
Software Testing Lecture 1

Justin Pearson

2021

1 / 39

Four Questions

I Does my software work?

I Does my software meet its specification?

I I’ve changed something, does it still work?

I How can I become a better programmer?

2 / 39

The Answer

Testing

3 / 39

Motivation for Software Testing

Before we talk about what software testing is, I would like to give
you some examples of some spectacular software failures.

4 / 39

Software Failures

NASA’s Mars lander, September 1999, crashed due to a units
integration fault — cost over $50 million.

The MCO MIB has determined that the root cause for
the loss of the MCO spacecraft was the failure to use
metric units in the coding of a ground software file,
“Small Forces,” used in trajectory models. Specifically,
thruster performance data in English units instead of met-
ric units was used in the software application code titled
SM FORCES (small forces). A file called Angular Mo-
mentum Desaturation (AMD) contained the output data
from the SM FORCES software. The data in the AMD
file was required to be in metric units per existing soft-
ware interface documentation, and the trajectory model-
ers assumed the data was provided in metric units per the
requirements.1

1ftp://ftp.hq.nasa.gov/pub/pao/reports/1999/MCO_report.pdf
5 / 39

ftp://ftp.hq.nasa.gov/pub/pao/reports/1999/MCO_report.pdf

Ariane 5 explosion

Flight 501, which took place on Tuesday, June 4, 1996,
was the first, and unsuccessful, test flight of the European
Space Agency’s Ariane 5 expendable launch system. Due
to an error in the software design (inadequate protection
from integer overflow), the rocket veered off its flight path
37 seconds after launch and was destroyed by its auto-
mated self-destruct system when high aerodynamic forces
caused the core of the vehicle to disintegrate. It is one of
the most infamous computer bugs in history.

6 / 39

Exception Handling

t r y {
.

} c a t c h (A r i t h m e t i c O v e r f l o w ()) {
. . . S e l f D e s t r u c t

}

In fact, it was an integration problem. The software module was
implemented for Ariane 4 and the programers forgot that the
Ariane 5 model had a higher initial acceleration and a different
mass.

7 / 39

Therac-25

I Radiation therapy machine. At least 6 patients where given
100 times the intended dose of radiation.

I Causes are complex 2 but one cause identified:
I Inadequate Software Engineering Practices ... including:

The software should be subject to extensive testing and
formal analysis at the module and software level; system
testing alone is not adequate. Regression testing should
be performed on all software changes.

2http://sunnyday.mit.edu/papers/therac.pdf
8 / 39

http://sunnyday.mit.edu/papers/therac.pdf

Intel’s fdiv bug

Some pentiums returned

4195835

3145727
= 1.333739068902037589

instead of
4195835

3145727
= 1.333820449136241002

9 / 39

Intel’s fdiv bug

With a goal to boost the execution of floating-point scalar
code by 3 times and vector code by 5 times, compared
to the 486DX chip, Intel decided to use the SRT algo-
rithm that can generate two quotient bits per clock cy-
cle, while the traditional 486 shift-and-subtract algorithm
was generating only one quotient bit per cycle. This SRT
algorithm uses a lookup table to calculate the intermidi-
ate quotients necessary for floating-point division. Intel’s
lookup table consists of 1066 table entries, of which, due
to a programming error, five were not downloaded into the
programmable logic array (PLA). When any of these five
cells is accessed by the floating point unit (FPU), it (the
FPU) fetches zero instead of +2, which was supposed to
be contained in the ”missing” cells. This throws off the
calculation and results in a less precise number than the
correct answer(Byte Magazine, March 1995).

10 / 39

Intel’s fdiv bug

I Simple programming error: not getting the loop termination
condition correct.

I Later we’ll see that this might have been avoided with testing.

11 / 39

Software Failures

I These are just some of the most spectacular examples. There
is a lot of bad software out there. Anything we can do to
improve the quality of software is a good thing.

I Formal methods are hard to implement, but software testing
with some discipline can become part of any programmer’s
toolbox.

12 / 39

The reality of Software Development

I All code has problems.

I Anything that we can do to improve the quality of our code is
important.

13 / 39

Software Engineering and Testing

Software Engineering tells us how to develop software. There are
many models and processes including

I The Waterfall Model

I Agile Development

I Scrum

I Extreme Programming

We will not cover software engineering methodology, but it is
important to think about how software testing fits in with your
development process.

14 / 39

The V model — Software Engineering

Even if you don’t develop software this way, it is a useful way of
thinking about software development.

15 / 39

Testing

There are lots of different testing activities with names inspired by
the V model. We cannot cover them all but they include:

I Unit Testing: Testing your functions/methods as you write
your code.

I Regression testing: maintaining a possibly large set of test
cases that have to passed when ever you make a new release.

I Integration testing: testing if your software modules fit
together.

16 / 39

Can we test?

“Program testing can be used to show the presence of
bugs, but never to show their absence!” Edsger Dijkstra.

This is true, but it is no reason to give up on testing. All software
has bugs. Anything you do to reduce the number of bugs is a good
thing.

17 / 39

What is a Test?

This is quite a complex question and depends on what you are
developing.

I How do I test a GUI?

I How do I test a real-time system?

I How do I load-test a web-server?

I How do I test a database system?

How do I write code that can be tested?

18 / 39

What is a Test?

In this course we will look testing functions or methods.

I A test is simply some inputs and some expected outputs.

This simple description hides a lot of complexity, though.

I How do I know what my code is supposed to do, so that I can
work out what the expected outputs are?

I What exactly are the inputs and outputs of my system?

19 / 39

Aspects of Testing

1. Test Design

2. Test Automation

3. Test Execution

4. Test Evaluation

It is very important that test execution should be as automated as
possible. It should be part of your Makefile. Some systems even
automatically run tests when you check in code.

20 / 39

Test Design

I Writing good tests is hard.

I It requires knowledge of you problem, and

I Knowledge of common errors.

I Often, a test designer is a separate position in a company.

I Test design helps the tester understand the system.

21 / 39

Test Design

I Adversarial view of test design:
How do I break software?

I Constructive view of test design:
How do I design software tests that improve the software
process?

I Often you design tests to uncover common programming
errors for example off by one errors.

22 / 39

Test Automation

I Designing good tests is hard.

I If you don’t make the execution of the tests an automated
process, then people will never run them.

I There are many automated systems, but you can roll your
own via scripting languages.

I The xUnit framework has support in most languages for the
automated running of tests.

I It should be as simple as make tests.

23 / 39

Test Automation

I There are tools for automatically testing web systems.
I There are tools for testing GUIs.

I If you design your software correctly you should decouple as
much of the GUI behaviour from the rest of the program as
you can. This will not only make your program easier to port
to other GUIs, but also it will make it easier to test.

I Don’t forget to include test automation in your compilation
process.

I Consider integrating automated testing into your version
management system.

24 / 39

Test Execution

You need to think of test execution as separate activity. You have
to remember to run the tests. In a large organization this might
require some planning.

I Easy if testing is automated.

I Hard for some domains e.g. GUI.

I Very hard in distributed or real time environments.

25 / 39

Test Evaluation

I My software does not pass some of the tests. Is this good or
bad?

I My software passes all my tests. Can I go home now? Or do I
have to design more tests?

26 / 39

Important Terminology and Concepts

I Validation: The process of evaluation software at the end of
software development to ensure compliance with intended
usage.

I Verification: The process of determining whether the
products of a given phase of the software development process
fulfill the requirements established during the previous phase

27 / 39

Important Terminology and Concepts

I Software Fault: A static defect in the software.

I Software Error: An incorrect internal state that is the
manifestation of some fault.

I Software Failure: External, incorrect behavior with respect
to the requirements or other description of the expected
behaviour.

Understanding the difference will help you fix faults. Write your
code so it is testable.

28 / 39

Pop Quiz

How many times does this loop execute? errors

f o r (i =10; i <5; i ++) {
d o s t u f f (i) ;

}

29 / 39

Fault/Error/Failure Example

i n t c o u n t s p a c e s (c h a r ∗ s t r) {
i n t l e n g t h , i , count ;
count = 0 ;
l e n g t h = s t r l e n (s t r) ;
f o r (i =1; i<l e n g t h ; i ++) {

i f (s t r [i] == ’ ’) { count++; }
}
return (count) ;

}

I Software Fault: i=1 should be i=0.

I Software Error: some point in the program where you
incorrectly count the number of spaces.

I Failure inputs and outputs that make the fault happen. For
example count spaces("H H H"); would not cause the
failure while count spaces(" H"); does.

30 / 39

Fault/Error/Failure

I Fault/Error/Failure is an important tool for thinking about
how to test something (not just software).

I I am trying to correct faults that cause errors that cause
failures.

I How do I design test cases that give failures that are caused
by errors that are due to faults in the code.

31 / 39

The RIP Model

Reachability, Infection and Propagation.

I Reachability: The test causes the faulty statement to be
reached.

I Infection: The test case causes the faulty statement to result
in an incorrect state.

I Propagation: The incorrect state propagates to incorrect
output.

32 / 39

State

What is the state of a program?

I For a deterministic single threaded program it is the values of
all variables, the program counter (where you are in the
program), and possibly the contents of files on external
storage.

I For multi-threaded, concurrent programs it is much more
complicated, and we will only deal with deterministic single
threaded programs.

I It can get even more complicated: for example, what about
the state of the cache to take into account timing effects.

33 / 39

Analogy with disease

I The symptom is only an indication of what is wrong with you.

I Test cases are a diagnostic tool. We can only see the
symptoms and not inside the software.

34 / 39

The RIP Model — Example

1 i n t c o u n t s p a c e s (c h a r ∗ s t r) {
2 i n t l e n g t h , i , count ;
3 count = 0 ;
4 l e n g t h = s t r l e n (s t r) ;
5 f o r (i =1; i<l e n g t h ; i ++) {
6 i f (s t r [i] == ’ ’) { count++; }
7 }
8 return (count) ;
9 }

We need to reach the fault one line 5, that is easy in this case,
because this will always happen regardless of the input string.

35 / 39

The RIP Model — Example

1 i n t c o u n t s p a c e s (c h a r ∗ s t r) {
2 i n t l e n g t h , i , count ;
3 count = 0 ;
4 l e n g t h = s t r l e n (s t r) ;
5 f o r (i =1; i<l e n g t h ; i ++) {
6 i f (s t r [i] == ’ ’) { count++; }
7 }
8 return (count) ;
9 }

How do we infect the program? How do we get in to an incorrect
state?
In this case, the final value of count should not actually be the
length of the string. So the input string should be a string that
starts with a space character.

36 / 39

The RIP Model — Example

1 i n t c o u n t s p a c e s (c h a r ∗ s t r) {
2 i n t l e n g t h , i , count ;
3 count = 0 ;
4 l e n g t h = s t r l e n (s t r) ;
5 f o r (i =1; i<l e n g t h ; i ++) {
6 i f (s t r [i] == ’ ’) { count++; }
7 }
8 return (count) ;
9 }

Propagation again is easy, because it always returns the value of
count.

37 / 39

The RIP Model

In the example reachability and propagation were easy. This is not
always the case.
All you can do if give inputs to a function and look at outputs.
Testing is different from debugging, you do not have the ability to
observe and change the program state.
This means that you have to think about what input values will
get you to the fault in the program.
Another time when you need to think about reachability is when
you correct some failure (fix a bug), you want a test case that
reproduces the failure that you fixed. So studying the changes you
made and trying to come up with test cases involves thinking
about the RIP model.

38 / 39

Suggested Reading

I One of the testing gods is James Bach see his website3

I The book Introduction to Software Testing4 by Ammann and
Offutt. This is a bit theoretical.

I The book Test-Driven Development by Example by Kent
Beck. Who is one of the fathers of unit testing, agile
programming and extreme programming.

I A classic “The ART of software testing” Glenford Meyers.
Online at the university library.

3http://www.satisfice.com/
4http://cs.gmu.edu/~offutt/softwaretest/

39 / 39

http://www.satisfice.com/
http://cs.gmu.edu/~offutt/softwaretest/

