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Today’s plan — Classification

Revision basic probability

Quick introduction to Maximum Likelihood Estimation,

Bayes’ Theorem

Naive Bayes Classification for Spam detection.
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Probability

What does the probability of an event tell us?

The probability of a fair coin toss coming up heads is 0.5.

The probability of getting four of a kind in poker is 0.000240.

The probability of nuclear war is 0.00392 or 0.173

The first two statements tell us something about the frequency events occur, while it is not
clear what the last statement actually tells us.

2https://marginalrevolution.com/marginalrevolution/2019/07/

what-is-the-probability-of-a-nuclear-war.html
3https://news.yahoo.com/swedish-scientist-estimates-probability-global-091100093.html
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Probability — Subjectivist or Frequentist

There is a lot of debate:

Frequentist If you repeat an experiment enough times then the probability tells you
something about the number of outcomes. If I toss a coin 1000 times then I
expect around 500 heads and 500 tails.
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import ma t p l o t l i b . p yp l o t as p l t
import numpy as np

n umb e r o f c o i n t o s s e s = 1000
numbe r o f e xpe r imen t s = 1000
e x p e r i m e n t a l r e s u l t = [ ]
f o r expe r iment i n range (0 , numbe r o f e xpe r imen t s ) :

number o f heads = 0
f o r t o s s i n range (0 , n umb e r o f c o i n t o s s e s ) :

c u r r e n t t o s s = np . random . r a n d i n t ( 0 , 2 )
i f c u r r e n t t o s s == 1 :

number o f heads = number o f heads + 1
e x p e r i m e n t a l r e s u l t . append ( number o f heads )

p l t . h i s t ( e x p e r i m e n t a l r e s u l t )
p l t . s a v e f i g ( ’ c o i n t o s s . pdf ’ , format=’ pdf ’ )
p l t . show ( )
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Probability — Subjectivist or Frequentist

There is a lot of debate:

Frequentist If you repeat an experiment enough times then the probability tells you
something about the number of outcomes. If I toss a coin 1000 times then I
expect around 500 heads and 500 tails.

Subjectivist Some how the probability measures your subjective belief in a statement. The
axioms of probability gives you constitutions for logically consistent beliefs.

In the frequentist world how do you make sense of statements that only happen once?
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Foundations for Subjectivist Probability

Bayes Use statistical priors. Controversial, but the mathematics is a good fit for
machine learning.

Put your money where your mouth is How much would you bet? Economist reduce every
thing to money. Money is a proxy for how much you value something, or the
utility that that you would get out of that item or activity. If you are so sure that
Russia will not invade Sweden then head over to your favourite betting site.
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Probability for machine learning

Build classifiers that estimate the probability of something falling into a class. Is my mail
Spam or not. If the probability is high enough then classify the email as spam.

Logistic regression (see next lecture) can be seen as an estimator of the log-odds
probability that something belongs to a class.

Lots of other algorithms in machine learning take inspiration from probability. You want
to maximise the probability that you make the correct decision.
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Probability — Experiments, sample spaces and events

Mathematically probability is a way of modelling the world.

An experiment produces exactly one out of several possible outcomes

The set of all possible outcomes is called the sample space

A subset of the sample space is called an event.
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Probability — Experiments, sample spaces and events

Consider four six-sided dice4

For an experiment you roll all four dice.

4Picture taken from https://commons.wikimedia.org/wiki/File:6sided_dice.jpghttps:

//commons.wikimedia.org/wiki/File:6sided_dice.jpg
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Probability — Experiments, sample spaces and events

Sample Space The set {(r , g , b, p) | r , g , b, p ∈ {1, . . . 6}} the tuple representing the values of
the four dice.

Events There are a large number of events. The event that sum of all 4 dice is 36 is the
set {(r , g , b, p) | r , g , b, p ∈ {1, . . . 6}}{(r , g , b, p) | r , g , b, p ∈
{1, . . . 6}, r + g + b + p = 36}
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Probability — Experiments, sample spaces and events

A probability model assigns probabilities to events. Given a sample space S , a probability
distribution is a mapping from events (subsets of S) to the interval [0, 1] such that

For any event A then P(A) ≥ 0

P(S) = 1.

For any two disjoint sets A and B, P(A ∪ B) = P(A) + P(B)

If your sample space is infinite then for any infinite sequence of disjoint sets A1, . . . ,A2, . . .

P(A1 ∪ A2 ∪ · · ·) = P(A1) + P(A2) + · · ·

Most of the time you can think of events, but sometimes you have to worry about the sample
space.
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Probability — Experiments, sample spaces and events

For the 4 dice example if our dice are fair then

For any (r , g , b, p) with r , g , b, p ∈ {1, . . . 6} the probability of the event P({(r , g , b, p)})
is 1

64
.

By the axioms of probability the probability of any event, that is subset of S for the 4 dice
example follows from the probability of P({(r , g , b, p)}) by taking unions.
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Probability — Experiments, sample spaces and events

Non-discrete example.

Experiment, measure somebody’s BMI.

This is a continuous variable. The sample space is all positive real numbers.

An Experiment P(15 ≤ x ≤ 20) the probability that a value is between 15 and 20.

Continuous probability distributions are modelled by probability density functions and
cumulative distribution functions.
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Maximum Likelihood Estimation – Coin Flips

We can already start reasoning from data using what we know so far. Suppose you have a coin
that might be fair P(H) = 0.5, and P(T ) = 0.5, but you are not sure.

You toss the coin 10 times, and you got 7 - H, and 3 - T.

If you coin is fair then the probability of this event is

0.57 · 0.53 = 0.0009765625

If the coin was unfair say P(H) = 0.7, P(T ) = 0.3 then the probability of the event will be:

0.77 · 0.33 = 0.0022235661

Which is more likely?
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Maximum Likelihood Estimation – Coin Flips

You obviously cannot try all values of p, and find the value that gives the highest probability.

Given a sequence with n-Heads and m-Tails, then define the likelihood function as

Ln,m(p) = pn(1− p)m

The trick is to find the value of p that maximises this function.

To make our lives easy we take logs of both sizes

log Ln,m(p) = n log p +m log(1− p)

If we are doing logarithms to the base e then d(log(p))/dp = 1/p.

d log Ln,m(p)

dp
=

n

p
− m

1− p

The minus sign comes from the fact that we have 1− p inside the log function. Just use the
chain rule.
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Maximum Likelihood Estimation – Coin Flips

We want to find the maximum value of

log Ln,m(p) = n log p +m log(1− p)

So we set
d log Ln,m(p)

dp
=

n

p
− m

1− p
= 0

A little bit of algebra gives that

p =
n

m + n

In this case it is what you would expect, but it can get more complicated.
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Dependent and Independent Events

Given two events A and B what is the probability of P(A ∩ B)

Since we have a probability model on the sample space, in theory we can just calculate it.
For the 4 dice example we just intersect the sets of events.

We want a nice formula.
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Independent Events

We have already met the coin flip example.

Suppose I toss a coin twice what is the probability that I get two heads?

P(first toss is a head)× P(second toss is a head)× P) = 1
2 × 1

2 .

The two coin tosses are independent so we can multiply probabilities.
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Dependent Events — Conditional Probability

We need a new quantity
P(A | B)

The Probability that A occurs given that B has happened.
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Dependent Events — Conditional Probability

There are lots of ways to motivate and define it, but we can take as an axiom that

P(A | B) = P(A ∩ B)

P(B)

The Probability that A occurs given that B has happened.
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Conditional Probability

It is common to re-arrange the formula

P(A ∩ B) = P(A|B)P(B)

If A and B are independent then P(A|B) = P(A) which gives P(A ∩ B) = P(A)P(B).
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Bayes’ Theorem

Probably not a real picture of Thomas
Bayes

Bayes did prove a special case of Bayes’
theorem, but it wasn’t published until
after his death.
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Bayes’ Theorem

First
P(A ∩ B) = P(B ∩ A)

From

P(A|B) = P(A ∩ B)

P(B)

and

P(B|A) = P(B ∩ A)

P(A)
⇒ P(B ∩ A) = P(A ∩ B) = P(B|A)P(A)

Gives

P(A|B) = P(A)P(B|A)
P(B)
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Bayes’ Theorem

This rather innocent formula

P(A|B) = P(A)P(B|A)
P(B)

is the bases for classification, a whole school of statistics and a tool to correct inconsistent
reasoning.
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Bayes’ Theorem

P(A|B) = P(A)P(B|A)
P(B)

Using terminology from statistics

posterior =
prior× likelihood

evidence
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Bayes’ Theorem — Useful identity

P(A) = P(A|B)P(B) + P(A|B)P(B)

For a set of events Bi

P(A) =
∑
i

(P(A|Bi )P(Bi ) + P(A|B i )P(B i ))

Note that for an event B the notation B is the complement event when B does not happen
that is S \ B.
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Bayes’ Theorem — Example

Suppose we are testing for cancer in a population, but the probability of a cancer is quite low
0.01. We have a test that is not perfect:

True positive, probability test says there is cancer given there is cancer P(T | C ) = 0.90.

False positive, probability that the tests says that cancer given that there is cancer given
that there is no cancer P(T | C ) = 0.10.

Given that our test is positive what is the probability that there is cancer. So

P(C | T ) =
P(T | C )P(C )

P(T )
=

0.90× 0.01

P(T )
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Bayes’ Theorem — Example

Given that our test is positive what is the probability that there is cancer. So

P(C | T ) =
P(T | C )P(C )

P(T )
=

0.90× 0.01

P(T )

We still need to work out the probability that our test is positive.

There is cancer and the test is positive, P(C )P(T |C ) = 0.01× 0.90 = 0.009

There is no cancer, but the test is still positive,
P(C )P(T |C ) = (1− P(C )) ∗ P(T |C ) = 0.99× 0.10 = .099

So the probability that the test says there is cancer regardless if the patient has cancer is
0.009 + 0.099 = 0.108. So

P(C | T ) =
0.90× 0.01

0.108
≈ 0.08

This is much lower than you might think. This is largely due to the low probability of this
particular cancer.
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Bayes’ Theorem — Example

Another way of thinking about this. Suppose you have 1000 patients.

If the probability of cancer is 0.01 then 10 patients are expected to have cancer.

Of the 10 patients that have cancer the test will report positive on 9 cases.

Of the 990 patients who do not have cancer the test will report positive on 0.1 ∗ 990 = 99
patients.

If you have a positive test case then it is one of the 9 + 99 patients and the probability
that one of them has cancer is 9

9+99 ≈ 0.08.
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Useful knee jerk reaction

If want to calculate P(A|B) and I only know P(B|A) then I don’t have enough
information.
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Why is probability useful in Machine Learning?

Bayes’ formula and the axioms of probability gives you a logically consistent way of reasoning
about evidence and consequences of evidence. You could say that probability theory is the only
logically consistent way of reasoning about uncertain events.
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Spam Detection — Naive Bayes

We are going to build a classifier for emails. It is to decide if an email is spam or not.

The training set must be a set of emails that are classified as spam or ham (non-spam).

We have a number of common words that appear emails and we use the training set to
estimate the probability that a particular word appears in a spam or non spam email.
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Spam Detection — Naive Bayes

Given email you want to decide if it is spam or not. One way of doing look at words that
appear in the mail. Suppose that we only consider if the email contains the word “Prince” or
not.
If we receive an email that contains the word “Prince” what is the probability that it is spam
or not. Using Bayes’ theorem

P(Spam | Prince) = P(Prince | Spam)P(Spam)

P(Prince)
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Spam Detection — Naive Bayes

So for our spam detector to work we need

P(Spam) the probability an email is Spam.

P(Prince | Spam) in all our Spam email the probability that the word “Prince” occurs.

P(Prince) the probability that the word “Prince’ occurs in any email. We could calculate
this with

P(Prince) = P(Prince|Spam)P(Spam) + P(Prince|Spam)P(Spam)

All these quantities can be estimated from your training set by counting the occurrences of
words. See below for an actual example.
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Spam Detection — Naive Bayes

Given

P(Spam | Prince) = P(Prince | Spam)P(Spam)

P(Prince)

If we look at

P(Spam | Prince) = P(Prince | Spam)P(Spam)

P(Prince)

The term P(Prince) appears for both spam and non spam and is effectively a normalising
constant.
Computing

P(Prince | Spam)P(Spam) and P(Prince | Spam)P(Spam)

and looking at which is bigger tells us if the email is spam or not spam.
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Spam Detection — Naive Bayes

A single word is not going to do so well. We need to consider multiple words.

Three test words “Prince”, “Viagra” , “Linear”.

If I receive a message that contains “Prince” and “Linear” but not “Viagra” what is the
probability that it is spam?
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Spam Detection — Naive Bayes

Using Bayes’ theorem

P(Spam | Prince,Viagra,Linear) ∝ P(Prince,Viagra,Linear | Spam)P(Spam)

So the question is how do we compute

P(Prince,Viagra,Linear | Spam)

With one word we could just compute the occurrences of the words in various messages.
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Spam Detection — Naive Bayes

A seemingly unrealistic assumption is to assume that the probability a word appears in a
message is independent of the probability that a different word appears in a message.
Thus in our case P(Prince,Viagra,Linear | Spam) equals

P(Prince | Spam)P(Viagra | Spam)P(Linear | Spam)

There are lots of technical reasons why this naive assumption is not so naive.
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Negative occurrence or just the positive occurrences?

In the previous slide we calculated :

P(Spam | Prince,Viagra,Linear)

It mostly is enough to just calculate

P(Spam | Prince,Linear)

The extra precision that you get from considering non-occurrence of words is not really worth
it, and if your word database is large then this increases the computational overhead.
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Spam Detection Worked Example – Plus Some Feature Modelling5

Number Tweet S or S

1 money aardvark boondoggle S
2 money money money S
3 money money world S
4 money world world S
5 viagra money back S
6 viagra heart honey S

7 aardvark boondoggle world S

8 honey honey honey S

9 viagra heart money S

10 money honey now S

5https://user.it.uu.se/~justin/Hugo/post/naive_bayes_spam/
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Worked example of Spam detection

Suppose that we get a message with the word w = ′money′ what is the probability that it is
spam?

P(S |w) =
P(w |S)P(S)

P(w)

So we need to estimate the values P(w |S), P(S) and P(w) from the data set.
Some are easy

P(S) =
6

10
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Worked example of Spam detection

The word money appears in 7 tweets.
So

P(money) =
7

10

Is this right? We’ll get to this again later.
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Worked example of Spam detection

What about P(w |S)?
To estimate P(w |S) we have to count the number of times that a particular word occurs in a
spam message. So

P(money|S) = 5

6

44 / 59



Putting all of this together

P(S |money) =
P(w |S)P(S)

P(w)
=

5
6

6
10
7
10

=
5

10

10

7
=

5

7
≈ 0.71
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Spam Detection — Counting words or tweets.

What do P(w |S) and P(w) really mean?

There are two ways of looking at it. First we count tweets.

To calculate P(money|S). There are 6 messages that are spam and in those 6 messages 5
of them (1,2,3,4,5) contain the word money so P(money|S) = 5/6, and of the 10
messages 7 of them (1,2,3,4,5,9,10) contain the word ’money’ so P(money) = 7/10.

This is exactly what we did above.
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Spam Detection — Counting words or tweets.

What do P(w |S) and P(w) really mean?

There are two ways of looking at it. Second we count words.

To calculate P(money) there are 10× 3 = 30 words in our training set and the word
money appears 10 times so

P(money) = 10/30.

To calculate P(money|S) there are 6 spam messages each of 3 words long. In the words
of the spam messages the word ’money’ appears 8 times. So

P(money|S) = 8

3× 6
=

8

18
=

4

9
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Counting words or tweets — Feature engineering

If we just count the number of tweets a word appears in, then we do not care how many
time the word occurs in a tweet.

If we count words then we can take into account if a word appears multiple times in a
tweet.

Be consistent when you implement this. It is easy to forget which one you are implementing
and get inconsistent results.
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Multiple words — Estimating P(w1 ∧ · · · ∧ wn)

If we have multiple words then P(S |viagra ∧money ∧ boondoggle) equals

P(viagra ∧money ∧ boondoggle|S)P(S)
P(viagra ∧money ∧ boondoggle)

From the independence assumption we have that P(S |viagra ∧money ∧ boondoggle) equals

P(viagra|S)P(money|S)P(boondoggle|S)P(S)
P(viagra ∧money ∧ boondoggle)

To calculate P(viagra ∧money ∧ boondoggle) we use the identity above. Taking product

P(viagra)P(money)P(boondoggle)

is the wrong answer.
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Multiple words — Estimating P(w1 ∧ · · · ∧ wn)

So instead we get that P(viagra ∧money ∧ boondoggle) equals
P(viagra ∧money ∧ boondoggle|S)P(S) plus P(viagra ∧money ∧ boondoggle|S)P(S).
The by the independence assumption P(viagra ∧money ∧ boondoggle|S) equals

P(viagra|S)P(money|S)P(boondoggle|S) = 2

6

5

6

1

6
=

5

108

Putting the numbers in we get P(viagra ∧money ∧ boondoggle) equals(
2

6
· 5
6
· 1
6

)
6

10
+

(
1

4
· 2
4
· 1
4

)
4

10
≈ 0.08
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Naive Bayes — Assumption

We assume that

P(w1 ∧ w2 ∧ · · · ∧ wn|S) = P(w1|S)P(w1|S) · · ·P(wn|S)

and
P(w1 ∧ w2 ∧ · · · ∧ wn|S) = P(w1|S)P(w1|S) · · ·P(wn|S)

Note this is a weaker assumption than simply saying

P(w1 · · ·wn) =
∏

1≤i≤n

P(wi )

This is why you need to be careful when you estimating the probabilities.
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Deciding what class something belongs to

If you are deciding if a word is spam or note then you do not need to calculate the two
probabilities:

P(S |w) =
P(w |S)P(S)

P(w)
P(S |w) =

P(w |S)P(S)
P(w)

Because P(w) is the same in both you just need to calculate the two quantities:

P(w |S)P(S) P(w |S)P(S)

But if you want the actual probabilities then you have to use the discussion on the above slides.
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Zero counts — Pseudocounts

In our spam filter we have to keep track of how many times words appear in our training set.
Suppose our test words contain the word “zaphod”, but none of training spam or non-spam
emails contain the word spam. This means that

We will estimate that P(zaphod | Spam) is zero.

If “zaphod” appears in an email when computing

P(Spam | . . . zaphod . . .) ∝ P(Spam)(· · · × P(zaphod | Spam) · · · × · · ·)

The P(zaphod | Spam) term forces the product to be 0. Even if lots of other spam words
appear in the email we will not classify it as spam.

A common solution is to add 1 to every count. This stops the probabilities being 0. Although
we might not estimate the probability correctly, we will not be too far off.
This is often called Laplacian Smoothing.
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Taking Logarithms6

The most amazing identity in mathematics:

log(ab) = log(a) + log(b)

This formed the bases of a number of devices to make calculation easier.

6
Picture from https://commons.wikimedia.org/wiki/File:Sliderule.PickettN902T.agr.jpg
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Small numbers – Floating point

Read “What every computer scientist should know about floating-point arithmetic”7 by
David Goldberg.

Short story if you multiply together lots of small numbers errors can creep in.

If your bank uses floating point numbers then maybe you should get a new bank.

7https://dl.acm.org/doi/10.1145/103162.103163
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Working with Logs

Transform expression such as:

P(C )
∏
i

P(xi | C )

into logarithms

log

(
P(C )

∏
i

P(xi | C )

)
which is equal to

log(P(C )) +
∑
i

log(P(xi | C )
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Naive Bayes — Continuous Variables

Suppose your data set has a continuous variable x we want to compute the probability that
the date belongs to some class given the variable has value a. Again Bayes’ theorem applies

P(C | x = a) ∝ P(x = a | C )P(C )

So the question is how do we compute P(x = a | C ) and how do we define the classes?
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Classes defined by Gaussian distributions

A Gaussian distribution is a good model of lots of types of data.

4 2 0 2 4
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A normal distribution is defined by a mean µ and a variance σ

P(x = a) =
1√
2πσ2

e−
(a− µ)2

2σ2
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Classes for Continuous Variables

Each class could be defined by a different normal distribution with a different mean and
variance. So let our class C have mean and variance µc , σc then

P(x = a | C ) =
1√
2πσ2

c

e−
(a− µc)

2

2σ2
c

P(C | x = a) ∝

((
1√
2πσ2

c

e−
(a− µc)

2

2σ2
c

))
P(C )

You will explore this in a notebook.
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