Algorithms and Data Structures 3 (course 1DL481)
Uppsala University — Spring 2026
Assignment 1

Prepared by Justin Pearson, Pierre Flener, Di Yuan, and Gustav Bjordal

— Deadline: 13:00 on Friday 6th February 2026—

The assignments exercise the lecture material that is mot covered by the exam. You must
fill in the skeleton report in the provided materials, by following its instructions. Read the
Submission Instructions and Grading Rules at the end of this document before tackling
the following problems upon reading them a first time. Note that a problem weight indicated
below might not reflect the relative time effort (within the assignment) that you actually spend
on that problem: some points might be easier to earn. It is strongly recommended to prepare
and attend the help sessions, as huge time savings may ensue.

Problem 1: Mixed Integer Programming (MIP) (40% weight)

The aim of solving this problem is to get hands-on experience with declaratively encoding an
important real-world problem into a linear objective function and a system of linear constraints
over integer and real-number variables, towards impressive performance.

Background and Motivation: The following optimisation problem is motivated by locating
emergency-response service stations, which have fire trucks, for example. In the planning pro-
cess, the service region is divided into zones. Each zone represents a candidate location of an
emergency-response service station. Each zone has a demand: the expected frequency of service
request, based on historical data and estimation. When the emergency-response agency receives
a call, originating from some zone, the operator usually dispatches a vehicle from the closest
(measured in travel time) service station, which may or may not be in the same zone.

For a given planning solution, the service quality for a zone is based on the travel time of
the closest vehicles. To account for the fact that one or even multiple vehicles of the closest
service station may become occupied for serving other requests, we consider the average travel
time of the closest vehicles, which may be located at different service stations. Furthermore,
this average time is multiplied with the demand, so zones with high demand will receive more
weight in the optimisation process.

Problem Specification: The service station location problem has the following inputs:

e 2z is the number of zones in the service region;

s is the number of service stations to be located within the zones;

e v is the number of vehicles hosted at each service station;

¢ is the number of vehicles considered for the average travel time of the closest vehicles;

Demand][i] is the demand of zone i, with i € 1.. z;

Timeli, j] is the travel time from zone i to zone j; note that the matrix need not be
symmetric (hence pay attention to get the indices right); the travel time within a zone is
typically a small value, though not zero.


https://user.it.uu.se/~justin/Assets/Teaching/AD3/assignments/assignment1.zip

The optimisation decision consists in selecting exactly s out of the z zones in order to locate
service stations in distinct zones. The objective is to minimise the sum over all the zones of the
average travel time of the c closest vehicles of each zone, multiplied by the demand of the zone.

Data Format: The problem parameters in the AMPL data files in the provided folder called
servStatLoc-data are below, for z = 10 zones, s = 2 service stations, v = 2 vehicles per service
station, and ¢ = 3 closest vehicles:

param z := 10;
param s := 2;
param v 2;
param c := 3;

param Demand :=
1 0.000803429155663251
2 0.000951406002100867

10 0.000597429377117032;
param Time :=
1 1 0.0010
1 2 1.6420
1 10
2 1

N

.0630
.6420

[y

10 10 0.0010;
where:
e the parameter Demand, indexed over the zones, gives the z demand values Demand|i];

e the parameter Time has 22 elements specifying the travel times Timeli, j];
for example, the travel time from zone i = 1 to zone j = 10 is 4.063 in the data above.

In the provided AMPL model servStatLoc.mod, the following declarations match up with the
provided AMPL data files:

param z; # number of =zones

param s; # number of service stations

param v; # number of vehicles per service station

param c; # number of closest vehicles for average

set Zones := 1..z;

param Demand {Zones} >= 0; # Demand[i] = demand of zone i

param Time {Zones,Zones} >= 0; # Timel[i,j] = time from zone i to j

Tasks: You must fill in the placeholders in the skeleton report and skeleton model in
the provided materials, by following their instructions:!

A. Describe a model of the service station location problem as a mixed integer linear program:
what are the variables, their meanings, their constraints, and the objective function?
Do not worry about symmetry in the search space: MIP solvers automatically exploit
symmetries. Hint: For each zone, the actually closest vehicles can be determined by
the minimisation process without representing them in the model, so that it suffices to
represent the number of vehicles of each zone that serve each zone.

!Solo teams (except PhD students) may omit the potential algorithm design parts of Task G or H (or both),
as well as the entire Task I, but they are encouraged to perform them nevertheless.


https://user.it.uu.se/~justin/Assets/Teaching/AD3/assignments/assignment1.zip

B. Implement the resulting model into servStatLoc.mod and upload it without explaining
and including it in the report, but indicate there the MIP solver and hardware that you
used for your experiments in the next tasks. All the syntax you need is in our MIP Slides
Four points will be deducted from your score if your model has a nonlinear objective
function or nonlinear constraints, such as the quadratic constraints and logic constraints
that AMPL allows: check if the AMPL output mentions non-linearity. One (possibly
additional) point will be deducted from your score if your uploaded model is different from
the model you describe for Task A.

C. Solve the problem for z = 10,s € 2..4,v = 2,¢ = 3 using the data files
location-010-0s-2 in order to see the impact on the optimal objective value when para-
meter s increases, as one then has a higher budget for service stations and more vehicles
overall. For your convenience: the optimal objective value for s = 2 is 0.008740338682.

D. Solve the problem for z = 20,s € 2..6,v = 2,¢ = 3 using the data files
location-020-0s-2 in order to see the impact on the optimal objective value when para-
meter s grows beyond 4. For your convenience: the optimal objective value for s = 2 is
0.02324626135.

E. Solve the problem for z = 40, s = 5,v = 2, ¢ = 3 using the data file location-040-05-2.

F. Solve the problem for z = 80 and ¢ = 3 using the data files location-080-08-2 and
location-080-16-1 in order to see the impact on the optimal objective value when dis-
tributing 16 vehicles for s = 8 with v = 2 versus s = 16 with v = 1.

G. Solve the problem for z = 120, s = 10, v = 2, ¢ = 3 using the data file location-120-10-2.
If your model times out, then propose an algorithm for delivering a not necessarily optimal
solution, such that the algorithm is expected to take reasonable running time: describe
the steps of the algorithm, but you do not need to implement and run it.

H. Solve the problem for z = 250, s = 12, v = 3, ¢ = 4 using the data file location-250-12-3.
If your model times out (but not on Task G), then follow the timeout instructions of Task G.

1. Express and justify the size of the search space of the problem in terms of the problem
parameters z, s, v, and c. For each instance mentioned above that your used MIP solver
solved to proven optimality without timing out, state how many candidate solutions this
brute-force search algorithm has to examine per second in order to match your reported
runtime performance.

Use a timeout of at least 300 seconds per run and report the performance (runtime, objective
value, and optimality gap) over a single run per instance, as the recommended solvers are
deterministic by default; a precision of two decimal places suffices here for the runtime and
optimality gap, but the objective value should be given in full precision. See the AD3 resources
for how to run the experiments.

Reminder. MIP solvers are exact: for a minimisation problem, the optimality gap is the
relative difference between the current upper bound u (the objective value of the currently best
solution) and current lower bound ¢ (the objective value of the currently best leaf node) on the
objective function, that is the ratio “TTE, when a MIP solver is stopped prematurely; if £ = u
then the optimality gap is zero and the MIP solver has actually proved the optimality of its

currently best solution.


https://user.it.uu.se/~justin/Assets/Teaching/AD3/Slides/lecture2_MIP.pdf
https://ad3-uu-se.github.io/assignments/assignment1/index.html

Problem 2: Stochastic Local Search (SLS) (60% weight)

The aim of solving this problem is to get hands-on experience with procedurally encoding a
hard combinatorial optimisation problem into an SLS algorithm that can near-optimally if not
optimally solve the problem, with potentially impressive performance.

The investment design problem is about finding a matrix of v rows and b columns of 0-1
integer values, such that each row sums up to r, with v > 2 and b > r > 1, and the largest dot
product between all pairs of rows is minimised. Equivalently, one has to find v subsets of size r
within a given set of b elements, such that the largest intersection of any two of the v sets has
minimal size. An instance of the problem is parametrised by a triple (v, b,r).

For example, the following figure shows two (10,8, 3) investment designs, where grey cells
represent value 1 and white cells represent value 0:

In these two investment designs, there are dot products (or: intersection sizes) of 0 to 2, so their
largest dot products are both 2: this is minimal, as there exists no (10,8, 3) investment design
where 1 is the largest dot product [1].

This is an abstract description of a problem that appears in finance (see The Big Short),
where the rows are the baskets (also known as subpools or tranches) of an investment portfolio
and the columns correspond to the credits the baskets can invest in, so that the baskets are of
equal size but minimal overlap. In a typical investment design in finance, we have 4 < v < 25
and 250 < b < 500, with r ~ 100.

A lower bound on the number A of shared elements of any pair among v subsets of size r
drawn from a given set of b elements is given in [1]:

rv]? rv |2
b(\) = [22]7 ((rv) mod b) +£(ZJ— 1b) — ((rv) mod b)) — rv 0

For 6 of the following 7 instances, the lower bound on A is known to be feasible:

v b r 1b(A)

10 360 120 32
15 350 100 24
11 150 50 14

10 100 30 7
19 19 9 4
15 21 7 2
12 44 11 2

For the instance (15,21,7) in the table, the lower bound 2 is infeasible and a best solution
has A = 3, but you are not allowed to exploit that knowledge in your algorithm. For the
instance (10, 8, 3) discussed above, the lower bound is 1, which is infeasible [1].


https://imdb.com/title/tt1596363

Tasks:

You maust fill in the placeholders in the skeleton report in the provided materials, by

following its instructions. Note that performing Tasks A to C is to be done in lockstep:?

A. SLS Algorithm. Design an SLS algorithm for solving the investment design problem,
by performing the following problem-independent steps while reading the skeleton code of
Task B and addressing each of them in the report. Start with a very simple algorithm and
test it on small instances; improve it only if it is too slow and test it on larger instances, etc,
until you are satisfied with the performance (see the end of Task C for our requirements):

1

Representation. Describe how to represent the problem: what are the variables, their
meanings, their constraints, and the objective function?

Initial Assignment. Describe an algorithm for generating (fast) a randomised initial
assignment. Hint: Satisfy some or all of the constraints in the initial assignment.

Move. Describe one or more moves that go from an assignment to a neighbouring as-
signment by changing the values of a few variables. Hint: If you followed the previous
hint, then preserve the satisfaction of the chosen constraints by every move: your SLS
algorithm will then always be at an assignment satisfying all those constraints and
can focus on trying to satisfy the remaining constraints and optimising the objective
value (that is, the value of the objective function).

Constraints. Describe for each constraint how its satisfaction is either algorithmically
checkable efficiently or guaranteed to be preserved by the previous two design choices.

Neighbourhood. Describe a neighbourhood based on the proposed moves. Derive a
formula for computing the size of the neighbourhood in terms of the problem para-
meters. Discuss whether the neighbourhood makes the search space connected, in the
sense that every feasible assignment (that is, every assignment satisfying all the con-
straints, whether optimal or not) is reachable from every initial assignment (you only
need to sketch a proof if the search space is connected, and give a counterexample
otherwise). Note that the neighbourhood should not be of size 1: otherwise you are
describing a greedy algorithm. Hint: Do not over-engineer the neighbourhood.

Cost Function. Describe a cost function, whose value is to be minimised during
search. Note that the cost function need not be equal to the objective function, but
the cost value should decrease when the objective value decreases. Also note that one
can switch during search between alternative cost functions. Hint: If two assignments
have the same objective value but one of them is somehow better, then a good cost
function gives a lower value to the better assignment. For example, imagine the two
equally good (10, 8, 3) investment designs in the drawings at page 4 were not optimal:
the cost function can be based on a tiebreaker expressing why the right design is
closer to a better design than the left one.

Probing. Describe how a neighbouring assignment, as reachable by a move, can be
probed efficiently: describe how the cost function can be evaluated efficiently and
incrementally, and describe the data structures used to do so. Give, without proof,
the time complexity of probing; ideally, it is (sub-)linear in the problem parameters.

Heuristic. Describe a heuristic for exploring (via probing) your neighbourhood of
Step 5 and selecting a neighbouring assignment to commit to. State whether the
neighbourhood is explored exhaustively and, if so, how you determine when it was
exhausted. Explain how you ensure that the same neighbour is not probed twice
during a given exploration. Hint: It can be beneficial to explore the neighbourhood
in a random order.

2S0lo teams (except PhD students) only need to evaluate one configuration of values for the hyperparameters
in Task C and they may omit Task D, but they are encouraged to perform it nevertheless.


https://user.it.uu.se/~justin/Assets/Teaching/AD3/assignments/assignment1.zip

9. Optimality. Describe how you use a bound on the objective value in order to terminate
sometimes the search with proven optimality, as part of the heuristic.

10. Meta-Heuristic. Describe a meta-heuristic based on tabu search: explain how the
tabu list is represented; choose (a formula for) its size; explain how fine-grained its
content is; and describe how it can be looked up and maintained efficiently. Note
that the tabu list is not necessarily an actual list, but rather a concept. Make sure
that worsening moves are sometimes made.

11. Random Restarts. Describe how to detect or guess that a random restart should be
made, as part of the meta-heuristic.

12. Optional Tweaks. Describe ideas that you used in order to improve your algorithm.

Most of your effort should be spent on steps 6, 7, and 10. Identify the hyperparameters
in each step.

. Implementation. Implement — in either Java, possibly using the skeleton code in the
provided folder invDes, or any other high-performance programming language for which
a compiler or interpreter is available on the Linux computers of the IT department (see
the AD3 Resources) — the SLS algorithm designed in Task A and upload it without
including it in the report, but give there its compilation and running instructions. Because
speed is of the essence for SLS, we recommend against Python for example.

An executable script executable called InvDes that reads the problem parameters v, b, r as
command-line arguments, say ./InvDes 10 8 3, and writes to the standard output a line
with the space-separated values of v, b, r, the lower bound 1b(\) on A, and the achieved A,
followed by one line per row of a v X b matrix representing the solution, the 0-1 cell values
being space-separated. For example, the (10,8, 3) investment design on the left at page 4
is represented by the provided file invDes-10-8-3.txt.

You must at least experimentally pipe the InvDes output into the provided polynomial-
time solution checker, which is a Python script that reads a solution from standard input,
in order to gain confidence in the correctness of your implementation, for example by
./InvDes.py 10 8 3 | ./invDesChecker.py.

. Experiments. Indicate the hardware that you used for your experiments. Determine
(without reporting how) two good configurations of values for your identified hyperpara-
meters and evaluate these configurations experimentally, using a table. Use a timeout of
at least 300 seconds per run and report the median (not: average) performance (runtime,
steps, and achieved \) over at least 5 independent runs per instance and configuration,
because an SLS algorithm must be randomised by definition; a precision of one decimal
place suffices here.

Hint: In order to save a lot of time, it is very important that you write a script that
conducts the experiments for you and directly generates a result table that is imported
into your report (see the source code of the provided skeleton report for how to do that):
each time you change your implementation, it suffices to re-run that script and re-compile
your report, without any tedious number copying! The sharing of such a script is allowed
and even encouraged. It is recommended to define an optional command-line flag, say
-p, for the executable InvDes.py so as also to output the runtime (in seconds) and the
number of steps in the first line of the output and to suppress the output of the v x b
matrix representing the solution.

The larger instances in the table above may be difficult for your SLS algorithm, but you
are expected to get quite close to their optimal values of A mentioned above. A minimum
requirement for score 5 is to be within one unit of each actual optimum.


https://ad3-uu-se.github.io/resources/index.html

D

. Exact Algorithm. Outline (in plain English or in high-level pseudocode, but without an
implementation) an exact algorithm (performing brute-force search, if you want) for the
investment design problem. Express the size of the search space of your exact algorithm in
terms of the problem parameters v, b, and r. For each instance in the table above that your
SLS algorithm solves to proven optimality before timing out, state how many candidate
solutions your exact algorithm would have to examine per second in order to match the
runtime performance of the seemingly best configuration of values for the hyperparameters,
according to Task C. Comment on those numbers.

References

[1] O. Sivertsson, P. Flener, and J. Pearson. A bound on the overlap of same-sized sets. Annals of

Combinatorics, 12(3):347-352, October 2008. Available at https://dx.doi.org/10.1007/

s00026-008-0355-0.

Su

1.

bmission Instructions

The report instructions are in comments that start with ‘%%’ in the IXTEX source of the
skeleton report and should be followed even when not using IATEX. All running text should
be black: comment away line 19 (which typesets the placeholders in blue) and uncomment
line 20 (which typesets them in black).

Spellcheck the report and the comments in all code, in order to show both self-respect and
respect for your readers. Thoroughly proofread the report, at least once per teammate,
and ideally grammar-check it. In case you are curious about technical writing: see the
English Style Guide of UU or Links to Writing Resources.

3. Match exactly the uppercase, lowercase, and layout conventions of any filenames and I/0

texts imposed by the tasks, as we will process submitted source code automatically. Do not
rename any of the provided skeleton codes, for the same reason. However, do not worry
when Studium appends a version number to the filenames when you make multiple sub-
mission attempts until the deadline.

4. Remember that when submitting you implicitly certify (a) that your report and all its

uploaded attachments were produced solely by your team, except where explicitly stated
otherwise and clearly referenced, (b) that each teammate can individually explain any
part starting from the moment of submitting your report, and (c¢) that your report and
attachments are not freely accessible on a public repository.

. Submit (by only one of the teammates) by the given hard deadline three files via Studium:
your report as a PDF file (all other formats will be rejected) and two compressed folders
in ZIP format with all source code required to run your experiments of each problem.

Grading Rules

For

each problem:

If the requested source code is uploaded, and it runs without compilation or runtime errors
on a Linux computer of the IT department under the compiler, interpreter, or solver that you

indi
our

cate, and it computes correct and (near-)optimal solutions in reasonable time to some of
tests on that hardware, then you get a score of at least 1 point (read on), else your final

score is 0 points. Furthermore:


https://dx.doi.org/10.1007/s00026-008-0355-0
https://dx.doi.org/10.1007/s00026-008-0355-0
https://www.uu.se/en/staff/service-and-tools/communications-and-marketing/style-guides-and-language-support/writing-rules-plain-language-and-accessibility/english-style-guide
https://justinkennethpearson.github.io/post/2020/06/18/writing/

e If the code passes most of our tests and the report addresses all tasks and subtasks in a
good enough way, then you get a final score of 3 or 4 or 5 points and are not invited to
the grading session for this problem.

e If the code fails too many of our tests, or the report does mot address all tasks and
subtasks, or some task or subtask answers have severe errors, then you get an initial
score of 1 or 2 points and might be invited to the grading session for this problem, at the
end of which you informed whether your initial score is increased or not by 1 point into
your final score. A non-invitation leads to your final score being the initial one, and the
same holds for each invited student who makes a no-show.

Also, #f an assistant figures out a minor fix that is needed to make your code run as per
our instructions above, then, instead of giving 0 points, the assistant may at their discretion
deduct 1 point from the score earned upon the fix.

Let s; be your final score on Problem 7, whose stated weight is w;. Your final score on the
entire assignment is ) _,(w;-2-s;), rounded to the nearest (and hence possibly previous) integer,
provided s; > 0 for both problems.

Considering there are three help sessions for each assignment, you must earn at least 3 points
(of 10) on each assignment until the end of its grading session, including at least 1 point (of 5)
on each problem and at least 10 points (of 20) over both assignments, in order to pass the
Assignments part (2 credits) of the course, if you attend the guest lecture from industry.



