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Today’s plan

A (review) of elementary calculus.

Gradient Descent for optimisation.

Linear Regression as Gradient Descent.

An exact Method of Linear Regression.

Features and non-linear features.

Looking at your model.

Introduction to regularisation.
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Gradients and Derivatives

Given a continuous function f what does the derivative

d

dx
f (x) = f ′(x) ,

tell us?
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Tangent Line2

The slope of the tangent line is equal to first derivative of the function at
that point.

2Picture from
https://commons.wikimedia.rg/wiki/File:Tangent_to_a_curve.svg
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Gradients Taylor Expansion

For a reasonably well behaved function, f , the Taylor expansion about a
point x0 is the following:

f (x) = f (x0)+ f ′(x0)(x−x0)+
1

2!
f ′′(a)(x−x0)

2+
1

3!
f ′′′(x0)(x−x0)

3+ · · · .

The non-linear terms get smaller and smaller. Thus we could say that
around a point x0

f (x) ≈ f (x0) + f ′(x0)(x − x0)
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Gradients

What happens when
d

dx
f (x) = 0 ?

We are at a minima or an inflection point. To check that it is a true
minima we must check if f ′′(x) = 0.
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Gradient Descent

If you are at a point, and you go in the direction of the gradient then you
should decrease the value of the function.
You are on a hill, you along a vector that has the steepest gradient.
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Gradient Descent - One variable

Given a learning rate α and an initial guess x0

x ← x0;
while not converged do

x ← x − α d
dx f (x);

end

Question, what happens when α is very small and what happens if α is too
large?
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Minima
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The red function on the left only has 1 minimum, while the function on
the right as multiple local minima.

9 / 41



Minima

Gradient descent is only guaranteed to find the global minimum if there is
only one. If there are many local minima, then you can restart the
algorithm with another guess and hope that you converge to a smaller
local minima.
Even so, gradient descent is a widely used optimisation method in machine
learning
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Partial derivatives

How do you differentiate functions of multiple parameters? For example

f (x , y) = xy + y2 + x2y

We can compute partial derivatives. The expression

∂f (x , y)

∂x

is the derivative with respect to x where the other variables (y) in this
case are treated as constants.
So

∂f (x , y)

∂x
= y + 0 + 2yx
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Gradient Descent — Multiple Variables

Suppose that we have a function that depends on an n-dimensional vector,
x = (x1, . . . , xn) Then the tangent vector or gradient is given by

∇f (x) = (
∂f

∂x1
, . . . ,

∂f

∂xn
)

Gradient descent works in multiple dimensions, but there is even more of a
chance that we can have multiple local minima.
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New Notation

Given a data set, x ,y of m points we will denote the ith data item as

x (i), y (i)

This is an attempt to make expressions like
(
x (i)

)2
be more

understandable. I will try to be consistent.
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Linear Hypothesises

Consider a very simple data set

x = (3, 6, 9)

y = (6.9, 12.1, 16)

We want to fit a straight line to the data. Our hypothesises is a function
parameterised by θ0, θ1

hθ0,θ1(x) = θ0 + θ1x
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Hypothesises
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Just looking at the training data we
would say that the green line is
better. The question is how to we
quantify this?
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Measuring Error - RMS

Root Mean Squared is a common cost function for regression. In our case
given the parameters θ0, θ1 the RMS is defined as follows

J(θ0, θ1, x , y) =
1

2m

m∑
i=1

(hθ0,θ1(x
(i))− y (i))2

We assume that we have m data points where x (i) represents the ith data
point and y (i) is the ith value we want to predict. Then hθ0,θ1(x

(i)) is the
model’s prediction given θ0 and θ1.
For our data set we get

J(1.0, 3.0) = 33.54

J(1.5, 2.0) = 2.43

Obviously the second is a better fit to the data.
Question why (hθ(x)− y)2 and not (hθ(x)− y) or even |hθ(x)− y |.
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Learning

The general form of regression learning algorithm is as follows:

Given training data x = (x (1), . . . , x (i), . . . , x (m)) and
y = (y (1), . . . , y (i), . . . , y (m))

A set of parameters Θ where each θ ∈ Θ gives rise to a hypothesis
function hθ(x);

A loss function J(θ, x , y) the computes the error or the cost for some
hypothesis θ for the given data x ,y ;

Find a (the) value θ that minimises J.
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Linear Regression

Given m data samples x = (x (1), . . . , x (m)) and y = (y (1), . . . , y (m)). We
want to find θ0 and theta θ1 such that J(θ0, θ1, x , y) is minimised. That is
we want to minimise

J(θ0, θ1, x , y) =
1

2m

m∑
i=1

(hθ0,θ1(x
(i))− y (i))2

Where hθ0,θ1 = θ0 + θ1x
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Linear Regression — Gradient Descent

To apply gradient descent we have to compute

∂

∂θ0
J(θ0, θ1)

and
∂

∂θ1
J(θ0, θ1)
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Linear Regression — Gradient Descent

For θ0 we get

∂

∂θ0
J(θ0, θ1) =

1

2m

m∑
i=1

∂

∂θ0
(hθ0,θ1(x

(i))− y (i))2

So how do we compute

(1)
∂

∂θ0
(hθ0,θ1(x

(i))− y (i))2 ?

We could expand out the square term or use the chain rule.
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The Chain Rule

df (g(x))

dx
= f ′(g(x))g ′(x)

If you set f (x) = x2 then you get (since f ′(x) = 2x)

dg(x)2

dx
= 2(g(x))g ′(x)
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Linear Regression — Gradient Descent

Using the chain rule

∂

∂θ0
(hθ0,θ1(x

(i))− y (i))2 = 2(hθ0,θ1(x
(i))− y (i))

(
∂

∂θ0
(hθ0,θ1(x

(i))− y (i))

)
With a bit more algebra and expanding out h

∂

∂θ0
(hθ0,θ1(x

(i))− y (i)) =
∂

∂θ0
(θ0 + θ1x

(i) − y (i)) = 1

For the partial derivative anything not concerning θ0 is treated as a
constant and hence has a derivative of 0.
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Linear Regression — Gradient Descent

So putting it all together we get

∂

∂θ0
J(θ0, θ1) =

1

2m

m∑
i=1

∂

∂θ0
(hθ0,θ1(x

(i))− y (i))2

Which equals

1

2m

m∑
i=1

2(hθ0,θ1(x
(i))− y (i))
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Linear Regression — Gradient Descent

For θ1 we go through a similar exercise:

∂

∂θ1
J(θ0, θ1) =

1

2m

m∑
i=1

∂

∂θ1
(hθ0,θ1(x

(i))− y (i))2

Again we can compute the partial derivative using the chain rule

∂

∂θ1
(hθ0,θ1(x

(i))− y (i))2 = 2(hθ0,θ1(x
(i))− y (i))

(
∂

∂θ1
(hθ0,θ1(x

(i))− y (i))

)
With a bit more algebra

∂

∂θ1
(θ0 + θ1x

(i) − y (i)) = x (i)
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Linear Regression — Gradient Descent

So our two partial derivatives are:

∂

∂θ0
J(θ0, θ1) =

1

m

m∑
i=1

(hθ0,θ1(x
(i))− y (i)) =

1

m

m∑
i=1

(θ0 + θ1x
(i) − y (i))

∂

∂θ1
J(θ0, θ1) =

1

m

m∑
i=1

(hθ0,θ1(x
(i))−y (i))x (i) = 1

m

m∑
i=1

(θ0+θ1x
(i)−y (i))x (i)
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Linear Regression — Gradient Descent

Our simultaneous update rule for θ0 and θ1 is now

θ0 ← θ0 − α 1
m

∑m
i=1(hθ0,θ1(x

(i))− y (i))

θ1 ← θ1 − α 1
m

∑m
i=1(hθ0,θ1(x

(i))− y (i))x (i)

Since the error function is quadratic we have only one minima. So with
suitable choices of α we should converge to the solution.
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Linear Regression — Exact Solution

Remember that at a local or global minimum have that

∂

∂θ0
J(θ0, θ1) = 0 =

∂

∂θ1
J(θ0, θ1)

We can try to solve these two equations for θ0 and θ1. In the case of linear
regression we can.
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Linear Regression – Exact Solution

The details are not important. The reason why you can solve it is much
more interesting. When you fix the data. You get two linear equations in
θ0 and θ1.

1

m

m∑
i=1

(θ0 + θ1x
(i) − y (i)) = θ0 +

1

m

m∑
i=1

(θ1x
(i) − y (i)) = 0

1

m

m∑
i=1

(θ0 + θ1x
(i) − y (i))x (i) =

1

m

m∑
i=1

(θ0x
(i) + θ1(x

(i))2 − y (i)x (i)) = 0

Since you have two equations and two unknowns θ0 and θ1 you can use
linear algebra find a solution. This generalises to multiple dimensions and
is implemented in most numerical packages.
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Multiple Dimensions or features

So far we have just had one feature. In general we want to model multiple
features x1, . . . , xn. Our hypotheses become

hθ0,θ1,...,θn(x1, . . . , xn) = θ0 + θ1x1 + · · ·+ θnxn

We will need vectors. Let θ = (θ0, θ1, . . . , θn) and x = (1, x1, . . . xn). Then
our hypotheses is simply the dot produce of the two vectors

hθ(x) = θ · x =
n∑

j=0

θj · xj

Notice that we can factor out the constant by adding an extra feature that
is always 1.
The loss or error function is then

J(θ) =
1

2m

m∑
i=1

(θ · x − y)2
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Multiple features partial derivatives

Th maths is much the same as before (do the derivation to make sure that
you understand)

∂

∂θj
J(θ) =

1

m

m∑
i=1

(hθ(x
(i))− y (i))x

(i)
j

Note that you are summing over the m data points x (1), . . . , x (m). The

x
(j)
i is the jth component of the ith data item. Don’t forget that by
convention x0 = 1.
Again you can have an exact solution with a bit of linear algebra.
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Linear Regression — Exact or Gradient Descent

The exact method involves you doing some linear algebra. With large
data sets and a large number of features this might be
computationally expensive.

Gradient descent is often quicker with many features and big data
sets.

Also, it illustrates a common theme with machine learning algorithms.
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New Features — Scaling

Suppose your data set contains the weight of an person along with the
amount of Magnesium in their blood. The body weight in your sample
goes from 50kg to 120kg. The common range for the amount Magnesium
are from 0.70 to 0.95 nmol/L.
Obviously the body weight measurements dominates your data. In theory
your machine learning algorithm will be able to cope, but you can help
things along by scaling the data by multiplying the data by a weight. You
want all the data to have a similar range and mean.
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New Features — Linear Regression

Given your data set, you are free to make new features. You are
trying to fit a linear hypothesis.

Suppose that your data set had three features x1, x2, x3 you could
invent a new feature x3 − x2. You could process your data and feed
the 4 features x1, x2, x3, x4 = (x3 − x2) to the linear regression model.

Linear combination would not enable you to learn anything new.
Why?

But you are not limited to linear features.

33 / 41



Non-Linear features with Linear Regression3

With linear regression it is possible fit non-linear polynomials.
Suppose that you are trying to fit the polynomial

hθ0,θ1,θ2(x) = θ0 + θ1x + θ2x
2

To your data set.

3Don’t worry about this too much. It is partly there for entertainment.
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Non-Linear features with Linear Regression

One way of thinking is to transform your data into another data set.

x → (x , x2)→ (1, x , x2)

We add the extra one so we can use the vector θ = (θ0, θ1, θ2) for the
parameters.
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Non-Linear features with Linear Regression

Computing the partial depravities

∂

∂θ0
(hθ(x)− y)2 and

∂

∂θ1
(hθ(x)− y)2

Come out the same as before.
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Non-Linear features with Linear Regression

What about
∂

∂θ2
(hθ(x)− y)2

Again using the chain rule we get

∂

∂θ2
(hθ(x)− y)2 = 2(hθ(x)− y)

∂

∂θ2
(hθ(x)− y)

Which gives

2(hθ(x)− y)
∂

∂θ2
(θ0 + θ1x + θ2x

2 − y)

Since everything that is not θ2 is considered a constant we get that

∂

∂θ2
(hθ(x)− y)2 = 2(hθ(x)− y)x2

37 / 41



Linear Regression — Look at your model

Explainable AI is very important. Often you do not just a predictor you
also want to know why your model makes certain predictions.

A Linear model is understandable. Looking at features with the largest
weights gives you some idea what factors are important in the model.

Linear models help scientists formulate new theories. If certain
features are more important then this helps you to formulate scientific
hypotheses.

Ethical considerations, this is more and more important in AI. Why
does my model make certain predictions? Why have I not been
granted a bank loan?

Is my machine learning model sexist or racist? Is my machine model
trustworthy. See
https://ec.europa.eu/digital-single-market/en/news/

ethics-guidelines-trustworthy-ai
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Regularisation

To avoid over fitting we could add the requirement that the learnt
parameters do not get to big.
We can do this by modifying our cost function

J(θ) =
1

2m

m∑
i=1

(hθ(x
(i))− y (i))2 + λ

n∑
i=1

θ2i

Again you can do gradient descent or on some cases you can find an exact
solution.
We will look at this later in the course.
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Linear Regression as Machine Learning Overview

Gradient descent is a way of minimising continuous functions. It
works best if the is only one minimum, otherwise you could get stuck
in a local minimum.

Linear regression find the best straight line through a number of data
points.

By looking at the error or loss function you can set up linear regression
as a minimisation problem that you can solve with gradient descent.
You can prove (although we don’t) that there is only one minimum.

Important: Gradient descent is not a good way to solve linear regression
problems. It is just to illustrate a common technique in machine learning.
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Machine Learning Concepts

Loss/Error functions measure how well your model fits the training
set.

The loss/error function depends on the parameters of the model. For
example the weights of a neural network or the coefficients of your
linear function.

One technique to minimise an error function is to use gradient
descent. You use partial derivatives to work out the gradients.

Regularisation (more on this) is one way of avoiding over fitting.
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