti has a flag, denoted Snoopi which signifies
whether the collector is in the midst of constructing a sliding
view.

Thread Ti executes a write barrier in order to perform a
heap slot update. The generic algorithm requires that after
the store proper to the slot is performed, i.e., the reference
to o is written into slot s, the thread would probe its Snoopi
flag and, if the flag is set, would mark o as local. We call
this probing of the Snoopi flag and the subsequent marking
snooping. Any specific implementation of the generic algo-

rithm may require additional steps to be taken as part of
the write barrier.

As usual, threads may not be suspended in the midst of an
update.

A collection cycle contains the following stages:

1. the collector raises the Snoopi flag of each thread. This
indicates to the threads that they should start snoop-
ing.

2. the collector computes, using an implementation-specific
mechanism, a scan σ and a corresponding sliding view,
Vσ, concurrently with threads’ computations. The ac-
tual manner using which the collector computes Vσ
is immaterial, it’s just important that it arrives at a
sliding view.

3. each thread is then suspended (one at a time), its
Snoopi flag is turned off and every object directly
reachable from it is marked local. The thread is then
resumed.

4. now, for each object o we let o.rc := ARC(Vσ; o).

5. at that point, we can deduce that any object o that
has o.rc = 0 and that was not marked local is garbage.

Consider an object o with ARC(Vσ; o) = 0 and which is not
marked local. Since for each thread the Snoopi flag is set
for the entire duration of the sliding view computation we
conclude that o’s true reference count at the end of the heap
scan is zero as well. It may be, however, that o is directly
reachable from some thread at that time. Nevertheless, since
no local reference to o was observed by any thread when its
state was scanned (in stage (3) of the collector) and it was
not “snooped” prior to it, any thread which possessed such
a local reference must have discarded it prior to responding
to the handshake of stage (3) without ever raising the heap
reference count of o above zero. We conclude that by the
time the handshake of stage (3) ends, o is garbage.

The snooping mechanism may lead to some floating garbage
as we conservatively do not collect objects which are marked
local, although such objects may become garbage before the
cycle ends. However, such objects are bound to be collected
in the next cycle.

We have termed this algorithm “generic” since the mech-
anism for computing the sliding view is unspecified. We
next present an algorithm for updating the reference counts
for an implicitly defined sliding view of the heap. When
the algorithm is done, it holds for each object that o.rc =
ARC(V ; o), where V is the sliding view that was constructed
implicitly. Since we are not interested in the sliding view it-
self but rather on its manifestation through the rc fields,
this implicit computation suffices for collection purposes.

4.3 Obtaining the sliding view
We use four handshakes during the collection cycle. The
sliding view associated with a cycle spans from the beginning

373

Procedure Update(s: Slot, new: Object)
begin
1. Object old := read(s)
2. if ¬Dirty(s) then
3. Bufferi[CurrPosi] := 〈s, old〉
4. CurrPosi := CurrPosi + 1
5. Dirty(s) := true
6. write(s, new)
7. if Snoopi then
8. Localsi := Localsi ∪ {new}
end

Figure 4: Sliding View Algorithm: Update Opera-
tion

of the first handshake up to the end of the third handshake.
The “sampling” timing of each individual slot in the scan
is determined by mutators’ logging regarding the slot. The
snooping flags are raised prior to the first handshake and
are turned off at the fourth handshake. Thus, they are set
for the entire duration of the scan, adhering to the snooping
requirement of the generic sliding view algorithm.

Any slot which is changed between collection cycles is logged
along with its value in the most recent sliding view, hence
there is no loss of information regarding “old” values. It
turns out from our analysis that inconsistent logging of slots
is only possible between responding to the first and third
handshakes of a cycle. Just after the fourth handshake, the
collector employs a consolidation mechanism to consolidate
any inconsistently logged slot into a fixed value. No thread
would log a conflicting value after responding to the fourth
handshake, hence no inconsistencies will be visible in the
history for the next cycle.

In addition, the collector always consolidates any slot which
has been logged between the first and third handshakes, so
there is no risk that the collector would use one value of a slot
(before it is consolidated), and that value will be modified
later by the consolidation mechanism. Hence the collector
and mutators always “agree” on the values of slots in the
sliding view.

We refer the reader to the full version in [29] where we sys-
tematically define the sliding view associated with a cycle
and prove its properties. We now present the algorithm and
the code.

4.4 Mutator’s code
Mutators use the write barrier of the snapshot algorithm
with the additional snooping and marking added after the
store proper (see procedure Update in figure 4). Object
creation is unchanged from the snapshot algorithm.

4.5 Collector’s code
We now go over the main steps of the collection cycle. The
code for each step is provided as well.

1. Signaling snooping. The collection starts with the
collector raising the Snoopi flag of each thread, signaling to
the mutators that it is about to start computing a sliding
view.

Procedure Initiate-Collection-Cycle
begin
1. for each thread Ti do
2. Snoopi := true
3. for each thread Ti do
4. suspend thread Ti

// copy (without duplicates).
5. Histk := Histk∪

Bufferi[1 . . . CurrPosi − 1]
// clear buffer.

6. CurrPosi := 1
7. resume Ti
end

Figure 5: Sliding View Algorithm: Procedure
Initiate-Collection-Cycle

Procedure Clear-Dirty-Marks
begin
1. for each 〈s, o〉 ∈ Histk do
2. Dirty(s) := false
end

Figure 6: Sliding View Algorithm: Procedure Clear-
Dirty-Marks

2. Reading buffers (first handshake). During the hand-
shake threads’ buffers are retrieved and then are cleared.
(These are the same thread buffers as in the first (snap-
shot) algorithm.) The slots which are listed in the buffers
are exactly those slots that have been changed since the
last cycle. However, in the sliding view scenario this no-
tion requires more care. The meaning of “changing” in this
asynchronous setting is defined as follows. A slot is changed
during cycle k if some thread changed it after responding to
the first handshake of cycle k and before responding to the
first handshake of cycle k + 1.

Steps (1) and (2) are carried out by procedure Initiate-
Collection-Cycle (figure 5).

3. Clearing. The dirty flags of the slots listed in the buffers
are cleared. Note that the clearing occurs while the mutators
are running. This step is carried out by procedure Clear-
Dirty-Marks (figure 6). This step may clear dirty marks
that have been concurrently set by the running mutators.
Since we want to keep these dirty bits set, we will use the
logging in the buffers (which contain all objects that have
been marked dirty since the first handshake) to set these
dirty bits on again.

4. Reinforcing dirty marks (second handshake). dur-
ing the handshake the collector reads the contents of the
threads’ buffers (which contain slots that were logged since
the first handshake). The collector then reinforces, i.e., sets,
the flags of the slots listed in the buffers.

5. Assuring reinforcement is visible to all mutators
(third handshake). The third handshake is carried out.
Each thread is suspended and resumed with no further ac-
tion. By the time all threads resume, we know that they
view correctly all dirty bits. Namely, a slot is dirty iff it was

374

Procedure Reinforce-Clearing-Conflict-Set
begin
1. ClearingConflictSetk := �
2. for each thread Ti do
3. suspend thread Ti
4. ClearingConflictSetk :=

ClearingConflictSetk∪
Bufferi[1 . . . CurrPosi − 1]

5. resume thread Ti
6. for each s ∈ ClearingConflictSetk do
7. Dirty(s) := true
8. for each thread Ti do
9. suspend thread Ti
10. nop
11. resume Ti
end

Figure 7: Sliding View Algorithm: Procedure
Reinforce-Clearing-Conflict-Set

modified by a thread that responded to the first handshake.

Steps (4) and (5) are executed by procedure Reinforce-
Clearing-Conflict-Set (figure 7).

6. Consolidation (fourth handshake). During the fourth
handshake thread local states are scanned and objects di-
rectly reachable from the roots are marked local. Threads’
buffers are retrieved once more and are consolidated.

Consolidating threads’ buffers amounts to the following. For
any slot that appears in the threads’ buffers accumulated be-
tween the first and fourth handshakes, pick any occurrence
of the slot and copy it to a digested consistent history. All
other occurrences of the slot are discarded.

The digested history replaces the accumulated threads’ buffers.
i.e., the history for the next cycle is comprised of the digested
history of threads’ logging between the first and fourth hand-
shakes of the current cycle, unified with threads’ buffers rep-
resenting updates that will occur after the fourth handshake
of the current cycle but before the first handshake of the next
cycle. Consolidation is carried out by procedure Consoli-
date of figure 8.

7. Updating. The collector proceeds to adjust rc fields
due to differences between the sliding views of the previous
and current cycle. This is done exactly as in the snapshot
algorithm (see figure 9). The collector fails to determine
the “current” value of all slots that were modified (i.e., are
dirty). These slots will be treated later and are now marked
as undetermined.

8. Gathering information on undetermined slots.
The collector asynchronously reads mutators’ buffers (using
the procedure Read-Buffers of figure 10). Then, in pro-
cedure Merge-Fix-Sets (figure 11) it unifies the set of read
pairs with the digested history computed in the consolida-
tion step. The set of undetermined slots is a subset of the
slots appearing in the unified set so the collector may now
proceed to look up the values of these undetermined slots.

Procedure Consolidate
begin
1. local Temp := �
2. ColLocalsk := �
3. for each thread Ti do
4. suspend thread Ti
5. Snoopi := false

// copy and clear snooped objects set
6. ColLocalsk := ColLocalsk ∪ Localsi
7. ColLocalsi := �

// copy thread local state and ZCT.
8. ColLocalsk := ColLocalsk ∪ Statei
9. ZCTk := ZCTk ∪Newi
10. Newi := �

// copy local buffer for consolidation.
11. Temp := Temp∪

Bufferi[1 . . . CurrPosi − 1]
// clear local buffer.

12. CurrPosi := 1
13. resume thread Ti

// consolidate Temp into Histk+1.
14. Histk+1 := �
15. local Handled := �
16. for each 〈s, v〉 ∈ Temp
17. if s /∈ Handled then
18. Handled := Handled ∪ {s}
19. Histk+1 := Histk+1 ∪ {〈s, v〉}
end

Figure 8: Sliding View Algorithm: Procedure Con-
solidate

Procedure Update-Reference-Counters
begin
1. Undeterminedk := �
2. for each 〈s, v〉 pair in Histk do
3. curr := read(s)
4. if ¬Dirty(s) then
5. curr.rc := curr.rc +1
6. else
7. Undeterminedk :=

Undeterminedk ∪ {s}
8. v.rc := v.rc− 1
9. if v.rc = 0 ∧ v /∈ ColLocalsk then
10. ZCTk := ZCTk ∪ {v}

Figure 9: Collector Code: ProcedureUpdate-
Reference-Counters

Procedure Read-Buffers
begin
1. Peekk := �
2. for each thread Ti do
3. local ProbedPos := CurrPosi

// copy buffer (without duplicates.)
4. Peekk := Peekk∪

Bufferi[1 . . . P robedPos− 1]
end

Figure 10: Collector Code: Procedure Read-Buffers

375

Procedure Merge-Fix-Sets
begin
1. Peekk := Peekk ∪Histk+1
end

Figure 11: Sliding View Algorithm: Procedure
Merge-Fix-Sets

Procedure Fix-Undetermined-Slots
begin
1. for each pair 〈s, v〉 pair in Peekk
2. if s ∈ Undeterminedk do
3. v.rc := v.rc + 1
end

Figure 12: Collector Code: Procedure Fix-
Undetermined-Slots

9. Incrementing rc fields of objects referenced by
undetermined slots. In procedure Fix-Undetermined-
Slots (figure 12) any undetermined slot is looked up in
the unified set and the rc field of the associated object is
incremented.

10. Reclamation. Reclamation generally proceeds as in
the previous algorithm, i.e., recursively freeing any object
with zero rc field which is not marked local. We should be
careful, however, not to reclaim objects whose slots appear
in the digested history. i.e., objects which were modified
since the cycle commenced but became garbage before it
ended. The reclamation of such objects is deferred to the
next cycle. Reclamation is carried out using the procedures
Reclaim-Garbage (figure 13 and Collect (figure 14).

5. MEMORY COHERENCE
As mentioned in the introduction, two simple modifications
can make the algorithm suitable for platforms that do not
guarantee sequential memory consistency. We list these
modifications here and discuss their cost.

We first note that most platforms provide a sequentially con-
sistent view of the memory for reads and writes made to the
same word. Furthermore, this guarantee is provided more
generally within the coherence granule. Namely, a guaran-
tee on a sequential consistency is made for an entity that is

Procedure Reclaim-Garbage
begin
1. ZCTk+1 := �
2. for each object o ∈ ZCTk do
3. if o.rc > 0 then
4. ZCTk := ZCTk − {o}
5. else if o.rc = 0 ∧ o ∈ ColLocalsk then
6. ZCTk := ZCTk − {o}
7. ZCTk+1 := ZCTk+1 ∪ {o}
8. for each object o ∈ ZCTk do
9. Collect(o)
end

Figure 13: Collector Code: Procedure Reclaim-
Garbage

Procedure Collect(o: Object)
begin
1. local DeferCollection := false
2. foreach slot s in o do
3. if Dirty(s) then
4. DeferCollection := true
5. else
6. val := read(s)
7. val.rc := val.rc− 1
8. write(s, null)
9. if val.rc = 0 then
10. if val /∈ ColLocalsk then
11. Collect(val)
12. else
13. ZCTk+1 := ZCTk+1 ∪ {val}
14. if ¬DeferCollection then
15. return o to the general purpose allocator.
16. else
17. ZCTk+1 := ZCTk+1 ∪ {o}
end

Figure 14: Sliding View Algorithm: Procedure Col-
lect

larger than one word of memory. It is made on the coher-
ence granule of the platform, which is usually of the size of
the cache line. We keep this guarantee in mind and turn to
the algorithm. There are three dependencies on instruction
ordering in the algorithm.

Dependency 1: in the write barrier, the reads and writes
of the dirty flag and the pointer slot must be executed in the
order stated in the algorithm. To solve this dependency, we
note that in most cases the dirty bit and the pointer slot re-
side on the same coherence granule. In our implementation,
we keep the dirty bit in the header of the object. Thus, we
only need to perform a memory synchronization barrier for
objects whose dirty bit does not reside on the same coher-
ence granule with the modified slot. Furthermore, the write
barrier begins with a check whether the object is not dirty.
The synchronization barrier is required only if the check is
validated, i.e., the object is not dirty.

Cost: As reported in a study of the SPECjvm98 bench-
marks [16] and is implied by the results of Chilimbi and
Larus [10], most objects are small. For example, the me-
dian of the object size runs between 12 to 24 bytes [16].
The size of the cache line ranges between 32 to 128 bytes de-
pending on the platform. Furthermore, our measures show
that objects tested in the write barrier rarely turn out not
dirty. For the javac benchmark this happens less than once
in a hundred, and for the SPECjbb benchmark and all the
other SPECjvm98 benchmarks this happens less than once
in a thousand. So the vast majority of the pointer updates
require no cost for handling memory coherence. To sum-
marize, the number of actual pointer modifications whose
write barriers require a synchronization overhead (i.e., large
objects that are not dirty) is tiny and we expect to see neg-
ligible impact on the running time.

Dependency 2: the modification of the snoop flag. We
assume that the modification of the snoop flag is visible
to all threads before we actually start the first handshake.

376

Heap Size (MB)
600 1200

score in JBB’s Original 1,131.3 1,101.0
throughput units RC 1,101.7 1,108.3

Change in JBB score -2.6% 0.7%
Maximal response Original 7763 16,100
time (milliseconds) RC 115 110
Times RC is more responsive ×67.5 ×146.4

Figure 15: Throughput and latency of the reference
counting collector and the original collector in stan-
dard SPECjbb runs, with 600 MB and 1200 MB
heaps.

To make sure this is the case, we can add a preliminary
handshake in the beginning of the cycle in which the snoop
flags are raised (currently this is done without stopping the
threads).

Cost: this is done once per collection cycle and is thus neg-
ligible compared to the overall running time of the collection
cycle (and to the running time of the program).

We remark that we have not implemented these two modifi-
cations, yet, we have not witnessed any problem caused by
reordering instructions by the Intel platform.

6. AN IMPLEMENTATION FOR JAVA
We have implemented our algorithm on SUN’s Reference Re-
lease 1.2.2 of the Java Virtual Machine. The implementation
was done for the interpreter (no JIT). In both the original
and modified JVM we used the assembler loop (it was mod-
ified to take into account the write barrier and a modified
object layout). We ran the measurements on a 4-way IBM
Netfinity 8500R server with a 550MHz Intel Pentium III
Xeon processor and 2GB of physical memory. We measured
our algorithm’s performance characteristics compared to the
original algorithm used in the JVM. We also measured the
run of our collector on a client machine: a single Pentium
III at 500Mhz with 256MB of physical memory.

We used two standard testing suites: SPECjbb2000 and
JPECjvm98. These benchmarks are described in detail in
SPEC’s Web site[38]. We target our reference counting al-
gorithm for use with big heaps. Thus, we used a 1,200MB
Java heap for the JBB server benchmark. We also present
the (slightly worse) results for a Java heap of size 600MB.
For the jvm98 client benchmarks we used a 64MB heap.

6.1 Server performance
A standard execution of SPECjbb requires a multi-phased
run with increasing number of threads. Each phase lasts for
two minutes with a ramp-up period of half a minute before
each phase. Prior to the beginning of each phase a syn-
chronous GC cycle may or may not occur, at the discretion
of the tester. We decided not to perform this synchronous
garbage collection as we believe it defeats capturing real
world scenarios in which the server is not given a chance for
this “offline” behavior so often. The results presented here
are averaged over three standard runs.

Threads Time to completion % Improvement
(seconds)

Original RC
1 93 88.6 4.9%
2 71.9 68.5 5.0%
3 56.3 52.5 7.2%
4 57.2 54.2 5.6%
8 58.2 52.3 11.4%
12 58 57.9 0.2%
16 59 59.1 -0.1%

Figure 16: Time to completion, in seconds, of the
MTRT benchmark, with varying number of threads.

Threads 1 2 4 6 8 10 15 20
Original 24 39 70 100 139 160 236 312
RC 27 44 77 108 170 171 251 329

Figure 17: MB allocated for heap objects and their
headers (does not include space allocated for auxil-
iary data structures) at the end of a SPECjbb run
with a fixed number of threads and a heap of 600
MB.

Figure 15 shows throughput and latency of the reference
counting algorithm compared to the original JVM: while we
essentially retain the throughput attained by the original
JVM, we improve the maximal response time by two orders
of magnitude. To illustrate, the original JVM may take as
long as 16 seconds to complete a JBB transaction while we
never require more than 130 milliseconds. To get some more
measurements of the latency, we also checked the latency as
a function of the number of threads ran by SPECjbb00. We
compared the response time of the original JVM with our
reference counting collector. This non-standard run of the
benchmark is reported in Figure 20.

The second benchmark that we have used is MTRT (multi-
threaded ray tracer). This benchmark does not measure
response time, only elapsed running time, which corresponds
to the JVM’s throughput. As can be seen from figure 16 the
reference counting collector outperforms the original JVM
with an improvement of up to 10% in the total running
time.

In Figure 17 we present measurements of the heap consump-
tion. The reason for increased consumption in the reference
counting algorithm is the lack of compaction yielding more
fragmentation and the space required for the dirty bit (which
is implemented as an extra pointer per object, refer to the
technical report [29] for details). We remark that since we
do not move objects for compaction, we can get most of this
waste back by joining the object and its handle and getting
rid of the handle pointer to the object.

In addition to the space occupied directly by objects we also
allocate memory from the operating system for the following
data structures:

ZCT: we implement the ZCT as a bitmap with each poten-

377

Benchmark Time to completion
(seconds)

Original RC
Total 2582.2 2676.0
compress 720.8 723.3
db 374.0 383.7
jack 264.6 299.7
javac 225.0 235.2
jess 181.7 209.7
mpegaudio 607.1 610.6

Figure 18: Elapsed time for the execution of the
entire SPECjvm98 suite and intermediate execution
time of a double-run for each of the suite’s members.
All measurements are in seconds.

tial object address having an associated bit in the bitmap.
Since the object alignment is eight bytes the ZCT requires
a sixteenth of the heap.

Snoop/local marks: similarly, we mark objects as snooped
using a bitmap which requires an additional sixteenth of the
heap.

Reference counters: the reference counters are imple-
mented in a bitmap which associates each potential object
address with a two bit counter. Hence this bitmap requires
an additional eighth of the heap.

Buffers: local ZCTs, update buffers and snoop buffers are
all allocated from the same pool of buffers. We have used a
fixed buffer size of 64 KB and usually the “working set” of
buffers didn’t exceed twenty simultaneously allocated buffers,
which amounts to less than two MB of additional memory.

6.2 Client performance
While we have targeted our collector for multi-processor en-
vironments we still wanted to verify that it is performant
in a single-processor setting. To that end we have used the
SPECjvm98 benchmark suite. We used the suite using the
test harness, performing standard1 automated runs of all
the benchmarks in the suite. In a standard automated run,
each benchmark is ran twice and all benchmarks are ran on
the same JVM one after the other. Figure 18 shows the
elapsed time of the entire automated run and the time for
each double run of each benchmark. As can be seen from
figure 18, the reference counting collector was only 3.6%
percent slower than the original JVM. Given that we pay
the overheads of concurrent collection while we’re not ben-
efiting from the availability of multiple processors these are
very good results.

6.3 Collector characteristics
We also include some measurements of the collector char-
acteristics. Due to lack of space, we only mention a couple
of them briefly. First, we measured the number of objects
that have reached a stuck count (i.e., o.RC = 3). Recall
1The standard run requires running the harness through a
Web server while we performed the tests directly off the disk.
Aside from that, the executions were standard.

Benchmark % Reclaimed % Reclaimed
by tracing by RC

jbb 97.5% 96.5%
compress 73.5% 72.1%
db 99.6% 90.5%
jack 99.6% 96.8%
javac 99.6% 66.1%
jess 99.8% 99.5%
mpegaudio 74.2% 69.6%

Figure 19: Percentage of objects reclaimed by (1)
the original collector and (2) the reference counting
collector when used without the backing mark-and-
sweep collector.

that we keep only two bits for the reference count and an
object whose RC is increased to 3 is considered stuck. This
reference count is resolved only in the following run of the
mark and sweep collector. It turns out that for most bench-
marks this happens to less than 1% of the objects. For
compress, javac, and mpegaudio this number was higher:
between 3.7% to 4.7% of the objects.

Stuck pointers and cycles prevent the reference counting col-
lector from collecting all dead objects. We check the ef-
fectiveness of the collector in Figure 19. Except for javac,
which uses many cyclic structures, and to a lesser degree
the db benchmark, the benchmarks have demonstrated a
low degree of sensitivity to reference counting. This sup-
ports the assumption that we may use reference counting
for most garbage collection cycles and only occasionally re-
sort to tracing.

7. CONCLUSIONS
We have presented a novel on-the-fly reference counting garbage
collector with low latency and high throughput. The al-
gorithm uses extremely low synchronization overhead: the
barriers for modifying a reference and the barrier for creat-
ing a new object are very short and in particular, require
no strong synchronized operations such as a compare-and-
swap instruction. Furthermore, there is no particular point
in which all threads must be suspended simultaneously. In-
stead, each thread cooperates with the collector by being
shortly suspended four times during each collection cycle.

We have implemented our collector on SUN’s Reference Re-
lease 1.2.2 of the Java Virtual Machine and presented mea-
surements showing excellent latency and a throughputthat
is comparable to the original mark-sweep-compact collector.

8. ACKNOWLEDGMENT
We thank Hillel Kolodner for helpful discussions.

9. REFERENCES
[1] Alfred V. Aho, Brian W. Kernighan, and Peter J. Weinberger.

The AWK Programming Language. Addison-Wesley, 1988.

[2] Y. Riany, N. Shavit, D. Touitou. Towards a Practical Snapshot
Algorithm. Proceedings of the Third Israel Symposium on Theory
and Computing Systems (ISTCS), Tel Aviv, (1995), 121-129.

378

[3] Andrew W. Appel, John R. Ellis, and Kai Li. Real-time
concurrent collection on stock multiprocessors. ACM SIGPLAN
Notices, 23(7):11–20, 1988.

[4] D. Bacon, C. Attanasio, H. Lee, V. Rajan, and S. Smith. Java
without the coffee breaks: A nonintrusive multiprocessor garbage
collector. To appear in the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI),
Snowbird, Utah, June 20-22 2001.

[5] D. Bacon and V. Rajan. Concurrent Cycle Collection in
Reference Counted Systems. To appear in the Fifteenth European
Conference on Object-Oriented Programming (ECOOP),
University Eötvös Lorand, Budapest, Hungary, June 18-22 2001.

[6] Henry G. Baker. List processing in real-time on a serial
computer. Communications of the ACM, 21(4):280–94, 1978.

[7] Henry G. Baker. Minimising reference count updating with
deferred and anchored pointers for functional data structures.
ACM SIGPLAN Notices, 29(9), September 1994.

[8] Hans-Juergen Böhm, Alan J. Demers, and Scott Shenker. Mostly
parallel garbage collection. ACM SIGPLAN Notices,
26(6):157–164, 1991.

[9] T. Chikayama and Y. Kimura. Multiple reference management
in Flat GHC. ICLP, pages 276–293, 1987.

[10] Trishul M. Chilimbi and James R. Larus. Using generational
garbage collection to implement cache-conscious data placement.
In Proceedings of the First International Symposium on
Memory Management, volume 34(3) of ACM SIGPLAN Notices,
October 1998, pages 37-48.

[11] George E. Collins. A method for overlapping and erasure of
lists. Communications of the ACM, 3(12):655–657, December
1960.

[12] Jim Crammond. A garbage collection algorithm for shared
memory parallel processors. International Journal Of Parallel
Programming, 17(6):497–522, 1988.

[13] John DeTreville. Experience with concurrent garbage collectors
for Modula-2+. Technical Report 64, DEC Systems Research
Center, Palo Alto, CA, August 1990.

[14] John DeTreville. Experience with garbage collection for
modula-2+ in the topaz environment. In OOPSLA/ECOOP ’90
Workshop on Garbage Collection in Object-Oriented Systems,
October 1990.

[15] L. Peter Deutsch and Daniel G. Bobrow. An efficient
incremental automatic garbage collector. Communications of the
ACM, 19(9):522–526, September 1976.

[16] Sylvia Dieckmann and Urs Hölzle. A Study of the Allocation
Behavior of the SPECjvm98 Java Benchmarks. Proceedings of
the European Conference on Object-Oriented Programming
(ECOOP’99), Lecture Notes on Computer Science, Springer
Verlag, June 1999.

[17] Edsgar W. Dijkstra, Leslie Lamport, A. J. Martin, C. S.
Scholten, and E. F. M. Steffens. On-the-fly garbage collection:
An exercise in cooperation. Communications of the ACM,
21(11):965–975, November 1978.

[18] Damien Doligez and Georges Gonthier. Portable, unobtrusive
garbage collection for multiprocessor systems. In POPL 1994.

[19] Damien Doligez and Xavier Leroy. A concurrent generational
garbage collector for a multi-threaded implementation of ML. In
POPL 1993.

[20] Tamar Domani, Elliot K. Kolodner, Ethan Lewis, Elliot E.
Salant, Katherine Barabash, Itai Lahan, Yossi Levanoni, Erez
Petrank, and Igor Yanover. Implementing an On-the-fly Garbage
Collector for Java. The 2000 International Symposium on
Memory Management, October, 2000.

[21] Toshio Endo, Kenjiro Taura, and Akinori Yonezawa. A scalable
mark-sweep garbage collector on large-scale shared-memory
machines. In Proceedings of High Performance Computing and
Networking (SC’97), 1997.

[22] Shinichi Furusou, Satoshi Matsuoka, and Akinori Yonezawa.
Parallel conservative garbage collection with fast allocation. In
Paul R. Wilson and Barry Hayes, editors, OOPSLA/ECOOP ’91
Workshop on Garbage Collection in Object-Oriented Systems,
1991.

[23] Adele Goldberg and D. Robson. Smalltalk-80: The Language
and its Implementation. Addison-Wesley, 1983.

[24] Atsuhiro Goto, Y. Kimura, T. Nakagawa, and T. Chikayama.
Lazy reference counting: An incremental garbage collection
method for parallel inference machines. ICLP, pages 1241–1256,
1988.

[25] Robert H. Halstead. Multilisp: A language for concurrent
symbolic computation. ACM TOPLAS, 7(4):501–538, October
1985.

[26] Maurice Herlihy and J. Eliot B Moss. Non-blocking garbage
collection for multiprocessors. Technical Report CRL 90/9, DEC
Cambridge Research Laboratory, 1990.

[27] Richard E. Jones and Rafael Lins. Garbage Collection:
Algorithms for Automatic Dynamic Memory Management.
Wiley, July 1996.

[28] Elliot K. Kolodner and Erez Petrank. Parallel copying garbage
collection using delayed allocation. Technical Report 88.384, IBM
Haifa Research Lab, November 1999. Available at
http://www.cs.princeton.edu/∼erez/publications.html.

[29] Yossi Levanoni and Erez Petrank. A scalable reference counting
garbage collector. Technical Report CS0967, Technion, Israel
Institute of Technology, November 1999. Available at
http://www.cs.technion.ac.il/∼erez/publications.html.

[30] James S. Miller and B. Epstein. Garbage collection in
MultiScheme. In US/Japan Workshop on Parallel Lisp, LNCS
441, pages 138–160, June 1990.

[31] James W. O’Toole and Scott M. Nettles. Concurrent
replicating garbage collection. Also LFP94 and OOPSLA93
Workshop on Memory Management and Garbage Collection.

[32] Young G. Park and Benjamin Goldberg. Static analysis for
optimising reference counting. IPL, 55(4):229–234, August 1995.

[33] Manoj Plakal and Charles N. Fischer. Concurrent Garbage
Collection Using Program Slices on Multithreaded Processors.
ISMM 2000.

[34] Tony Printezis and David Detlefs. A generational
mostly-concurrent garbage collector. ISMM 2000.

[35] David J. Roth and David S. Wise. One-bit counts between
unique and sticky. ACM SIGPLAN Notices, pages 49–56,
October 1998. ACM Press.

[36] Ran Shaham, Elliot K. Kolodner, and Mooly Sagiv. On the
Effectiveness of GC in Java. The 2000 International Symposium
on Memory Management (ISMM ’00) 2000.

[37] Guy L. Steele. Multiprocessing compactifying garbage
collection. Communications of the ACM, 18(9):495-508,
September 1975.

[38] Standard Performance Evaluation Corporation,
http://www.spec.org/

[39] Will R. Stoye, T. J. W. Clarke, and Arthur C. Norman. Some
practical methods for rapid combinator reduction. In LFP, pages
159–166, August 1984.

[40] Larry Wall and Randal L. Schwartz. Programming Perl.
O’Reilly and Associates, Inc., 1991.

[41] J. Weizenbaum. Symmetric list processor. Communications of
the ACM, 6(9):524–544, September 1963.

[42] David S. Wise. Stop and one-bit reference counting. IPL,
46(5):243–249, July 1993.

[43] David S. Wise. Stop and one-bit reference counting. Technical
Report 360, Indiana University, Computer Science Department,
March 1993.

[44] Taichi Yuasa. Real-time garbage collection on general-purpose
machines. Journal of Software and Systems, 11(3):181–198, 1990.

379

Threads 1 2 4 6 8 10 15
Original 7433 8037 8463 6923 7857 7536 6593
RC 16 16 47 78 110 146 250
Times RC
is more
responsive ×464 ×502 ×180 ×88 ×71 ×51 ×26

Figure 20: Maximal response time, in milliseconds,
of the original JVM and our reference counting col-
lectors in a series of SPECjbb2000 runs with a fixed
number of threads per run and a 600 MB heap.

380

